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To Johan, Théo, and Julie

my will to imagine a desirable future.

“Why should I be studying for a future that soon may be no more,
when no one is doing anything to save that future?”

— Greta Thunberg, TEDxStockholm, November 2018

A wishful answer:

“Those who contemplate the beauty of the earth
find reserves of strength that will endure as long as life lasts.”

— Rachel Carson, Silent Spring



Acknowledgements

First and foremost, I would like to thank my supervisor, Marc Burger, for giving
me the opportunity to write this thesis, for introducing me to such a fascinating
mathematical topic, and for allowing me to explore a broad range of ideas through-
out. I’m deeply grateful for the freedom you gave me, both in the topics I pursued
and in the methods I explored. Your enthusiasm for research, your passion for
communicating mathematics (and much more), and your openness with young
researchers have been a true source of inspiration. I was lucky to receive your
guidance at key moments of this thesis, and our conversations were a source of
ideas and inspiration. You made this thesis possible, and everything I’ve learned
during it, mathematically and beyond.

I’m grateful to my thesis referee, Bertrand Rémy, for his insightful comments
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bien des conflits intérieurs. Mon frère, je chéris ta spontanéité, tes coups de folie et
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Abstract

The main part of this thesis is based on the papers [Jae24] and [Jae25], which
study compactifications of character varieties Ξ(Γ, G(R)) and the geometric spaces
on which Γ acts via the associated representations, where Γ is a finitely generated
group and G(R) is either PSLn(R) or SLn(R). A strong emphasis is placed on
the real spectrum compactification Ξ(Γ, G(R))RSp

cl , from which we derive two nat-
ural Γ-actions on geometric spaces: one on oriented R-trees, and another on the
Archimedean spectrum of a space equipped with a G(R)-action.

First, we construct universal geometric spaces over Ξ(Γ, SLn(R))RSp
cl that pro-

vide geometric interpretations of boundary points in terms of Γ-actions. For an
algebraic set Y (R) on which SLn(R) acts by algebraic automorphisms (such as
Pn−1(R) or an algebraic cover of the symmetric space of SLn(R)), the projection
map Ξ(Γ, SLn(R))× Y (R) → Ξ(Γ, SLn(R)) extends to a Γ-equivariant continuous
surjection (Ξ(Γ, SLn(R)) × Y (R))RSp

cl → Ξ(Γ, SLn(R))RSp
cl . The fibers of this ex-

tended map, which encode the limiting behavior of Γ-actions, are homeomorphic
to the Archimedean spectrum of Y (F) for some suitably chosen real closed field
F, and form locally compact subsets of Y (R)RSp

cl . The Archimedean spectrum is
naturally homeomorphic to the real analytification, and we use this identification
to compute the image of the fibers in their Berkovich analytification. In the case
Y (R) = P1(R), the image is a R-subtree.

Second, we associate to each element of ∂Ξ(Γ,PSL2(R))RSp
cl an oriented R-

tree. This construction allows us to interpret boundary points as Γ-actions by
orientation-preserving isometries on oriented R-trees, leading to a continuous sur-
jection from Ξ(Γ,PSL2(R))RSp

cl to the oriented Gromov equivariant compactification
of Ξ(Γ,PSL2(R)). We justify continuity by describing how such Γ-actions arise as
limits of actions on the oriented hyperbolic plane, via asymptotic cones endowed
with an ultralimit orientation.

Finally the last section presents the collaborative work [ADRFJ24]. It gives an
example of a homogeneous R-tree with complete segments that is not metrically
complete. This example has implications for the study of degenerations of represen-
tations, as it shows that even seemingly well-behaved trees can exhibit unexpected
metric properties.
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Résumé

La majeure partie de cette thèse repose sur les articles [Jae24] et [Jae25], qui étudient
des compactifications des variétés de caractères Ξ(Γ, G(R)) ainsi que des espaces
géométriques sur lesquels Γ agit via les représentations associées, où Γ est un groupe
de type fini et G(R) désigne soit PSLn(R), soit SLn(R). Une attention particulière
est portée à la compactification par le spectre réel Ξ(Γ, G(R))RSp

cl , à partir de
laquelle on obtient deux actions naturelles de Γ sur des espaces géométriques :
l’une sur des R-arbres orientés, et l’autre sur le spectre archimédien d’un espace
muni d’une action de G(R).

Dans un premier temps, nous construisons des espaces géométriques universels
au-dessus de Ξ(Γ, SLn(R))RSp

cl , qui fournissent une interprétation géométrique des
points à l’infini en termes d’actions de Γ. Pour un ensemble algébrique Y (R)
sur lequel SLn(R) agit par automorphismes algébriques (comme Pn−1(R) ou un
revêtement algébrique de l’espace symétrique de SLn(R)), l’application de pro-
jection Ξ(Γ, SLn(R))× Y (R) → Ξ(Γ, SLn(R)) s’étend en une surjection continue
Γ-équivariante (Ξ(Γ, SLn(R))×Y (R))RSp

cl → Ξ(Γ, SLn(R))RSp
cl . Les fibres de cette ap-

plication, qui encodent le comportement limite des actions de Γ, sont homéomorphes
au spectre archimédien de Y (F) pour un corps réel clos bien choisi F, et forment
des sous-ensembles localement compacts de Y (R)RSp

cl . Le spectre archimédien est
naturellement homéomorphe à l’analytification réelle, identification que nous util-
isons pour calculer l’image des fibres dans leur analytification au sens de Berkovich.
Dans le cas Y (R) = P1(R), cette image est un R-arbre.

Dans un second temps, nous associons à chaque élément de ∂Ξ(Γ,PSL2(R))RSp
cl

un R-arbre orienté. Cette construction permet d’interpréter les points à l’infini
comme des actions de Γ par isométries préservant l’orientation sur des R-arbres
orientés, conduisant à une surjection continue de Ξ(Γ,PSL2(R))RSp

cl vers la com-
pactification de Gromov équivariante orientée de Ξ(Γ,PSL2(R)). La continuité de
cette application est justifiée en décrivant comment de telles actions de Γ appa-
raissent comme limites d’actions sur le plan hyperbolique orienté, via des cônes
asymptotiques munis d’une orientation ultralimite.

Enfin, la dernière section présente le travail collaboratif [ADRFJ24]. On y
donne un exemple de R-arbre homogène qui n’est pas métriquement complet. Cet
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exemple a des implications pour l’étude des dégénérescences de représentations,
puisqu’il montre que même des R-arbres apparemment sans pathologie peuvent
présenter des propriétés métriques inattendues.
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Chapter 1

Introduction

1.1 Character varieties and their compactifica-

tions: from rank one to higher rank

This section provides historical context and background for the research carried out
in this thesis. We give a non-exhaustive account of the construction of character
varieties, emphasizing their connections to various areas of mathematics. Particular
attention is given to the role of compactifications, both in classical and higher rank
settings, as they are central to the questions addressed in this work. We conclude
each subsection by stating the associated main results of the thesis, which will be
developed in more detail in the subsequent sections of the introduction.

1.1.1 Character varieties: general construction and rank
one compactifications

A central theme in modern geometry is the study of geometric structures on
manifolds via their transformation groups. This perspective examines a manifold
M equipped with local coordinate charts valued in a geometric model space X,
where the transition functions lie in a groupG acting onX by diffeomorphisms. This
defines local geometric data—such as distances and angles—on M in a consistent
way. Within this framework, the area of Teichmüller theory studies the case of
M = S being a topological surface. Building on ideas going back to Riemann
[Rie04] and developed implicitly by Poincaré and Fricke–Klein [Poi84, Kle83, FK65],
Teichmüller revolutionized the study of the interplay between conformal, hyperbolic,
and algebraic structures on surfaces [Grö28, Tei44]. Central to this interactions is
the space of marked hyperbolic structures on a surface S (called Teichmüller space
T (S) [BB93]), which plays a fundamental role in low-dimensional topology and
geometry [JP13]. A modern viewpoint, introduced by Thurston, identifies T (S)
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with:

T (S) = {ϕ ∈ Hom(π1(S),PSL2(R)) | ϕ is faithful and discrete} /PSL2(R),

where π1(S) is the fundamental group of S, equivalence is up to postconjugation,
and T (S) is equipped with the topology of pointwise convergence [Thu79]. The
mapping class group MCG(S), the group of isotopy classes of automorphisms of S,
acts naturally on π1(S) and consequently on T (S). The quotient T (S)/MCG(S)
can then be identified with the moduli space of all hyperbolic structures on S.
This action enables a dynamical and group-theoretic study of the geometry of S
by encoding the symmetries of the surface. To study degenerations of hyperbolic
structures, Thurston introduced a compactification of T (S) via the length spectrum

T (S)LS,

whose boundary points correspond to projective measured laminations [Thu79,
Thu88]. The MCG(S)-action extends continuously to T (S)LS, which Thurston used
to classify elements of MCG(S), noting that topologically T (S)LS is homeomorphic
to a closed ball. This compactification is fundamental to Thurston’s work, and
many others such as Otal and Kapovich’s proofs of Thurston’s hyperbolization
theorem for 3-manifolds, which gives sufficient conditions for a 3-manifold to be
hyperbolic [Ota01, Kap09].

Building on these foundations, character varieties provide a natural extension of
T (S) and establish important connections with algebraic geometry [Hit92, KM98].
For a finitely generated group Γ and a Lie group G(R) = PSLn(R) or SLn(R), the
character variety is the space

Ξ(Γ, G(R)) := {ϕ ∈ Hom(Γ, G(R)) | ϕ is reductive} /G(R),

equipped with the topology of pointwise convergence, where G(R) acts by post-
conjugation. Notably, in rank one (n = 2), the space T (S) forms one connected
component of Ξ(π1(S),PSL2(R)). Character varieties provide a geometric point
of view for studying representations of discrete groups in G(R) and unifies several
key themes:

• they support Goldman and Mirzakhani’s work on the symplectic and hyper-
bolic geometry of moduli spaces [Gol84, Mir07];

• they are central to Thurston’s and Culler–Morgan–Shalen’s theory linking
character varieties to the topology of manifolds and geometric group theory
[Thu88, CS83, MS84];

• they are related to non-abelian Hodge theory [Hit87, Don87, Cor88, Sim92];
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• they bridge to modern mathematical physics [FC99] and the Langlands
program [BD91, DP12].

As in the case of T (S), character varieties are in general not compact. Thus
there exist sequences of representations that do not have a limit. To investigate
their asymptotic behavior, we examine compactifications of Ξ(Γ, G(R)). In the
rest of this subsection, we focus on character varieties of rank one, that is when
n = 2. Culler, Morgan, and Shalen [CS83, MS84] extended the length spectrum
compactification to the algebraic set

Ξ(Γ, SL2(C)).

Using the theory of valuations, they interpret the boundary points of this compact-
ification as Γ-actions by isometries on R-trees. This provides tools for constructing
new group actions on R-trees and, in the case Γ = π1(M) for a 3-manifold M ,
for detecting essential subsurfaces. Independently, Bestvina and Paulin devel-
oped geometric constructions for Ξ(Γ,PSL2(R))LS [Bes88, Pau89]. They study the
space of Γ-actions on hyperbolic n-spaces and R-trees endowed with the Gromov
equivariant topology, based on the Hausdorff distance between topological spaces
(following a definition in [Gro81a]). The mapping class group action on T (S)
extends continuously to an

Out(Γ)-action on Ξ(Γ,PSL2(R))LS.

Here Out(Γ) is the outer automorphism group of Γ, that is, automorphisms of Γ
modulo those that come from conjugation by elements of Γ itself. Wolff proves
in [Wol11] that Ξ(π1(S),PSL2(R))LS is a connected topological space, whereas
Ξ(π1(S),PSL2(R)) has 4g − 3 connected components, for a topological surface
of genus g ≥ 2 [Wol11, Corollary 1.2]. This mismatch complicates the study of
the MCG(S)-action on individual components. To avoid this degeneracy, Wolff
introduced the oriented Gromov equivariant compactification

Ξ(Γ,PSL2(R))O,

that retains the information of the orientation on H2 and the crucial fact that
PSL2(R) acts on H2 by orientation preserving isometries. This compactification is
a refinement, equipped with a natural forgetful map [Wol11, Proposition 3.22]

Ξ(Γ,PSL2(R))O → Ξ(Γ,PSL2(R))LS,

which discards the orientation data. It allows the Euler class to extend continuously
to the boundary. In particular, it preserves the connected components, as the Euler
class distinguishes them (see Chapter 5).
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Remark. While the convergence of representations to boundary elements in this
compactification are well understood, topological properties of Ξ(Γ,PSL2(R))O, such
as the homology groups, are unknown.

An additional perspective arises from real algebraic geometry. Brumfiel rec-
ognized that the algebraic approach developed by Morgan and Shalen to study
Ξ(π1(S), SL2(C)) could be extended to Ξ(Γ,PSL2(R)), using that Ξ(Γ,PSL2(R))
is a semialgebraic set [Bru88a]. This leads to the natural compactification

Ξ(Γ,PSL2(R))RSp
cl

of Ξ(Γ,PSL2(R)), constructed using the real spectrum of a semialgebraic set, see
Chapter 2 and 3. It preserves the connected components, the Out(Γ)-action extends
continuously to the boundary, and it satisfies a semialgebraic version of Brouwer’s
fixed point theorem, see Chapter 3 and [Bru88b]. Moreover, using the strength of
the Transfer Principle (Theorem 2.2.2), Brumfiel shows:

Theorem ([Bru88a, Proposition 7.2]). There exists a continuous surjection

T (S)RSp
cl → T (S)LS,

which is Out(π1(S))-equivariant.

In this thesis, we build on Brumfiel’s construction to refine the comparison
between compactifications. Using asymptotic cones and ultralimits of orientations,
we establish the following result:

Theorem (Theorem 5.3.4). There exists a continuous surjection

Ξ(Γ,PSL2(R))RSp
cl → Ξ(Γ,PSL2(R))O,

which is Out(Γ)-equivariant.

In particular, the map Ξ(Γ,PSL2(R))RSp
cl → Ξ(Γ,PSL2(R))LS from above factors

through the surjection Ξ(Γ,PSL2(R))RSp
cl → Ξ(Γ,PSL2(R))O constructed in our

theorem. Figure 1.1 summarizes the relationships between the compactifications dis-
cussed, where Γ is finitely generated and the inclusion T (S)LS ↪→ Ξ(Γ,PSL2(R))LS
holds only when Γ = π1(S).

Remark. One possible application that we intend to pursue in the future is to use
the continuous surjection Ξ(Γ,PSL2(R))RSp

cl → Ξ(Γ,PSL2(R))O, and the knowledge
about the homology groups of Ξ(Γ,PSL2(R))RSp

cl ([BCR13, Section 11]), to compute
the homology groups of Ξ(Γ,PSL2(R))O.

Several other compactifications of character varieties have been proposed—for
example, the Gardiner–Masur compactification [GM91] and the wonderful com-
pactification [BLR19]. In this thesis, we focus on the oriented Gromov equivariant
and the real spectrum compactifications.
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T (S)LS

Ξ(Γ,PSL2(R))LS

Ξ(Γ,PSL2(R))RSp
cl Ξ(Γ,PSL2(R))O

Γ=π1(S)

[Bru88a]

Theorem 5.3.4

[Wol11]

Figure 1.1: Relations between compactifications of Ξ(Γ,PSL2(R)) and T (S).

1.1.2 Geometric interpretation of higher rank compactifi-
cations

When G(R) = SLn(R) or PSLn(R) for n > 2, the associated character variety
Ξ(Γ, G(R)) is said to be of higher rank. This space generalizes the rank one
theory of Teichmüller space and lies at the heart of several active areas of research,
including:

• Higher Teichmüller spaces, a term introduced by Fock and Goncharov [FG06]
to describe certain connected components of character varieties, include exam-
ples such as Hitchin components [Hit92, Lab04] and maximal representations
[BIW10, FG06]. We refer to [Wie18] for a survey of the theory.

• Anosov representations, initiated by Labourie [Lab04] and further studied by
Guichard and Wienhard [GW12]. These representations form open subsets of
character varieties, are stable under deformation, and offer powerful dynamical
tools to study representations, see [Kas18];

• Convex cocompact representations in the sense of Danciger–Guéritaud–Kassel
[DGK23] extend the classical notion of convex cocompactness from rank one to
higher rank, offering new tools for studying geometric structures on manifolds.

In general, the study of Ξ(Γ, G(R)) plays a central role in modern geometry,
raising questions, for example, about the dynamics of mapping class group actions
(see [Gol06] and [Pap14]) or about their connections to geometric structures on
manifolds (see [CG93, CTT19, GW08]).

In this thesis we study a complementary question by analyzing the asymptotic
behavior of representations. This naturally leads to studying compactifications
of higher rank character varieties, generalizing the rank 1 case discussed in the
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previous section. A natural generalization of the length spectrum compactification
is the Weyl chamber length compactification

Ξ(Γ, G(R))WL

of Ξ(Γ, G(R)), introduced by Parreau [Par12]. This construction analyzes sequences
of representations via their induced actions on the symmetric space associated to
G(R) and on affine buildings, which arise as rescaled limits of symmetric spaces.
Like the length spectrum compactification, this approach interprets degenerations
of representations geometrically. However, it does not preserve the connected
components of Ξ(Γ, G(R)), complicating the analysis of the mapping class group
action on individual components.

Remark. Although beyond the scope of this thesis, a natural question is whether
the oriented Gromov equivariant compactification extends to higher rank, by en-
dowing affine buildings with an orientation. We plan to investigate whether such a
compactification preserves the connected components of Ξ(Γ, G(R)).

To overcome these limitations, Burger, Iozzi, Parreau, and Pozzetti study the
real spectrum compactification, extending Brumfiel’s ideas to higher rank [BIPP23].
This approach provides a refinement of the Weyl chamber length compactification
by offering a more algebraic perspective:

Theorem ([BIPP23, Theorem 8.2]). There exists a continuous surjection

Ξ(Γ, G(R))RSp
cl → Ξ(Γ, G(R))WL,

which is Out(Γ)-equivariant.

A boundary element of ∂Ξ(Γ,PSL2(R))RSp
cl is represented by an equivalence

class [ϕ,F], where ϕ : Γ → G(F) is a reductive representation and F is a suitably
chosen non-Archimedean real closed field satisfying some minimality conditions
[Bru88a, BIPP23], see Section 5.2. In this way, the compactification admits a
purely representation-theoretic description of its boundary points. While such an
algebraic characterization exists, a central challenge raised by Wienhard at the
ICM [Wie18] is to develop a geometric interpretation of the boundary points of
this compactification. This thesis aims to progress toward that goal.

In [BIPP23], the authors associate to each [ϕ,F] ∈ ∂Ξ(Γ, G(R))RSp
cl a Γ-action

by isometries without fixed points on an affine building (see also [KT02, App24])
giving a first geometric interpretation of boundary elements. A key feature of this
compactification is that each boundary element (with some property) defines a
geodesic current—a higher rank analogue of measured laminations—on the quotient
of the symmetric space of G(R) by the Γ-action. Yet, the modular interpretation
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of this compactification remains incomplete (that is, we lack a full understanding
of what geometric structures the boundary points represent). This thesis takes a
step towards this goal by analyzing an algebraic subset of minimal vectors

MΓ(R) ⊂ Homred(Γ, SLn(R)),

which is a cover of Ξ(Γ, SLn(R)). More precisely MΓ(R)/SO(n,R) is semialge-
braically isomorphic to Ξ(Γ, SLn(R)). We examine the geometric actions induced
by MΓ(R) on Pn−1(R), the (n−1)-dimensional projective space (or on an algebraic

cover ̂P1(n,R) of the symmetric space P1(n,R) of SLn(R), see Subsection 4.1.2
and Subsection 4.1.3). The algebraic group SLn(R) acts on Pn−1(R) by algebraic
automorphisms so that any element of MΓ(R) induces a Γ-action on Pn−1(R). We
call

MΓ(R)× Pn−1(R)
the universal projective space over MΓ(R). It is an algebraic set that parametrizes
all Γ-actions induced by elements of MΓ(R) on Pn−1(R), as illustrated in Figure 1.2
(see Subsection 4.1.1 for details).

ϕ

MΓ(R)× P1(R)

MΓ(R)

ϕ(Γ) ⟳ P1(R)

Γ ⟳

π

Figure 1.2: Schematic picture of the universal projective line (n = 2) over MΓ(R),
with the fiber over ϕ in blue.

A natural question is whether such a geometric space exists over MΓ(R)RSp
cl and

whether it contains information about the Γ-actions induced by elements in the
boundary of MΓ(R)RSp

cl . We provide this universal geometric space by considering

(MΓ(R)× Pn−1(R))RSp
cl

and analyzing its geometric and dynamical properties. The Archimedean spectrum
Pn−1(F)RSp

Arch of Pn−1(F) is a dense and locally compact open subset of Pn−1(R)RSp
cl

that contains Pn−1(F) with desirable geometric properties. A detailed study of
this space is given in Section 3. Our main result, illustrated in Figure 1.3, can be
summarized as follows:
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Theorem (Theorem 4.1.8). The projection map π : MΓ(R)× Pn−1(R) → MΓ(R)
extends to a continuous map

πRSp
cl : (MΓ(R)× Pn−1(R))RSp

cl → MΓ(R)RSp
cl ,

which is surjective, Γ-equivariant, with the fiber over (ρ,F) ∈ MΓ(R)RSp
cl homeo-

morphic to Pn−1(F)RSp
Arch.

Using this theorem, we analyze MΓ(R)RSp
cl through the study of its fibers in

(MΓ(R) × Pn−1(R))RSp
cl . We understand the Γ-actions on Pn−1(F)RSp

Arch induced
by representations in MΓ(R)RSp

cl by comparing them to Γ-actions on Pn−1(R)
coming from representations in MΓ(R). In the following, an element of the fiber
(πRSp

cl )−1(ρ,K) is written as a triple (ρ,A,F) where A ∈ Pn−1(F)RSp
cl encodes the

decomposition into factors, see Remark 4.1.1.

Corollary (Corollary 4.1.10). Let (ρn,Kn) ⊂ MΓ(R)RSp
cl be a sequence converging

to (ρ,K) ∈ MΓ(R)RSp
cl . For every element of the fiber (ρ,A,F) ∈ (πRSp

cl )−1(ρ,K),
there exists a sequence (ρn, An,Fn) ∈ (πRSp

cl )−1(ρn,Kn) such that (ρn, An,Kn) con-
verges to (ρ,A,F) in the spectral topology.

Both results hold if Pn−1(R) is replaced by the algebraic cover ̂P1(n,R) of the
symmetric space P1(n,R) of SLn(R); see Subsection 4.1.2 and 4.1.3 for the precise
statements.

(ϕ′,F) ∈ ∂MΓ(R)RSp
cl

ϕ

(MΓ(R)× P1(R))RSp
cl

MΓ(R)RSp
cl

P1(R)

Γ ⟳

ϕ′(Γ) ⟳ P1(F)RSp
Arch

πRSp
cl

Figure 1.3: Schematic extension of the universal projective line over MΓ(R) to the
real spectrum, illustrating the convergence of interior fibers (in blue) to the fiber
over the boundary point (in red).

These results establish a connection between the study of degenerations of rep-
resentations in character varieties and techniques from analytic geometry. Building
on the natural homeomorphism between Pn−1(F)RSp

Arch and the real analytification of
Pn−1(F) [JSY22], we construct a proper continuous map

ψ : Pn−1(F)RSp
Arch → Pn−1(F)an,
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where Pn−1(F)an is the Berkovich analytification of Pn−1(F)—a connected, locally
compact space containing Pn−1(F) and endowed with an analytic structure. Theo-
rem 4.2.14 provides a description of the image of ψ; in the special case of P1(F),
this yields the following result:

Corollary (Corollary 4.2.32). Let F be a non-Archimedean real closed field endowed
with an absolute value. The image under ψ of P1(F)RSp

Arch\P1(F) inside P1(F)an\P1(F)
is a closed, PSL2(F)-invariant R-subtree.

The natural Γ-action on Pn−1(F)RSp
Arch, induced by an element of MΓ(R)RSp

cl ,
provides an analytic perspective to the study of MΓ(R)RSp

cl with the aim of identi-
fying dynamical properties of boundary representations. The following subsections
outline these constructions and the main methods used in this article.

1.2 Archimedean spectrum and real spectrum

compactification

This section first motivates and gives a more detailed overview of the real spectrum
compactification. It then presents our main results on the Archimedean spectrum,
which yields a locally compact topological space to study questions from non-
Archimedean geometry.

1.2.1 Real spectrum compactification

Introduced by Coste and Roy in [CC80, CR82], the real spectrum compactification
applies to semialgebraic sets and preserves the structure determined by the equalities
and inequalities that define them. In other words, the semialgebraic properties
that characterize interior points extend naturally to points at infinity. To simplify
technical details, we present the definitions for algebraic sets and refer to Section 3.1
for further details. A field F is a real field if it is endowed with an order compatible
with its field operations. Moreover, F is real closed if it has no proper algebraic
ordered field extension, see Section 2.2. As an example, one may consider F = R
in what follows. Let L ⊂ K be real closed fields and V ⊂ Ln an algebraic set.
Denote by K[V ] the coordinate ring of the K-extension V (K) of V , and, by abuse of
notation, we use the same symbol for the K-extension of V and the set of K-points
V (K). We endow V (K) with its Euclidean topology, see Section 2.2.

Definition ([BCR13, Proposition 7.1.2]). Let L ⊂ K be real closed fields. The
real spectrum of the K-points of an algebraic set V ⊂ Ln is

V (K)RSp :=

{
(ρ,F)

∣∣∣∣
F a real closed field,

ρ : K[V ] → F a ring morphism

}
/ ∼,
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where ∼ is the smallest equivalence relation such that (ρ1,F1) ∼ (ρ2,F2) if there is
an ordered field homomorphism φ : F1 → F2 for which ρ2 = φ ◦ ρ1.

The real spectrum is endowed with a natural topology called the spectral
topology, see Subsection 3.1. It offers a real counterpart to the spectrum in algebraic
geometry and serves as a central object of study in real algebraic geometry [BCR13].
The real spectrum defines a functor from the category of real algebraic sets to the
category of compact topological spaces, which associates to every algebraic map
π : V (K) → W (K) between algebraic sets a continuous map

πRSp : V (K)RSp → W (K)RSp.

With its spectral topology V (K)RSp is not Hausdorff in general. However, the
subspace of closed points V (K)RSp

cl ⊂ V (K)RSp is a compact Hausdorff space, which
we refer to as the real spectrum compactification of V (K). Note that given an
algebraic map π : V (K) → W (K) between algebraic sets V (K) and W (K), the
induced continuous map πRSp does not necessarily map closed points to closed
points.

Theorem (Theorem 3.2.4). Let V ⊂ Rn, W ⊂ Rm be algebraic sets. If π : V (R) →
W (R) is a proper algebraic map, then the image of πRSp

cl , the restriction to the
closed points of the induced map πRSp, is W (R)RSp

cl . That is, we have a continuous
surjective map

πRSp
cl : V (R)RSp

cl ↠ W (R)RSp
cl .

Brumfiel deduces from [CS83] that Ξ(Γ,PSL2(R)) is a semialgebraic set, and
Burger, Iozzi, Parreau, and Pozzetti extend this result to Ξ(Γ, SLn(R)) via Richard-
son–Slowdowy theory [RS90], as described in [Bru88a, BIPP23]. These papers
examine real spectrum compactifications with a focus on their topology and their
related objects at infinity, with the aim to better understand the degenerations
of elements in the representation space. The work [BIPP23] initiates a program
dedicated at studying Hom(Γ, SLn(R))RSp

cl and Ξ(Γ, SLn(R))RSp
cl , with the goal of

analyzing representations of finitely generated groups in higher rank reductive
Lie groups. In particular, they characterize elements of Hom(Γ, SLn(R))RSp

cl as
equivalence classes of representations

ϕ : Γ → SLn(F),

for suitable real closed fields F [BIPP23, Proposition 6.3]. Such a representation
induces a Γ-action by isometries on an affine building (a geometric space with a rich
combinatorial structure [App24, Theorem 8.1]) that has no fixed point [BIPP23,
Proposition 6.4]. This construction has implications for the study of Anosov,
maximal, Hitchin, and Θ-positive representations [BIPP23, Examples 6.19]. This
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method of studying boundary points of Hom(Γ, SLn(R))RSp
cl naturally leads to the

examination of non-Archimedean geometry. For a non-Archimedean real closed field
F, the projective space Pn−1(F) is totally disconnected, not locally compact, and
not open in Pn−1(F)RSp

cl . To develop a deeper understanding of non-Archimedean
geometry, we use the Archimedean spectrum.

1.2.2 Non-Archimedean geometry and Archimedean spec-
trum

Let L be an ordered field. An ordered algebraic extension F is the real closure of L
if F is a real closed field and the ordering on L extends to the ordering of F. The
real closure, denoted by Lr, always exists and is unique up to order-preserving
isomorphism over L, see Subsection 2.2. In addition, if R1 ⊂ R2 are two subrings
of an ordered field, then the subring R2 is Archimedean over R1 if every element of
R2 is bounded above by some element of R1.

Definition. Let L ⊂ K be real closed fields and V ⊂ Ln an algebraic set. The
Archimedean spectrum of V (K) is the following subspace of V (K)RSp

V (K)RSp
Arch :=

{
(ρ,F) ∈ V (K)RSp

∣∣∣∣
F = Frac(ρ(K[V ])

r
,

F is Archimedean over K

}
,

where Frac(ρ(K[V ])) is the fraction field of ρ(K[V ]).

The Archimedean spectrum defines a functor from the category of algebraic sets
to the category of topological spaces, see Subsection 3.2. An element b in a real
closed field K is a big element if for every a ∈ K there exists n ∈ N with a ≤ bn.

Theorem (Theorem 3.4.3). Let L be a real closed field, L ⊂ K a real closed field
with a big element b, and V ⊂ Ln an algebraic set. The Archimedean spectrum of
V (K) is an open subset of V (K)RSp

cl which is a countable union of compact subsets
of V (K)RSp

cl . In particular, the space V (K)RSp
Arch is σ-compact and locally compact.

The Archimedean spectrum thus provides a well-behaved topological space
for studying group actions on non-Archimedean algebraic sets. These favorable
properties are further supported by its identification with real analytifications, as
discussed in [JSY22].

1.3 Universal geometric spaces and Berkovich

analytification

This section introduces the main content of [Jae25]. We give more details about the
construction of universal geometric spaces over the real spectrum compactification
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and examine their fibers under natural projection maps. We then explore the
connection between the Archimedean spectrum and the Berkovich analytification.

1.3.1 Universal geometric space over the real spectrum
compactification

To better understand the advantages of universal geometric spaces over MΓ(R)RSp
cl ,

consider the two following constructions (where ̂P1(n,R) is an algebraic cover of
the symmetric space P1(n,R) associated to SLn(R)). First, we define a topological

space that contains MΓ(R)× ̂P1(n,R):

E1 ⊂
(
MΓ(R)× ̂P1(n,R)

)RSp

cl

which is a countable union of specifically chosen open subsets, see Subsection
4.1.2. These open sets are constructed to yield a σ-compact space equipped with a

natural Γ-action by homeomorphisms, induced by the SLn(R) action on ̂P1(n,R)
by algebraic isomorphisms. Second, define

E2 :=
(
MΓ(R)× Pn−1(R)

)RSp

cl
.

The algebraic group SLn(R) acts on Pn−1(R) by algebraic isomorphisms. So, Γ acts
on the universal projective space MΓ(R)× Pn−1(R) over MΓ(R) via

γ. (ϕ, x) = (ϕ, ϕ(γ)x) ∀γ ∈ Γ.

Both spaces share important structural properties. For either construction, we
consider the natural projection maps

π1 : MΓ(R)× ̂P1(n,R) → MΓ(R),
π2 : MΓ(R)× Pn−1(R) → MΓ(R),

which are algebraic, surjective, Γ-equivariant for the trivial action on MΓ(R), and
open. For each element ϕ ∈ MΓ(R), Γ acts naturally via ϕ on the fiber π−1

i (ϕ)

which is homeomorphic to either ̂P1(n,R) for i = 1 or Pn−1(R) for i = 2, see
Subsection 4.1.1. To capture the degeneration of Γ-actions on these geometric
spaces induced by representations in MΓ(R), we extend these universal geometric
spaces over MΓ(R)RSp

cl . Our candidate for such an extension is Ei. However

(MΓ(R)× Pn−1(R))RSp
cl ̸∼= MΓ(R)RSp

cl × Pn−1(R)RSp
cl

in general (and similarly when replacing Pn−1(R) by ̂P1(n,R)), making the study
of the fibers of πRSp

i less straightforward. We refine the study of the real spectrum
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compactification of the product of algebraic sets. We use the functorial properties
of the real spectrum and topological properties of Ei (for example, the compact-
ness of Pn−1(R)) to deduce that πRSp

i |Ei
takes values in MΓ(R)RSp

cl . It leads to
the central result of this thesis: a characterization of ∂MΓ(R)RSp

cl as Γ-actions
on the Archimedean spectrum, which in turn are interpreted as actions on real
analytifications.

Theorem (Theorem 4.1.8 and Theorem 4.1.19). For i = 1, 2, the projection map
πi induces a continuous map

πRSp
i |Ei

: Ei → MΓ(R)RSp
cl ,

which is surjective, Γ-equivariant, with the fiber over (ρ,F) ∈ MΓ(R)RSp
cl homeo-

morphic to ̂P1(n,F)
RSp

Arch for i = 1 and Pn−1(F)RSp
Arch for i = 2.

To better understand the arrangement of the fibers of πRSp
i |Ei

over the space
MΓ(R)RSp

cl , a finer analysis is required. By [CR82], πRSp
i is an open map, and fibers

over (ρ,F) ∈ MΓ(R)RSp are homeomorphic to ̂P1(n,F)
RSp

for i = 1 and Pn−1(F)RSp

for i = 2. In our setting, we refine this description.

Theorem (Theorem 4.1.5). If πi is the projection map defined above, then

πRSp
i |Ei

: Ei → MΓ(R)RSp
cl

is open.

We deduce structural behavior of the fibers in Ei, which strengthens the
accessibility results presented in [BIPP23, Subsection 3.2] for our specific context.
In the following, an element of the fiber (πRSp

cl )−1(ρ,K) is written as a triple (ρ,A,F)
where A ∈ Pn−1(F)RSp

cl encodes the decomposition into factors, see Remark 4.1.1.

Corollary (Corollary 4.1.10 and Corollary 4.1.21). Let (ρn,Kn) ⊂ MΓ(R)RSp
cl be

a sequence converging to (ρ,K) ∈ MΓ(R)RSp
cl . For any (ρ,A,F) ∈ (πRSp

cl )−1(ρ,K),
there exists a sequence (ρn, An,Fn) ∈ (πRSp

cl )−1(ρn,Kn) such that (ρn, An,Kn) con-
verges to (ρ,A,F) in the spectral topology.

It is therefore useful to gain a better understanding of the Γ-actions on the
Archimedean spectrum. To this end, we use an identification of the Archimedean
spectrum with analytic spaces.
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1.3.2 Archimedean spectrum and Berkovich analytification

Let K be a non-Archimedean field K with an absolute value | · |K. The K-points of
an algebraic set V are then totally disconnected, making the study of its analytical
properties less straightforward. To address this, Berkovich introduces the Berkovich
analytification V (K)an in [Ber90], which contains V (K) and has a richer topological
structure.

A multiplicative seminorm on V (K) is a map η : K[V ] → R≥0 such that

1. η(f) = |f |K for every f ∈ K,

2. η(fg) = η(f)η(g) for every f, g ∈ K[V ],

3. η(f + g) ≤ max { η(f), η(g) } for every f, g ∈ K[V ].

Definition ([Ber90, Definition 1.5.1]). The Berkovich analytification of V (K) is
the set

V (K)an := { η : K[V ] → R≥0 | η is a multiplicative seminorm },

with the coarsest topology that makes the evaluation maps on elements of K[V ]
continuous.

Remark 1.3.1. Some authors define the Berkovich analytification using bounded
multiplicative seminorms on a Banach ring A, see [Ber90, Subsection 1.5]. For
a K-algebra of finite type, this boundedness condition is equivalent to requiring
that η extend the absolute value on K, so both definitions lead to the same
analytification. In this thesis we adopt the latter point of view, emphasizing that
the key requirement is that η extends | · |K.

This space has good topological properties. For example, V (K)an is locally
compact, locally contractible, and contains V (K) as an open and dense subset, see
Subsection 4.2.1. Moreover, V (K) is connected in the Zariski topology if and only
if V (K)an is connected. This makes the Berkovich analytification a powerful tool
for studying non-Archimedean geometry using analytic techniques [BR10]. In this
work, we investigate the relationship between the Archimedean spectrum and the
Berkovich analytification. Specifically, using the good topological properties of the
Berkovich analytification and its canonical measure [BR10, Chapter 10], we aim
to study group actions on the Archimedean spectrum using tools from dynamical
systems.

Theorem ([JSY22, Theorem 3.17 and Lemma 3.9]). Let K be a real closed field
with a non-trivial absolute value and V (K) an algebraic set. There exists a canonical
map ψ from V (K)RSp

Arch to V (K)an which is continuous and proper.
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To establish this result, the authors of [JSY22] introduce the real analytification,
a real counterpart of the Berkovich analytification, and show that it is homeomorphic
to the Archimedean spectrum. We give an explicit description of the image of the
Archimedean spectrum inside the Berkovich analytification:

Theorem (Theorem 4.2.14). Let L ⊂ K be real closed fields with non-trivial
absolute values and V ⊂ Ln an algebraic set. The image of V (K)RSp

Arch in V (K)an is

{
η ∈ V (K)an

∣∣∣ η
(
f 2
1 + · · ·+ f 2

q

)
= max

i
η
(
f 2
i

)
∀f1, . . . , fq ∈ K[V ]

}
.

In the case V (K) = P1(K), the space P1(K)an is uniquely path connected
[BR10].

Theorem (Corollary 4.2.31 and Corollary 4.2.32). Let K be a non-Archimedean real
closed field with a non-trivial absolute value. The image of P1(K)RSp

Arch in P1(K)an is
uniquely path connected and the image of P1(K)RSp

Arch\P1(K) in P1(K)an\P1(K) is a
closed R-subtree of P1(K)an on which PSL2(K) acts by isometries.

Remark. A possible direction for future research would be to investigate whether
an analogous statement holds in higher rank settings. Let K be a complete non-
Archimedean real closed field. There is a canonical PGLn(K)-equivariant map

τ : Pn−1(K)an −→ B,

where B is the seminorm compactification of the Bruhat–Tits building B of PGLn(K)
[RTW15, Subsection 2.2], see also [Wer04]. Let ψ : Pn−1(K)RSp

Arch → Pn−1(K)an be
the canonical map from the Archimedean spectrum to the Berkovich analytification.
It would be interesting to study the image of Pn−1(K)RSp

Arch in B via ψ and τ . In
particular, one may ask whether this image lies in B, and if so, whether it is convex
in the Bruhat–Tits metric.

1.4 A continuous surjection from the real spec-

trum to the oriented Gromov equivariant

compactifications

This section introduces the main content of [Jae24]. We construct a continuous sur-
jection from the real spectrum compactification to the oriented Gromov equivariant
compactification of character varieties.
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1.4.1 The oriented Gromov equivariant compactification

The study of the oriented Gromov equivariant compactification builds on Bestv-
ina and Paulin’s geometric approach to the length spectrum compactification of
character varieties [Bes88, Pau89]. The asymptotic cone

Coneu
(
H2, (λk) , (∗k)

)

is an R-tree obtained from a non-principal ultrafilter u, a sequence of scalars
(λk) such that λk → ∞, and basepoints (∗k). Let Γ be a finitely generated
group. Denote by lg(ϕ) the displacement function of a class of representations
[ϕ,H2] ∈ Ξ(Γ,PSL2(R)) and by ϕu := limu ϕk the ultralimit of a sequence of
representations ϕk : Γ → PSL2(R) (see Section 2 or [DK18, Section 10]).

Proposition ([Pau09, Page 434]). Let u be a non-principal ultrafilter on N, [ϕk,H2]
a sequence in Ξ(Γ,PSL2(R)) such that lg(ϕk) → ∞, and ϕu = limu ϕk. If ∗k ∈ H2

is an element in H2 achieving the infimum of the displacement function of ϕk for
every k ∈ N and T u := Coneu (H2, (lg(ϕk)) , (∗k)), then

lim
u
[ϕk,H2] = [ϕu, T u]

u-almost surely in the Gromov equivariant topology.

Wolff proves in [Wol11] that the extension of the length spectrum compactifica-
tion to Ξ(Γ,PSL2(R)) leads to a wild space and defines a refinement of the Gromov
equivariant topology that preserves the orientation on H2. This requires a notion
of orientation on R-trees using cyclic orders. A cyclic order on a set Ω is a map

o : Ω3 → {−1, 0, 1 }

satisfying a cocycle property (see Definition 5.1.1), and encoding a circular arrange-
ment of points. In Subsection 5.1.2, we describe the standard orientation on H2

via a cyclic order on its visual boundary ∂∞H2 ∼= S1 by a semialgebraic equation:

Lemma (Lemma 5.1.13). If sgn denotes the sign function on R, then

oR :
(S1)

3 −→ {−1, 0, 1 };
(z1, z2, z3) 7−→ sgn (det(z2 − z1, z3 − z2)) ,

defines a cyclic order on S1, which encodes the orientation on H2.

An R-tree T is oriented if for every P ∈ T , there is a cyclic order or(P )
defined on GT (P ), the set of germs of oriented segments at P (we define similarly
GX(P ) when X is a geodesic Gromov hyperbolic space, see Subsection 5.1.1). An
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isometry is orientation preserving if it preserves the cyclic orders at every P ∈ T ,
see Definition 5.1.5. Denote by Isomor(T ) the group of isometries preserving the
orientation of T . Wolff defines the oriented Gromov equivariant topology (Definition
5.1.22) on a subspace of Ξ(Γ,PSL2(R)) ∪ T ′ where

T ′ :=



(ϕ, T, or)

∣∣∣∣∣∣

T an R-tree not reduced to a point,
ϕ : Γ → Isomor(T ) a minimal action, and
or an orientation on T




/
∼,

and the equivalence is by orientation preserving equivariant isometries [Wol11,
Page 1273]. The closure of Ξ(Γ,PSL2(R)) in Ξ(Γ,PSL2(R)) ∪ T ′ is the oriented
Gromov equivariant compactification Ξ(Γ,PSL2(R))O, which is a first countable
compact Hausdorff space. Based on the work of Paulin [Pau89], we describe the
boundary elements of Ξ(Γ,PSL2(R))O as Γ-actions on asymptotic cones, which
we endow with an orientation. The description of the standard orientation on H2

allows us to construct an ultralimit orientation on the asymptotic cones of H2.

Theorem (Theorem 5.1.30). Let u be a non-principal ultrafilter on N, (λk) ⊂ R a
sequence such that λk → ∞, and (∗k) ⊂ H2 a sequence of basepoints. Let

T u := Coneu
(
H2, (λk) , (∗k)

)

be the corresponding asymptotic cone, and [Pk]
u ∈ T u. Using an identification

between germs of oriented segments at [Pk]
u and elements [xk]

u ∈ T u representing
directions, define the map oru([Pk]

u) : (GT u([Pk]
u))3 → {−1, 0, 1 } by

([xk]
u, [yk]

u, [zk]
u) 7→

{
0 if Card{ [xk]u, [yk]u, [zk]u } ≤ 2,

limu or(Pk)(xk, yk, zk) otherwise,

where or(Pk) is the cyclic order on GH2(Pk) given by the standard orientation on
H2. Then oru([Pk]

u) defines a cyclic order on GT u([Pk]
u).

This in turn allows us to give a characterization of the limit of sequences in
Ξ(Γ,PSL2(R))O in terms of asymptotic cones.

Theorem (Theorem 5.1.31). Let [ϕk,H2, or] be a sequence in Ξ(Γ,PSL2(R)) such
that lg(ϕk) → ∞ and u a non-principal ultrafilter on N. For each k ∈ N, let
∗k ∈ H2 be a point that realizes the infimum of the displacement function of ϕk and
set ϕu = limu ϕk. If T

u
ϕu is the ϕu-invariant minimal subtree inside the asymptotic

cone Coneu (H2, (lg(ϕk)) , (∗k)), then

lim[ϕk,H2, or] = [ϕu, T u
ϕu , or

u] ∈ ∂Ξ(Γ,PSL2(R))O

u-almost surely, where oru is the restriction to T u
ϕu of the ultralimit orientation

defined in Theorem 5.1.30.
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This result shows that the oriented Gromov equivariant compactification is
described in terms of asymptotic cones. To compare Ξ(Γ,PSL2(R))O with the real
spectrum compactification, we associate to every element of the real spectrum
compactification an oriented R-tree and show that this oriented R-tree is also well
described using asymptotic cones.

1.4.2 Oriented trees associated to the real spectrum com-
pactification

The real spectrum compactification Ξ(Γ,PSL2(R))RSp
cl is a compact Hausdorff

metrizable space that contains Ξ(Γ,PSL2(R)) as an open and dense subset. We
are interested in the following characterization of ∂Ξ(Γ,PSL2(R))RSp

cl :

Definition (Definition 5.2.1). Given a representation ϕ : Γ → PSL2(F), the real
closed field F is ϕ-minimal if ϕ can not be PSL2(F)-conjugated into a representation
ϕ′ : Γ → PSL2(L), where L ⊂ F is a proper real closed subfield.

If ϕ : Γ → PSL2(F) is reductive and F is real closed, a minimal real closed field
always exists and is unique [BIPP23, Corollary 7.9]. If F1 and F2 are two real
closed fields, we say that two representations (ϕ1,F1) and (ϕ2,F2) are equivalent if
there exists a real closed field morphism ψ : F1 → F2 such that

ψ ◦ ϕ1 is PSL2(F2)-conjugated to ϕ2.

Theorem ([BIPP23, Theorem 1.1 and Corollary 7.9]). Elements in the boundary
of Ξ(Γ,PSL2(R))RSp

cl are in bijective correspondence with equivalence classes of pairs
[ϕ,F], where ϕ is a reductive representation

ϕ : Γ → PSL2(F),

and F is real closed, non-Archimedean and ϕ-minimal.

For any representative (ϕ,F) of a point in ∂Ξ(Γ,PSL2(R))RSp
cl , we study the

induced Γ-action on the non-Archimedean hyperbolic plane H2(F), which one
equips with a well described pseudo-metric, see Subsection 5.2.1. The quotient

TF := H2(F)/
{
distH2(F) = 0

}

is a Λ-tree [Bru88c, Theorem 28] which by completing the segments produces an
R-tree TFsc on which ϕ(Γ) acts by isometries and without global fixed points, see
Subsection 5.2.1. By [Pau89, Proposition 2.4], there exists, up to isometry, a unique
ϕ-minimal invariant subtree

Tϕ ⊂ TFsc,
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which we endow with an orientation. Brumfiel gives in [Bru88c, Proposition 41]
an explicit bijective correspondence between the set GH2(F)(P ) of germs of oriented
segments at P ∈ H2(F) and S1(FO). Here, FO denotes the quotient field of the
valuation ring of F, which is itself a real closed field (see Remark 5.2.12). By the
transfer principle and Lemma 5.1.13, the FO-extension of oR gives a cyclic order on
GH2(F)(P ) for every P ∈ H2(F).

Corollary (Corollary 5.2.11). The cyclic order orFO from Lemma 5.1.13 defines a
cyclic order on GTFsc(P ) ∼= S1(FO) for every P ∈ TFsc.

Consider Tϕ with the orientation orϕ induced by the restriction to Tϕ of the
orientation of TFsc. We show in Theorem 5.2.14 that [ϕ, Tϕ, orϕ] does not depend

on the choice of representative of the class [ϕ,F] ∈ ∂Ξ(Γ,PSL2(R))RSp
cl .

Lemma (Lemma 5.2.15). Each class [ϕ,F] ∈ ∂Ξ(Γ,PSL2(R))RSp
cl defines a canoni-

cal Γ-action by orientation preserving isometries on a ϕ-minimal oriented R-tree
[ϕ, Tϕ, orϕ], up to Γ-equivariant orientation preserving isometries.

An essential result to prove Theorem 5.3.4, see Figure 1.1, is the following accessi-
bility result [BIPP23] that allows us to represent any element of ∂Ξ(Γ,PSL2(R))RSp

cl

by a representation of Γ in PSL2(Ru
µ), where Ru

µ is a Robinson field, see Example
2.2.3. We refer to Subsection 5.2.2 for the notations. Let F be a finite generating
set of Γ. In the following theorem, given u a non-principal ultrafilter, the sequence
of scales (µk) is well adapted to a sequence of representations ϕk : Γ → PSL2(R) if
there exists c1, c2 ∈ R>0 such that for u-almost every k ∈ N

c1(µk) ≤
∑

γ∈F

(
tr
(
ϕk(γ)ϕk(γ)

T
))

≤ c2(µk).

If only the second inequality holds, then the sequence (µk) is adapted. In this
setting, if µ = (µk), we denote by ϕ

u
µ : Γ → PSL2(Ru

µ) the (u, µ)-limit representation

ϕu
µ(γ) =

(
(ϕk(γ)

1,1)k (ϕk(γ)
1,2)k

(ϕk(γ)
2,1)k (ϕk(γ)

2,2)k

)
∈ PSL2(Ru

µ).

Theorem ([BIPP23, Theorem 7.16]). Let u be a non-principal ultrafilter on N,
(ϕk,R)k ∈ MΓ(R) and (ϕu

µ,Ru
µ) its (u, µ)-limit representation for an adapted se-

quence of scales µ := (µk). Then:

• ϕu
µ is reductive, and

• if µ is well adapted, infinite, and Fϕuµ denotes the ϕu
µ-minimal field, then

(ϕu
µ,Ru

µ) is SO2(Ru
µ)-conjugate to a representation (ϕ,Fϕuµ) that represents an

element in ∂Ξ(Γ,PSL2(R))RSp
cl .
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Conversely, any element in ∂Ξ(Γ,PSL2(R))RSp
cl arises in this way.

As in the length spectrum compactification, this permits to describe the trees
associated to elements of ∂Ξ(Γ,PSL2(R))RSp

cl using asymptotic cones. The following
is a consequence of [BIPP23, Theorem 5.10 and Lemma 5.12], where (H2)uλ is the
ultralimit of the rescaled copies of H2 by a sequence of scalars λ := λk and u a
non-principal ultrafilter.

Corollary 1.4.1 (Corollary 5.2.21). The map

Ψ: (H2)uλ −→ H2 (Ru) ;
(x+ iy)k 7−→ (xk) + i(yk)

induces an isometry between the asymptotic cone T u := Coneu (H2, (λk) , (0)) and
H2(Ru

µ)/{ distH2(Ru
µ)

= 0 } =: TRu
µ. Moreover, with the above notations, the isometry

is Γ-equivariant for the induced Γ-actions by ϕu = limu ϕk on T u and by ϕu
µ on TRu

µ.

As in Ξ(Γ,PSL2(R))O, we can enhance this description via asymptotic cones to
take account of the orientation. We describe the oriented R-tree associated to any
element of ∂Ξ(Γ,PSL2(R))RSp

cl using asymptotic cones and ultralimit orientations.

Theorem (Subsection 5.2.2 and Theorem 5.2.22). Let u be a non-principal ultrafilter
on N, (ϕk,R)k a sequence in Homred(Γ,PSL2(R)) such that lg(ϕk) → ∞, and ∗k a
point of H2 that realizes the infimum of the displacement function of ϕk for each
k ∈ N. Consider

T u := Coneu
(
H2, (lg ϕk) , (∗k)

)

endowed with the limit orientation as defined in Theorem 5.1.30. Let also µ :=
(elg(ϕk)), TRu

µ the R-tree associated to Ru
µ, which we endow with its orientation

orRu
µ
, and (ϕu

µ,Ru
µ) its (u, µ)-limit representation. Then

Ψ: T u → TRu
µ

is an orientation preserving isometry which is Γ-equivariant for the actions induced
by ϕu = limu ϕk and ϕu

µ.

This theorem allows us to compare the real spectrum compactification with the
oriented Gromov equivariant compactification of the character variety defined by
Wolff in [Wol11].

1.4.3 Relationship between the compactifications

By associating an oriented R-tree to every element of ∂Ξ(Γ,PSL2(R))RSp
cl , one

obtains a map between the two compactifications.
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Definition (Definition 5.3.1).

ℶ : Ξ (Γ,PSL2(R))RSp
cl −→ Ξ (Γ,PSL2(R)) ∪ T ′;

[ϕ,F] 7−→ [ϕ,X, orϕ] =

{
[ϕ,H2, or] if F = R
[ϕ, Tϕ, orϕ] otherwise.

Here T ′ is a space of Γ-actions on oriented R-trees, see Subsection 5.1.1.

Using the accessibility result (Theorem 5.2.17) and the uniqueness of the minimal
invariant R-tree up to isometry, we obtain the continuity of ℶ.

Lemma (Lemma 5.3.3). The map ℶ from Definition 5.3.1 is continuous.

As a consequence, a topological argument based on the density of Ξ(Γ,PSL2(R))
in both compactifications allows us to upgrade the function to a continuous surjec-
tion.

Theorem (Theorem 5.3.4). The map ℶ : Ξ(Γ,PSL2(R))RSp
cl → Ξ(Γ,PSL2(R))O

from Definition 5.3.1 is a continuous surjection.

Moreover, the oriented Gromov equivariant compactification of the character
variety surjects continuously on its length spectrum compactification [Wol11]. Thus,
Theorem 5.3.4 provides a new construction of the continuous surjection between
the real spectrum and the length spectrum compactifications of T (S) [Bru88a].

1.5 Outline

We begin in Chapter 2 with general background material needed throughout the
thesis; more specific background is provided at the beginning of each chapter as
necessary. Chapter 3 reviews useful results from the theory of the real spectrum,
establishes a functoriality property for the closed points of the real spectrum, and
develops the theory of the Archimedean spectrum of algebraic sets. Chapter 4
constructs universal geometric spaces over MΓ(R)RSp

cl . Chapter 5 constructs a
continuous surjection from Ξ(Γ,PSL2(R))RSp

cl to the oriented Gromov equivariant
compactification of Ξ(Γ,PSL2(R)). Detailed outlines are provided at the beginning
of each of these chapters. Finally, Chapter 6 presents an example of an homogeneous
R-tree which is incomplete written is a work in collaboration.
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Chapter 2

Preliminaries

This chapter introduces the necessary background and notation. We begin with
the theory of asymptotic cones, highlighting that those of the hyperbolic plane
are R-trees. Next, we review key concepts from real algebraic geometry, including
semialgebraic sets and their Euclidean topology. The last two sections present
classical examples of algebraic and semialgebraic sets. We recall the definition
of minimal vectors MΓ(R) for representations of a finitely generated group Γ in
SLn(R) or PSLn(R). These sets are algebraic in the SLn(R) case and semialgebraic
in the PSLn(R) case. Their quotients, the character varieties Ξ(Γ, SLn(R)) and
Ξ(Γ,PSLn(R)), are semialgebraic sets. Finally, we construct a cover ̂P1(n,R) of the
symmetric space associated to SLn(R), which can be endowed with a semialgebraic
multiplicative norm. These algebraic and semialgebraic models allow for their study
in the following chapters using tools from real algebraic geometry.

2.1 Asymptotic cones

We recall briefly the classical theory of asymptotic cones necessary for this text,
as presented for example in [DK18, Chapter 10] and [Dru02]. Roughly speaking,
the asymptotic cone of a metric space gives a picture of the metric space as “seen
from infinitely far away”. It was introduced by Gromov in [Gro81b], and formally
defined in [vdDW84] to construct a limit to a family of rescaled metric spaces.

Definition 2.1.1. A filter u on a set I is a collection of subsets of I satisfying:

1. ∅ /∈ u,

2. If I1, I2 ∈ u then I1 ∩ I2 ∈ u,

3. If I1 ∈ u and I1 ⊂ I2 ⊂ I, then I2 ∈ u.
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An ultrafilter on I is a filter u such that for every J ⊂ I either J ∈ u or I\J ∈ u.

For simplicity, in the rest of this text, all ultrafilters are on N and are non-
principal. That is, they contain the set of complements of finite subsets [DK18,
Proposition 10.16]. Let u be a non-principal ultrafilter on N. A subset J ∈ 2N

occurs u-almost surely if J ∈ u.

Definition 2.1.2. Let u be a non-principal ultrafilter on N, X a topological space,
and f : N → X a map. The ultralimit of f is an element x ∈ X such that

∀x ∈ U open, then f−1(U) ∈ u.

The ultralimit of f is denoted by limu f .

A first reason to introduce ultrafilters is to give a limit to any sequence on a
compact topological space.

Proposition 2.1.3 ([DK18, Lemma 10.25]). Let X be a topological space, u a
non-principal ultrafilter on N and f : N → X a map.

1. If X is compact, then f has an ultralimit,

2. If X is Hausdorff, then the ultralimit, if it exists, is unique.

Remark 2.1.4. The standard order on R>0 extend to an order on [0,∞] by setting
a <∞ for all a ∈ R>0. Then, [0,∞] with the total order topology is compact.

Let (Xk) be a sequence of metric spaces and u a non-principal ultrafilter on N.
Define a pseudo-distance on the product by

distu :
∏
k∈N

Xk ×
∏
k∈N

Xk −→ [0,∞];

((xk), (yk)) 7−→ limu (k 7→ distXk
(xk, yk)).

Then, the ultralimit metric space is

(Xu, distu) :=

(∏

k∈N
Xk, distu

)/
∼,

where (xk) ∼ (yk) if and only if distu((xk), (yk)) = 0.

Notation 2.1.5. Given a sequence of elements (xk), where xk ∈ Xk for every
k ∈ N, denote its equivalence class in Xu by [xk]

u.
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If the spaces Xk do not have uniformly bounded diameter, the ultralimit Xu

decomposes into many components of points at mutually finite distance, where two
elements in different components are at infinite distance one from the other. In
order to pick one of these components, we consider pointed metric spaces (X, ∗)
where ∗ ∈ X is a base point. For a family of pointed metric spaces (Xk, ∗k), the
sequence of base points (∗k) defines a base point [∗k]u ∈ Xu, and we set

Xu
[∗k]u := { [yk]u ∈ Xu | distu ([yk]u, [∗k]u) <∞}.

Definition 2.1.6. The pointed ultralimit of the sequence (Xk, ∗k) is

lim
u

(Xk, ∗k) =
(
Xu

[∗k]u , [∗k]
u
)
=: (Xu, [∗k]).

Denote also elements [xk]
u by [xk] when the notation is clear.

For two sequences of pointed metric spaces (Xk, ∗k), (X ′
k, ∗′k) and a sequence of

maps fk : (Xk, ∗k) → (X ′
k, ∗′k) such that limu distXk

(fk(∗k), ∗′k) <∞, the ultralimit
of (fk) is

f u : (Xu, [∗k]) −→ (X ′u, [∗′k]) ;
[yk] 7−→ [fk(yk)].

If in addition, u-almost every fk is an isometric embedding, then f u is an isometric
embedding [DK18, Lemma 10.48]. We now study more in depth the limit of rescaled
copies of metric spaces as in [DK18, Chapter 10].

Definition 2.1.7. Let (λk) ⊂ R be a sequence such that λk → ∞. The asymptotic
cone of a metric space X with respect to the sequence of scalars (λk), the sequence
of observation centers (∗k) and the non-principal ultrafilter u is

Coneu (X, (λk) , (∗k)) := lim
u
(Xλk , ∗k),

where Xλk is the metric space X endowed with the rescaled distance (λk)
−1 · distX .

A R-tree T is a geodesic metric space which is 0-hyperbolic in the sense of
Gromov [DK18, Lemma 11.30].

Theorem 2.1.8 ([GdlH90, Chapter 2, Section 1, Proposition 11]). If a geodesic
metric space X is hyperbolic, then every asymptotic cone of it is a R-tree.

In Chapter 5, we study the limits of actions by isometries on the hyperbolic
plane. The theory of asymptotic cones allows us to characterize these limits as
actions by isometries on R-trees, which is central in the theory of compactification
of character varieties.
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2.2 Preliminaries in real algebraic geometry

Our approach to the theory of character varieties is based on real algebraic geometry.
In particular, our main objects of study are semialgebraic sets defined over real
closed fields. To set up this framework, we first introduce key definitions and
notation, following [BCR13, Section 1 and 2] and [BIPP23, Section 2].

Definition 2.2.1. A field K is ordered if there exists a total order ≤ compatible
with its field operations. Formally, ≤ satisfies: for every a, b, c ∈ K

if a ≤ b, then a+ c ≤ b+ c and if 0 ≤ a, b, then 0 ≤ ab.

A real field is a field that can be ordered. A stronger notion is that of real closed
field K, which is a real field that has no proper algebraic ordered field extension.
Equivalently, this means that every positive element has a square root, and every
polynomial of odd degree has a root in K [BCR13, Theorem 1.2.2]. The following
theorem sheds a little more light on the nature of real closed fields. It gives an
equivalent definition, which is highlighted by the Transfer principle —a result of
the Tarski–Seidenberg principle.

Theorem 2.2.2 (Transfer principle [BCR13, Proposition 5.2.3]). Let K be a real
closed field, Ψ a formula in the first-order language of ordered rings with parameters
in K without a free variable, and F a real closed extension of K. Then Ψ holds true
in K if and only if it holds true in F.

Real closed fields possess the same elementary theory as the reals. They give
a natural framework to extend results from R to more general fields which are
real closed.

Example 2.2.3. We are particularly interested in the following examples of real
closed fields.

(i) The field Qr
of real algebraic numbers and the field R of real numbers are

real closed fields [BCR13, Example 1.3.6].

(ii) Another example of a real field is given by the real Puiseux series

{
k0∑

k=−∞
ckx

k
m

∣∣∣∣∣ k0,m ∈ Z, m > 0, ck ∈ R, ck0 ̸= 0

}
,

which, if endowed with the order such that
∑k0

k=−∞ ckx
k
m > 0 if ck0 > 0, is

real closed.
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(iii) Consider a field K and a non-principal ultrafilter u on N. Define the hyper
K-field as Ku := KN/ ∼, where the equivalence relation is given by (xk) ∼ (yk)
if and only if the two sequences coincide u-almost surely. If K is an ordered
field, then Ku is also an ordered field. Indeed, the order is determined by

[xk]
u > 0 if and only if xk > 0 u-almost surely.

Moreover, it is a real closed field if K itself is real closed. It also has positive
infinite elements, that is elements larger than any integer. Fields with positive
infinite elements are called non-Archimedean. For such an infinite element µ,
define

Oµ :=
{
x ∈ Ku

∣∣x < µk for some k ∈ Z
}
,

Jµ :=
{
x ∈ Ku

∣∣x < µk for every k ∈ Z
}
,

where Jµ is a maximal ideal inside the subring Oµ of the hyper K-field [LR75].
Now, the Robinson field associated to the non-principal ultrafilter u and the
infinite element µ is the quotient

Ku
µ := Oµ/Jµ.

This is necessarily a non-Archimedean field, as all rational numbers are smaller
than µ.

Let L be an ordered field. An ordered algebraic extension F is the real closure
of L if F is a real closed field and the ordering on L extends to the ordering of F.
The real closure of L always exists and is unique up to a unique order preserving
isomorphism over L. That is, if F1 and F2 are real closures of L, there exists a
unique order preserving isomorphism F1 → F2 that is the identity on L. Denote
the real closure of L by:

Lr.
In real algebraic geometry, the fundamental objects of study are real algebraic

and semialgebraic sets. Intuitively, algebraic sets consist of points satisfying
polynomial equations, while semialgebraic sets allow polynomial inequalities as
well.

Definition 2.2.4. Let K be a real closed field. A set V ⊂ Kn is an algebraic set
defined over K if there exists B ⊂ K[x1, . . . , xn] such that

V := {v ∈ Kn | f(v) = 0 ∀f ∈ B} .
Then, S ⊂ Kn is a semialgebraic set defined over K if there exists polynomials
fi, gj ∈ K[x1, . . . , xn] such that

S :=
⋃

finite

⋂

finite

{s ∈ Kn | fi(s) = 0} ∩ {s ∈ Kn | gj(s) > 0} .
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Denote by I(S) := { f ∈ K[x1, . . . , xn] | f(s) = 0 ∀s ∈ S } the ideal of polynomials
vanishing on S.

For the remainder of this section, let K be a real closed field and F a real closed
extension of K.

Definition 2.2.5. Let S ⊂ Kn be a semialgebraic set. The coordinate ring of the
F-extension of S is

F[S] := F[x1, . . . , xn]/I(S).

Consider a semialgebraic set S defined over K. The F-points of S are the
solutions in Fn of the polynomials defining S

S(F) := {s ∈ Fn | f(v) = 0 ∀s ∈ B} ,

where B ⊂ K[x1, . . . , xn] is a set of polynomials defining S. It can be shown that
the set S(F) is independent of the choice of B [BCR13, Proposition 5.1.1]. By
abuse of notation, we use the same symbol for the F-points and the F-extension of
S. To define a topology on S(F), introduce the norm N : Fn → F≥0, given by

N(s) :=

√√√√
n∑

i=1

s2i ∀s = (s1, . . . , sn) ∈ Fn.

The open ball centered at s ∈ Fn with radius r ∈ F≥0 is then defined as

B(s, r) := { y ∈ Fn |N(s− y) < r }.

These open balls form a basis for the Euclidean topology on Fn. Finally, to study
the links between algebraic sets we will use maps between semialgebraic sets with
good algebraic properties.

Definition 2.2.6. A map π : S1 → S2 between semialgebraic sets S1 ⊂ Kn,
S2 ⊂ Km is semialgebraic if its graph is a semialgebraic subset of Kn ×Km.

Proposition 2.2.7 ([BCR13, Proposition 5.3.1]). Let S1 ⊂ Kn, S2 ⊂ Km be
semialgebraic sets and π : S1 → S2 a semialgebraic map with graph X. The F-
extension X(F) is the graph of a semialgebraic map πF called the F-extension
of π.

We defined our primary objects of study: semialgebraic sets and semialgebraic
maps over real closed fields. In Section 4.2.3, we employ semialgebraic maps to
construct universal geometric spaces over character varieties, thereby providing a
geometric description of the real spectrum compactification of character varieties.
In the next subsection, we construct some algebraic and semialgebraic examples
that are of particular interest to us.
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2.3 Character varieties and minimal vectors

This section recalls the classical theory of character varieties of a finitely generated
group Γ in G(R) = PSLn(R) or SLn(R), based on reductive representations and
their quotient by postconjugation by G(R). Using the theory of minimal vectors,
we construct a semialgebraic structure of the character variety, which serves as the
foundation for defining its real spectrum compactification using Chapter 3. This
introduction to character varieties is inspired by [Fla25] and based on [RS90] (on
ideas of Kempf–Ness for the complex reductive case). See also [BL17] and [BIPP23,
Section 6, Section 7] for more general treatments. We begin with the following
proposition, which realizes PSLn(R) as a semialgebraic subgroup of GL2n(R). This
allows us to use the language of linear representations throughout the remainder of
the section.

Proposition 2.3.1. The group PGLn(R) is an algebraic subset of Rn4
and PSLn(R)

is a semialgebraic subset of PGLn(R).

Proof. The algebra Mn×n(R) of n by n matrices with real coefficients is central
and simple. By the Skolem–Noether Theorem [GS17, Theorem 2.7.2] (originally
in [Sko27]), every R-algebra automorphism of Mn(R) is inner. Hence the adjoint
representation

Ad: PGLn(R) −→ Aut(Mn×n(R)) ⊂ GLn2(R);
A 7−→ B 7→ ABA−1

is an isomorphism. The condition of being an automorphism of Mn×n(R) is given
by finitely many algebraic equations. Thus PGLn(R) is a real algebraic subset
of GLn2(R). Moreover PSLn(R) is a connected component of the algebraic set
PGLn(R) and thus is a semialgebraic set by [BCR13, Theorem 2.1.11].

As a semialgebraic subgroup of GLn2(R), the group PSLn(R) is linear. This
gives a convenient framework to define reductive representations with target group
PSLn(R).

Notation 2.3.2. Let Γ be a finitely generated group with finite generating set F
with s elements and G(R) be either SLn(R) or PSLn(R).

Definition 2.3.3. A representation ϕ : Γ → G(R) is reductive if, seen as a linear
representation on Rn2

, it is completely reducible. That is, a direct sum of irreducible
representations.

Denote by Homred(Γ, G(R)) ⊂ Hom(Γ, G(R)) the subspace of reductive repre-
sentations which is invariant under postconjugation by the target group.
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Definition 2.3.4. The character variety of the finitely generated group Γ and the
semialgebraic group G(R) is the quotient of Homred(Γ, G(R)) via postconjugation
by G(R):

Ξ(Γ, G(R)) := Homred(Γ, G(R))/G(R).

Theorem 2.3.5 ([Bou12, §20, page 376, Corollaire a]). Let ϕ, ϕ′ be two reductive
linear representations of Γ in G(R) that verify

tr ◦ Ad(ϕ(γ)) = tr ◦ Ad(ϕ′(γ)) ∀γ ∈ Γ.

Then Ad(ϕ) and Ad(ϕ′) are conjugate by an element in GLn2(R).

In other words, reductive representations are, up to postconjugation, determined
by their trace functions—hence the term character variety. The character variety
corresponds to the maximal Hausdorff quotient of Hom(Γ, G(R)) by postconjugation
by the target group; see [Par11, Théorème 23], building on ideas from [Wol07].

Using the theory of minimal vectors introduced by Richardson–Slowdowy [RS90],
we recall that Ξ(Γ, G(R)) is a semialgebraic set. Throughout the remainder of
this section, we look at G(R) as a semialgebraic subset of Mm×m(R) using the
adjoint representation (see Proposition 2.3.1). The semialgebraic group G(R) acts
by conjugation on the real vector space Mm×m(R)F , which is endowed with the
SOn(R)-invariant scalar product

⟨ (A1, . . . , As) , (B1, . . . , Bs) ⟩ :=
s∑

i=1

tr
(
ATi Bi

)
.

Denote by ∥·∥ its associated norm. The set of minimal vectors of Mm×m(R)F for
the G(R)-action by conjugation is

M :=
{
v ∈Mm×m(R)F

∣∣ ∥g.v∥ ≥ ∥v∥ for every g ∈ G(R)
}
.

This defines a closed subset of Mm×m(R)F , and we show that it defines an algebraic
set. Consider the involution σ : g 7→ (gT )−1 on G(R) which sends g to the inverse
of its transpose. Then, SOn(R) is the subgroup of fixed points of σ and

sym0
n(R) :=

{
A ∈Mn×n(R)

∣∣ tr(A) = 0, A = AT
}

is the −1 eigenspace of the Cartan involution dIdσ on the Lie algebra of G(R). This
eigenspace also acts on Mm×m(R)F by

Z.(A1, . . . , As) =
d

dt |t=0

exp (tZ)(A1, . . . , As) exp (−tZ)

= ([Z,A1], . . . , [Z,As]) ∀Z ∈ sym0
n(R).

In this context, the following result from the Richardson–Slowdowy theory of
minimal vectors holds.
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Theorem 2.3.6 ([RS90, Theorem 4.3]). An element v ∈ Mm×m(R)F is in M if
and only if ⟨Z.v , v ⟩ = 0 for every Z ∈ sym0

n(R).

Using the description of the action of sym0
n(R) on Mm×m(R)F and, in the last

equality, that [A,AT ] ∈ sym0
m(R) for all A ∈Mm×m(R), we have

M =

{
(A1, . . . , As) ∈Mm×m(R)F

∣∣∣∣∣ tr
(

s∑

i=1

[Z,Ai]
TAi

)
= 0 ∀Z ∈ sym0

n(R)

}

=

{
(A1, . . . , As) ∈Mm×m(R)F

∣∣∣∣∣ tr
(

s∑

i=1

[
Ai, A

T
i

]
Z

)
= 0 ∀Z ∈ sym0

n(R)

}

=

{
(A1, . . . , As) ∈Mm×m(R)F

∣∣∣∣∣
s∑

i=1

[
Ai, A

T
i

]
= 0

}
.

In particular, M is an algebraic set defined over Qr
.

We now turn to the connection between the space of minimal vectors as described
above and the set of representations of Γ in G(R). Using Proposition 2.3.1 and the
adjoint representation, we study the representation space within the real vector
space Mm×m(R)F using the evaluation of morphisms on the generating set F :

ev : Hom(Γ, G(R)) −→ G(R)F ⊂Mm×m(R)F ;
ρ 7−→ (ρ(γ))γ∈F .

The evaluation map is injective and its image RF (Γ, G(R)) is a closed real algebraic
subset of Mm×m(R)F . The group G(R) acts by conjugation on both Hom(Γ, G(R))
and Mm×m(R)F . Moreover, the evaluation map is G(R)-equivariant with respect
to these actions and so its image is G(R)-invariant. From [Sik14, Theorem 30]
(following an argument in [JM87]), the restriction to reductive homomorphisms has
image

RF
red(Γ, G(R)) =

{
v ∈ RF (Γ, G(R))

∣∣G(R).v is closed
}
. (2.1)

The link with minimal vectors comes from the following result.

Theorem 2.3.7 ([RS90, Theorem 4.4]). If v ∈Mm×m(R)F , then the intersection
G(R).v ∩M is not empty if and only if G(R).v is closed.

Hence, the set

MΓ := M∩RF
red(Γ, G(R)) = M∩RF (Γ, G(R))

is a closed algebraic subset of Mm×m(R)F . Now, using results in the study of
quotients by compact Lie groups [RS90, Subsection 7.1] (using [Sch75]), the quotient
MΓ/SOn(R) is homeomorphic to a closed semialgebraic set.
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Theorem 2.3.8 ([RS90, Theorem 7.7]). The inclusion MΓ ⊆ RF
red(Γ, G(R)) in-

duces a homeomorphism between MΓ/SOn(R) and the topological quotient

RF
red(Γ, G(R))/G(R).

This theorem and Equation (2.1) proves the wanted result.

Theorem 2.3.9 ([RS90, Section 7.1]). The character variety of a finitely generated
group Γ in G(R) is a semialgebraic set which is homeomorphic to MΓ(R)/SOn(R).

Remark 2.3.10 ([Fla25, Lemma 3.7]). A semialgebraic model for the character
variety is unique up to semialgebraic isomorphism. That is, if

ϕ : Ξ(Γ, G(R)) → Rp and ϕ′ : Ξ(Γ, G(R)) → Rq

are two semialgebraic models, then there exists a unique semialgebraic isomorphism
f : Im(ϕ) → Im(ϕ′) with f ◦ ϕ = ϕ′.

It is worth noting that the character variety is a semialgebraic set in the more
general case when G(R) is replaced by a connected semisimple algebraic group
defined over the reals, see [Fla25, Section 3]. One aspect of our study is to define
the real spectrum compactification of MΓ(R) and Ξ(Γ, G(R)), which requires them
to be semialgebraic sets, see Chapter 4 and 5.

2.4 The symmetric space associated to SLn(R)
This section recalls the basic theory of the symmetric space associated to SLn(R) and
introduces a cover of it, which is an algebraic set. We then review the construction
of a continuous semialgebraic multiplicative norm on both spaces using the Cartan
projection defined on SLn(R). This allows us to further study the space of minimal
vectors and their dynamics in Subsection 4.2.3. This introduction is inspired by
[BIPP23, Section 5].

The symmetric space associated to SLn(R) is

P1(n,R) := {A ∈Mn×n(R) | det(A) = 1, A is symmetric and positive definite }.
From this definition, P1(n) is a semialgebraic set and SLn(R) acts transitively on
P1(n,R) via

gA := gAgT

for all g ∈ SLn(R) and all A ∈ P1(n,R). Moreover, by Sylvester’s criterion (see
for example [HJ85, Theorem 7.2.5]), a symmetric matrix is positive definite if and
only if all its principal minors are positive. So we define a cover of P1(n,R) as

̂P1(n,R) :=
{
(A, t) ∈Mn×n(R)× Rn−1

∣∣∣∣
A is symmetric, det(A) = 1,

det (A [j]) t2j = 1 for 1 ≤ j ≤ n− 1

}
.
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where A[j] denotes the j-th leading principal minor of the matrix A. The group

SLn(R) acts on ̂P1(n,R) via

g. (A, t1, . . . , tn−1) :=
(
gAgT , t′1, . . . , t

′
n−1

)
,

for every g ∈ SLn(R) and (A, t1, . . . , tn−1) ∈ ̂P1(n,R) where

t′j :=

(
det (A[j])

det (gAgT [j])

)1/2

tj

for every 1 ≤ j ≤ n− 1.

Remark 2.4.1. Note that P1(n,R) is the quotient of ̂P1(n,R) by the action
of (Z/2Z)n−1 defined by (z1, . . . , zn−1)(A, t1, . . . , tn−1) = (A, ε1t1, . . . , εn−1tn−1),
where εi = 1 if zi = 0 or εi = −1 if zi = 1. Moreover, the quotient map is
SLn(R)-equivariant for the actions described above.

We now use the Cartan decomposition of SLn(R) to construct a multiplicative

distance on P1(n,R), which we promote to ̂P1(n,R). As in the previous section,
consider SOn(R) the maximal compact subgroup of SLn(R) associated with the
involution σ : g 7→ (gT )−1. Consider also S(R) the maximal split torus of diagonal
matrices in SLn(R) and its closed multiplicative Weyl chamber

C+(R) :=







λ1

. . .

λn


 ∈ SLn(R)

∣∣∣∣∣∣∣
λ1 ≥ · · · ≥ λn > 0




.

Then SLn(R) = SOn(R)C+(R)SOn(R), that is, each g ∈ SLn(R) can be written as

g = k1c(g)k2, where k1, k2 ∈ SOn(R), c(g) ∈ C+(R).

Moreover, the element c(g) in the decomposition is unique (see [Hel78, Chapter IX,
Theorem 1.1] or [Kna02, Theorem 7.39]). This decomposition is called the Cartan
decomposition of SLn(R). In addition, the map SLn(R) → C+(R) that sends g to
c(g) is semialgebraically continuous [BIPP23, Proposition 4.4]. A consequence of
this decomposition is the existence of a Cartan projection, which is semialgebraically
continuous by [BIPP23, Corollary 5.1]:

Lemma 2.4.2. For every A,B ∈ P1(n,R) the SLn(R)-orbit of (A,B) intersects
{ Id } × C+(R).{ Id } in exactly one point (Id, δ(A,B).Id). Moreover, the Cartan
projection

δ : P1(n,R)× P1(n,R) −→ C+(R);
(A,B) 7−→ δ(A,B)

is well-defined, invariant under the SLn(R)-action, and semialgebraically continuous.
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From this map, we define the Cartan multiplicative distance dδ and the genuine
distance distδ on the symmetric space P1(n,R). To show that it is indeed a
multiplicative distance, we first need the forthcoming result of Planche [Pla95,
Théorème 1]. Let a be the Lie algebra of the maximal split torus S(R) defined
above, Exp: a → S(R) the Riemann exponential map between a and S(R), and
L : S(R) → a its inverse.

Theorem 2.4.3 ([Pla95, Théorème 1]). Given a Weyl group invariant norm ∥·∥
on a, the function

P1(n,R)× P1(n,R) −→ R≥0;
(A,B) 7−→ ∥L(δ(A,B))∥ ,

is an SLn(R)-invariant distance function on P1(n,R).

To apply results from real algebraic geometry, we are interested in a semi-
algebraically continuous multiplicative distance. To do this, consider the semi-
algebraically continuous map N : S(R) → R>0 that sends diag(λ1, . . . , λn) to
maxi ̸=j λiλ

−1
j . It is a multiplicative norm N : S(R) → R>0. That is, a map which

is invariant for the Weyl group action, and verifies:

• N(gh) ≤ N(g)N(h) for every g, h ∈ S(R),

• N(g) ≥ 1 for every g ∈ S(R) with equality if and only if g = Id,

• N(gn) = N(g)|n| for every g ∈ S(R) and n ∈ Z.

We now introduce the Cartan’s multiplicative distance which allows us, in Section
4.2.3, to define a universal symmetric space over the real spectrum compactification
of MΓ(R).

Proposition 2.4.4 ([BIPP23, Proposition 5.5]). The Cartan’s multiplicative dis-
tance is defined as

dδ : P1(n,R)× P1(n,R) −→ C+(R) −→ R≥1;
(A,B) 7−→ δ(A,B) 7−→ N(δ(A,B)) = λ1

λn
,

where δ(A,B) = diag(λ1, . . . , λn). It is SLn(R)-invariant, semialgebraically contin-
uous and verifies

1. dδ(x, z) ≤ dδ(x, y)dδ(y, z) for every x, y, z ∈ P1(n,R),

2. dδ(x, y) = 1 if and only if x = y.
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Proof. The action of the Weyl group, associated with SLn(R), on S(R) consists of
permutations of the diagonal entries. Since S(R) consists of diagonal matrices

∥·∥ : a −→ R≥0;
a 7−→ ln(N(Exp(a)))

is a Weyl group invariant norm on the Lie algebra a. Hence, by Theorem 2.4.3

distδ : P1(n,R)× P1(n,R) −→ R≥0;
(A,B) 7−→ ln (N (δ (A,B)))

is a SLn(R)-invariant distance so that dδ is a SLn(R)-invariant multiplicative
distance. Finally, from Lemma 2.4.2, δ is semialgebraically continuous, so dδ
is semialgebraically continuous as a composition of semialgebraically continuous
maps.

The multiplicative distance defined on P1(n,R) extends to a multiplicative

pseudo-distance on the cover ̂P1(n,R) via

d̂δ : ̂P1(n,R)× ̂P1(n,R) −→ R≥1;
((A, t1, . . . , tn−1), (B, t

′
1, . . . , t

′
n−1)) 7−→ dδ(A,B).

We use the objects presented above in the following sections to introduce a

subspace of the real spectrum compactification ofMΓ(R)× ̂P1(n,R), invariant under
the action of Γ. This subspace encodes the behavior of minimal representations and
their induced Γ-actions on their associated symmetric space in the real spectrum.
To this end, in the next section we introduce the real spectrum and the Archimedean
spectrum of an algebraic set.
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Chapter 3

Real spectrum compactification
and Archimedean spectrum

We want to understand the degeneration of minimal vectors of representations. To
do this, it is interesting to understand the manner in which representations go to
infinity. To understand this behavior, we study the real spectrum compactification
and the Archimedean spectrum of minimal vectors. The former has the advantage
of providing a natural compactification for real points of a semialgebraic set with
good topological properties. The second provides a natural framework for studying
the F-extension of the semialgebraic set when F is a non-Archimedean real closed
field, and provides a better understanding of the geometry and dynamics of its
F-points.

3.1 The real and Archimedean spectra of rings

The real spectrum applies to commutative rings with unity and provides a natural
functor from commutative rings to compact spaces. In this subsection, we first
present this compactification and the accompanying notions essential for its study
in our text. Our presentation follows [BCR13, Chapter 7], [Bru88a, Bru88c], and
adapts [BIPP23, Section 2] to our context. Second, we define the concept of
Archimedicity between rings, which allows us to characterize the closed points of
the real spectrum and to introduce the Archimedean spectrum of a K-algebra—both
of which form notable subspaces of the real spectrum with interesting topological
properties. Throughout this subsection, A denotes a commutative ring with unity.

Definition 3.1.1. The real spectrum ARSp of a commutative ring A with unity is
the set of prime cones of A. That is, the subsets α ⊂ A such that

• −1 /∈ α,
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• α + α ⊂ α and α · α ⊂ α,

• α ∪ (−α) = A,

• α ∩ (−α) is a prime ideal in A.

Another characterization of the points of the real spectrum uses real algebraic
geometry. In particular ring morphisms to real closed fields.

Proposition 3.1.2 ([BCR13, Proposition 7.1.2]). The following data are equivalent:

1. a prime cone α ⊂ A,

2. a pair (p,≤p) consisting of a prime ideal p and an ordering ≤p on the field
of fractions of A/p,

3. an equivalence class of pairs (ρ,Fρ) where ρ : A→ Fρ is a ring homomorphism
to a real closed field Fρ which is the real closure of the field of fractions of
ρ(A) and (ρ1,Fρ1), (ρ2,Fρ2) are equivalent if there exists an ordered field
isomorphism φ : Fρ1 → Fρ2 such that ρ2 = φ ◦ ρ1.

4. an equivalence class of pairs (ρ,F) where ρ : A→ F is a ring homomorphism to
a real closed field F, for the smallest equivalence relation such that (ρ1,F1) and
(ρ2,F2) are equivalent if there is an ordered field homomorphism φ : F1 → F2

such that ρ2 = φ ◦ ρ1.
One goes from 1 to 2 by considering the prime ideal p = α ∩ (−α) and the

unique order ≤α on Frac(A/p) whose set of positive elements is given by
{
a

b

∣∣∣∣ ab ∈ α, b /∈ p

}
,

where · : A→ A/p denotes the reduction modulo p and Frac(A/p) the fraction field
of A/p. One goes from 2 to 3 and 4 by composing the reduction modulo p with
the inclusion of Frac(A/p) into its real closure F with respect to the ordering ≤p.
Finally, one goes from 4 to 1 by considering the prime cone

α := { a ∈ A | ρ(a) ≥ 0 },

where (ρ,F) is the given ring homomorphism to a real closed field F.
Employing the notation from the fourth item of Proposition 3.1.2, the spectral

topology on the real spectrum is defined using a basis of open sets

Ũ(a1, . . . , ap) := { (ρ,F) ∈ ARSp | ρ(ak) > 0 ∀k ∈ { 1, . . . , p } },

where ak are elements in A for every k ∈ { 1, . . . , p }. With this topology, the real
spectrum of a ring and its closed points have good properties.
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Theorem 3.1.3 ([BCR13, Proposition 7.1.25 (ii)]). The real spectrum of A is
compact and its subset of closed points ARSp

cl is Hausdorff and compact.

So, to each commutative ring with a unit, we have associated a compact
topological space. Furthermore, if π : A→ B is a ring homomorphism between the
commutative rings A and B, then the lift of π to the real spectrum

πRSp : BRSp −→ ARSp;
(ρ,F) 7−→ (ρ ◦ π,F)

is a continuous map [BCR13, Proposition 7.1.7]. Thus, the following result gives a
first motivation to study the real spectrum of rings.

Theorem 3.1.4 ([BCR13, Proposition 7.1.7]). The functor (−)RSp is contravariant
from the category of commutative rings with unity to the category of compact
topological spaces.

Example 3.1.5 ([BIPP23, Example 2.24 (3)], [BCR13, Example 7.1.4] for K = R).
Let A = K[x], where K ⊂ R is real closed and x is a variable. For every u ∈ R, set

αu := {f ∈ K[x] | f(u) ≥ 0 } ,
αu+ := {f ∈ K[x] | ∃ε > 0,∀v ∈]u, u+ ε[, f(v) ≥ 0 } ,
αu− := {f ∈ K[x] | ∃ε > 0,∀v ∈]u− ε, u[, f(v) ≥ 0 } ,

which are prime cones of A. They verify αu± ⊂ αu, with equality if and only if
u /∈ K. The following prime cones complete the description of the real spectrum:

α+∞ := {f ∈ K[x] | ∃m ∈ K,∀v ∈]m,+∞[, f(v) ≥ 0 } ,
α−∞ := {f ∈ K[x] | ∃m ∈ K,∀v ∈]−∞,m[, f(v) ≥ 0 } .

By factoring polynomials, the topology of K[x]RSp has a basis of open subsets
consisting of the intervals

Ũ(x− s,−x+ t) = [s+, t−] = {αu | s < u < t} ∪ {αu− | s < u ≤ t}
∪ {αu+ | s ≤ u < t},

Ũ(x− s) = [s+,+∞] = {αu | u > s} ∪ {αu− | u > s}
∪ {αu+ | u ≥ s} ∪ {α+∞},

Ũ(−x+ t) = [−∞, t−] = {αu | u < t} ∪ {αu− | u ≤ t}
∪ {αu+ | u < t} ∪ {α−∞},

where s < t are two elements of R. Note that K[x]RSp is not a Hausdorff space
since αu belongs to the closure of both αu+ and αu− .
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To define the Archimedean spectrum, we recall the concept of Archimedicity in
the context of general real fields.

Definition 3.1.6 ([BIPP23, Definition 2.26]). Let R1 ⊂ R2 be subrings of an
ordered field. The subring R2 is Archimedean over R1 if every element of R2 is
bounded above by some element of R1.

Before defining the Archimedean spectrum, we note that this definition allows
us to characterize the closed points of the real spectrum in terms of Archimedicity.
Recall that by the third item of Proposition 3.1.2, an element (ρ,Fρ) ∈ ARSp

cl is an
equivalence class of ring morphisms to a real closed field Fρ, where Fρ is the real
closure of the field of fractions of ρ(A).

Proposition 3.1.7 ([BIPP23, Proposition 2.27]). In the notation of the third item
of Proposition 3.1.2, if (ρ,Fρ) is an element of ARSp, then (ρ,Fρ) is closed in the
spectral topology if and only if Fρ is Archimedean over ρ(A).

Let now A be a K-algebra where K is a real closed field. The Archimedean
spectrum is, informally, a subset of the real spectrum whose real closed fields are
Archimedean over the ground field.

Remark 3.1.8. Let A be a K-algebra where K is a real closed field and (ρ,F) ∈
ARSp

cl . The composition of the inclusion K → A with ρ : A → F gives a field
morphism K → F. Thus K is a subfield of F. Since every positive element of K is
a square, the order on F extends the order on K.

Definition 3.1.9. Given K a real closed field and A a K-algebra, the Archimedean
spectrum of A is the set

ARSp
Arch :=

{
(ρ,Fρ) ∈ ARSp

∣∣Fρ is Archimedean over K
}
,

endowed with the subspace topology from the spectral topology, where Fρ is the
real closure of the field of fractions of ρ(A).

In particular, from Proposition 3.1.7, ARSp
Arch ⊂ ARSp

cl . In addition, as for the real
spectrum, the Archimedean spectrum is a functor.

Proposition 3.1.10. The functor (−)RSp
Arch is contravariant from the category of

K-algebras to the category of topological spaces.

Proof. Consider A,B two K-algebras and π : A→ B a K-algebra morphism. From
Theorem 3.1.4,

πRSp : BRSp −→ ARSp;
(ρ,Fρ) 7−→ (ρ ◦ π,Fρ)
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is a continuous map. Consider πRSp
Arch the restriction of πRSp to the Archimedean

spectrum of B. For an element (ρ,Fρ) ∈ BRSp
Arch, where Fρ is the real closure of the

field of fractions of ρ(B), Fρ is Archimedean over K. So in particular, the image

of πRSp
Arch is contained in ARSp

Arch. Hence, (−)RSp
Arch is a contravariant functor from the

category of K-algebras to the category of topological spaces.

We presented a contravariant functor (−)RSp from commutative rings with a
unit to compact topological spaces. Additionally, we characterized the closed points
of these induced topological spaces and introduced the Archimedean spectrum. In
the next section, we use this framework, along with the coordinate ring of algebraic
sets, to examine functorial properties of the closed points of the real spectrum of
algebraic sets.

3.2 Functoriality of the closed points of the real

spectrum of algebraic sets

Using the coordinate ring of the K-extension of an algebraic set V ⊂ Ln for some
real closed fields K such that L ⊂ K, we show that (−)RSp

cl is a functor sending
proper algebraic maps to continuous maps—in the coming section, we apply this

concept to the algebraic sets MΓ and P̂1(n) defined over Qr
. For the rest of the

subsection, let L,K be real closed fields such that L ⊂ K. Consider an algebraic
set V ⊂ Ln and recall that V (K) denotes the K-extension of V . Denote by

V (K)RSp := K[V ]RSp

the real spectrum of V (K), where K[V ] is the coordinate ring of V (K), see Definition
2.2.5. Moreover, we endowed the K-points V (K) with the Euclidean topology
coming from the norm N : Kn → K≥0, as defined in Subsection 2.2.

Remark 3.2.1. The Euclidean topology on V (K) is equivalent to the topology
generated by the basis of open sets

U(f1, . . . , fp) := { v ∈ V (K) | f1(v) > 0, . . . , fp(v) > 0 },

for f1, . . . , fp ∈ K[V ], see [BCR13, Subsection 2.1].

Lemma 3.2.2. Let V ⊂ Rn, W ⊂ Rm be algebraic sets. If the coordinate ring of
V (R) is R[V ] = R[x1, . . . , xn]/I (V ) and π : V (R) → W (R) is a proper algebraic
map, then there exist constants c, d ∈ N such that for every v ∈ V (R):

|xi(v)| ≤ c
(
1 +N(π(v))2

)d
.
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Proof. Since π is proper, for every w ∈ W (R) the fiber π−1(w) ⊂ V (R) is compact
in the Euclidean topology. The map xi : V → R is continuous, so that it attains
its maximum on π−1(w) by the extreme value theorem. Hence, the map

ṽi : W (R) −→ R;
w 7−→ max {xi(v) | v ∈ π−1(w) }

is well defined. Consider the graph Xπ := { (v, w) ∈ (V ×W )(R) |π(v) = w } of
π, which is algebraic because V , W , and π are algebraic and Xṽi := { (w, t) ∈
W (R)× R | ṽi(w) = t } the graph of ṽi. By the definition of ṽi, it holds

ṽi(w) = t if and only if ∃v ∈ V (R), π(v) = w, xi(v) = t,

and ∀v′ ∈ V (R), π(v′) = w ⇒ xi(v
′) ≤ t.

Since all sets and maps involved are semialgebraic, the set

X =

{
(v, w, t) ∈ (V ×W )(R)× R

∣∣∣∣
π(v) = w, xi(v) = t,
and ∀v′ ∈ V, π(v′) = w ⇒ xi(v

′) ≤ t

}

is semialgebraic. In particular, its projection on W (R)× R is a semialgebraic set
[BCR13, Theorem 2.2.1], which identifies with Xṽi . Thus ṽi is semialgebraic. By
[BCR13, Proposition 2.6.2], there exist constants c > 0 and d ∈ N such that

|ṽi(w)| ≤ c
(
1 +N(w)2

)d
for all w ∈ W (R).

So in particular, |xi(v)| ≤ c(1 +N(π(v))2)d for every v ∈ V (R).

To do computation in the real spectrum, we use the following notation:

Notation 3.2.3 ([BIPP23, Remark 2.36]). Let L,K be real closed fields such that
L ⊂ K, V ⊂ Ln an algebraic set, and (ρ,Fρ) ∈ K[V ]RSp, where Fρ is the real closure
of the field of fractions of ρ(K[x1, . . . , xn]). If xρ = (ρ(x1), . . . , ρ(xn)) ∈ V (Fρ), then

(ρ,Fρ) = (ev(xρ),Fρ).

Thus, for all f ∈ K[V ], we note f(xρ) := ρ(f).

Theorem 3.2.4. Let V ⊂ Rn, W ⊂ Rm be algebraic sets. If π : V (R) → W (R) is
a proper surjective algebraic map, then the image of πRSp

cl , the restriction to the
closed points of the induced map πRSp, is W (R)RSp

cl . That is, we have a continuous
surjective map

πRSp
cl : V (R)RSp

cl ↠ W (R)RSp
cl .
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Proof. As in the notation of the third item of Proposition 3.1.2, consider (ρ,Fρ) ∈
V (R)RSp

cl , where Fρ is the real closure of the field of fractions of ρ(R[V ]). We first
prove that Fρ is Archimedean over ρ(R[W ]). Consider the coordinate ring

R [V ] := R[x1, . . . , xn]/I (V ) ,

as in Definition 2.2.5 and the element vρ := (ρ(x1), . . . , ρ(xn)) ∈ V (Fρ) defined in
Notation 3.2.3. By Lemma 3.2.2, there exist constants c, d ∈ N such that

for every v ∈ V (R) : |xi(v)| ≤ c
(
1 +N(π(v))2

)d
.

So by the Transfer principle (Theorem 2.2.2) the following inequality holds

|xi(vρ)| ≤ c(1 +N
(
πFρ(vρ))

2
)d
,

where πFρ is the Fρ-extension of π. Hence xi(vρ) is bounded by some element
of ρ(R[W ]). Finally, since (ρ,Fρ) is a closed point of the real spectrum, Fρ is
Archimedean over ρ(R[V ]) by Proposition 3.1.7. Hence Fρ is Archimedean over
ρ(R[W ]) so that

Im
(
πRSp
cl

)
⊂ W (R)RSp

cl .

Finally, πRSp
cl is surjective by [BIPP23, Lemma 7.6] so that

Im
(
πRSp
cl

)
= W (R)RSp

cl .

Under the right setting, (−)RSp
cl defines a functor from algebraic sets with proper

algebraic maps to compact spaces with continuous maps. In the next section, we
use (−)RSp

cl to define a compactification of any semialgebraic set.

3.3 Constructible sets and real spectrum com-

pactification of semialgebraic sets

This section recalls the definition of the real spectrum compactification of a semial-
gebraic set. To do so, we use the closed points of the real spectrum and study the
constructible subsets of the real spectrum. The Euclidean topology allows us to
embed an algebraic set into its Archimedean spectrum.

Theorem 3.3.1 ([BCR13, Proposition 7.1.5] and [BCR13, Proposition 7.1.5]). Let
L ⊂ K be real closed fields and V ⊂ Ln an algebraic set, then the evaluation map

ev : V (K) −→ V (K)RSp
Arch;

(v1, . . . , vn) 7−→ (ev(v1, . . . , vn),K)
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is a continuous injection from V (K), with its Euclidean topology, to V (K)RSp
Arch with

its spectral topology. Moreover, V (K) is dense in V (K)RSp and so in its Archimedean
spectrum.

Proof. By [BCR13, Proposition 7.1.5], ev : V (K) → V (K)RSp
Arch is continuous and

injective. By [BIPP23, Corollary 2.32], V (K) is dense in V (K)RSp.

From Theorem 3.3.1, we define the real spectrum compactification of V (K) as
the closure of the image of the evaluation map in the spectral topology:

V (K)RSp
cl := ev(V (K)).

We will need in Chapter 5 a stronger statement in the special case when L = Qr
:

Proposition 3.3.2 ([BIPP23, Proposition 2.33]). Let V ⊂ (Qr
)n be an algebraic

set. The evaluation map

ev : V (R) −→ V
(
Qr)RSp

cl
;

(v1, . . . , vn) 7−→ (ev(v1, . . . , vn),R)

is a homeomorphism from V (R), with its Euclidean topology, onto its image with
the spectral topology. Moreover, V (R) is open and dense in V (Qr

)RSp
cl and V (Qr

)RSp
cl

is metrizable.

Now that we defined the real spectrum compactification of an algebraic set,
we introduce the corresponding construction for semialgebraic sets—such as the
character variety. To do so, we first need constructible sets.

Definition 3.3.3 ([BCR13, Definition 7.1.10]). Let A be a commutative ring
with a unit. A constructible subset of ARSp is a boolean combination of basic
open subsets Ũ(a1, . . . , an). That is, obtained from the basic open sets of the real
spectrum topology by taking finite unions, finite intersections and complements.

Constructible sets form the essential building blocks of compact sets in the real
spectrum topology. Moreover, they offer a correspondence between semialgebraic
subsets of an algebraic set V and compact subsets of V (K)RSp

cl . They are therefore
essential, as the following result shows.

Proposition 3.3.4 ([BCR13, Corollary 7.1.13, Proposition 7.2.2, and Theorem
7.2.3]). Let L,K be real closed fields such that L ⊂ K, V ⊂ Ln an algebraic set,
and S a semialgebraic subset of V .

1. Every constructible subset of V (K)RSp is compact with respect to the spectral
topology. Moreover, an open subset of V (K)RSp is constructible if and only if
it is compact.
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2. There exists a unique constructible set S̃(K) ⊂ V (K)RSp, so that

S̃(K) ∩ V (K) = S(K).

3. If S(K) is a boolean combination of

U(fi) = { v ∈ V (K) | fi(v) > 0 },

where fi ∈ K[V ], then S̃(K) is the same boolean combination of

Ũ(fi) = { (ρ,Fρ) ∈ V (K)RSp | ρ(fi) > 0 }.

4. The mapping S(K) 7→ S̃(K) is an isomorphism from the boolean algebra of
semialgebraic subsets of V (K) onto the boolean algebra of constructible subsets
of V (K)RSp.

5. The semialgebraic set S(K) is open (respectively closed) in V (K) if and only

if S̃(K) is open (respectively closed) in V (K)RSp. Hence, the isomorphism

S(K) 7→ S̃(K) induces a bijection from the family of open semialgebraic
subsets of V (K) onto the family of compact open subsets of V (K)RSp.

Constructible sets can exhibit surprising behavior. In the following example,
the closed points of a constructible set are not the intersection of the closed points
of the algebraic set with the constructible set.

Example 3.3.5 ([BIPP23, Example 2.34]). Let A1 ⊂ Qr
denotes the affine line,

and let K be a real closed subfield of R. For all u ∈ K

{αu+ } = {αu, αu+ } and {αu− } = {αu, αu− } .

Moreover, for u ∈ R\K it holds αu+ = αu− = αu, which are closed points of the
real spectrum. Thus

A1(K)RSp
cl = {αu |u ∈ R } ∪ {α±∞ },

where R embeds as an open and dense subset. Semialgebraic subsets of A1(K) are
finite unions of intervals and half-lines with endpoints in K. For the semialgebraic
set S(K) := (s, t] ∩K with s, t ∈ K, it holds

S̃(K) = (s, t] ∪ {αu± |u ∈ (s, t) ∩K } ∪ {αs+ , αt− } ,
S̃(K) ∩ V (K)RSp

cl = S(K).
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In particular, S̃(K)∩A1(K)RSp
cl is not compact. However, the closed points of S̃(K)

are
S̃(K)cl = (s, t] ∪

{
αs

+
}
,

which is homeomorphic to a closed segment in R. Note that αs+ is closed in S̃(K)
but not in A1(K)RSp.

If W is a semialgebraic subset of V ⊂ Rn, the real spectrum compactification

WRSp
cl of W is the set of closed points of W̃ (R). When W is closed, then

WRSp
cl := W̃ (R) ∩ V (R)RSp

cl .

Proposition 3.3.6 ([BIPP23, Proposition 2.33]). Let V ⊂ (Qr
)n be an algebraic

set and W ⊂ V a closed semialgebraic subset. The space W (R) is open and dense
in the Hausdorff and compact space WRSp

cl .

Remark 3.3.7. We study the real spectrum compactification of semialgebraic

models of Ξ(Γ,PSL2(R)), MΓ and P̂1(n) defined over Qr
, see Subsection 2.3.

These models depend on a choice of coordinates. However, every choice of co-
ordinates leads to models that are related by a canonical semialgebraic isomor-
phism. Consequently, the real spectrum compactifications of both models are
homeomorphic [BCR13, Proposition 7.2.8] and the real spectrum compactifications

Ξ(Γ,PSL2(R))RSp
cl , MΓ(R)RSp

cl and ̂P1(n,R)
RSp

cl are canonical up to homeomorphism.

In Chapter 5, we define a continuous surjection from Ξ(Γ,PSL2(R))RSp
cl to

Ξ(Γ,PSL2(R))O motivated, in part, by the following result.

Theorem 3.3.8 ([Bru88a, Proposition 7.2]). There exists a continuous surjection
from the real spectrum compactification of the space of marked hyperbolic structures
on a surface to its length spectrum compactification (Thurston compactification).

Remark 3.3.9. There exists also a continuous surjection between the real spectrum
compactification and the Weyl chamber length compactification (which generalizes
the length spectrum compactification) of higher rank character varieties, where
we replace PSL2(R) by PSLn(R) in the definition of Ξ(Γ,PSL2(R)), see [BIPP23,
Theorem 8.2].

Despite its name, the real spectrum compactification is not necessarily a natural
compactification of V (K), where a natural compactification of a topological space
X is a Hausdorff compact topological space Y such that X ⊂ Y and X is open
and dense in Y .
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Example 3.3.10. Consider the affine line A1 ⊂ Qr
. By Example 3.1.5, there is an

homeomorphism

A1
(
Qr)RSp

cl
= Qr

[x]RSp
cl

∼= R ∪ {±∞}.
By density of the transcendental numbers in R, the topological space A1(Qr

) is not
open in A1(Qr

)RSp
cl such that the real spectrum compactification is not a natural

compactification.

We introduced the real spectrum compactification of a semialgebraic set and
established the proper framework to demonstrate its functoriality. However, de-
pending on the field over which the algebraic set is defined, this compactification is
not always natural. To address this issue, we further investigate the topological
properties of the Archimedean spectrum.

3.4 Local compactness of the Archimedean spec-

trum of algebraic sets

Under suitable conditions on K, the Archimedean spectrum is a locally compact
topological space open in V (K)RSp

cl . This makes V (K)RSp
cl a natural compactification

of V (K)RSp
Arch. To illustrate this, we compute the Archimedean spectrum of the K-

extension of V when K is Archimedean, as well as the Archimedean spectrum of
the affine line over any real closed field.

Definition 3.4.1. An element b ∈ K is called big element , if for every c ∈ K,
there exists k ∈ N that verifies c < bk.

For the remainder of the subsection, L is a real closed field, L ⊂ K a real closed
field with a big element, V ⊂ Ln an algebraic set, and we show that V (K)RSp

cl is a
natural compactification of the topological space V (K)RSp

Arch.

Remark 3.4.2. For every (ρ,Fρ) ∈ V (K)RSp
cl , Fρ is a real closed field of finite

transcendence degree over K, see Proposition 3.1.2. In particular, if K has a big
element, then Fρ also has a big element [Bru88a, Section 5]. Hence, if K is a real

closed field that appears in the boundary of V (R)RSp
cl , where V ⊂ (Qr

)n is an
algebraic set, then the real closed fields that appear in V (K)RSp

cl are also real closed
fields of finite transcendence degree over Qr

that contain a big element [Bru88a,
Section 5].

In this setting, we give a description of V (K)RSp
Arch as an open and dense subset

of V (K)RSp
cl which is a countable union of compact sets.
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Theorem 3.4.3. Let L be a real closed field, L ⊂ K a real closed field with a big
element b, and V ⊂ Ln an algebraic set. The Archimedean spectrum of V (K) is an
open subset of V (K)RSp

cl which is a countable union of compact subsets of V (K)RSp
cl .

In particular, the space V (K)RSp
Arch is σ-compact and locally compact.

Proof. Consider the coordinates x1, . . . , xn such that K[V ] = K[x1, . . . , xn]/I(V ),
where I(V ) is the ideal of polynomials vanishing on V . Write x = (x1, . . . , xn) and
let f ∈ K[V ] be an element with coordinate decomposition

f(x) :=
∑

I multiindex

cIx
I ,

where if I = (i1, . . . , in) for some ij ≥ 0, then xI := xi11 · · · xinn . By the Cauchy–
Schwartz inequality—a consequence of the Transfer principle (Theorem 2.2.2), it
holds for every v ∈ Kn

f(v)2 =

(∑

I

cIv
I

)2

≤
(∑

c2I

)(∑
v2I
)
.

Define g(x) :=
∑
x2i so that v2i ≤ g(v). With the notation |I| := ∑

ij, it holds
v2I ≤ g(v)|I| and

f(v)2 ≤
(∑

c2I

)(∑
g(v)|I|

)
.

Either g(v) ≤ 1 and

f(v)2 ≤
(∑

c2I

)
|supp(f)|,

where supp(f) := { I multiindex | cI ̸= 0 }. Or g(v) ≥ 1 and

f(v)2 ≤
(∑

c2I

)
|supp(f)|g(v)d(f),

where d(f) := max{ |I| | I ∈ supp(f) }. In either case, since b is a big element of K,
there exists m ∈ N such that

f(v)2 ≤ bm
(
1 + g(v)d(f)

)
∀v ∈ Kn.

Let (ρ,Fρ) ∈ V (K)RSp and xρ be the point of V (Fρ) defined in Notation 3.2.3.
The previous inequality holds in every real closed field. Thus, for every f ∈ K[V ],
there exist m ∈ N such that

f(xρ)
2 ≤ bm

(
1 + g(xρ)

d(f)
)
.

So, define for every k ∈ N, the open set Ak(K) and the closed set Bk(K) as

Ak(K) :=
{
v ∈ V (K)

∣∣∣
∑

v2i < bk
}
, Bk(K) :=

{
v ∈ V (K)

∣∣∣
∑

v2i ≤ bk
}
.
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Claim: The Archimedean spectrum of V (K) contains V (K) and is an open subset
of V (K)RSp

cl as the following equality holds

V (K)RSp
Arch =

⋃

k∈N
Ãk(K) ∩ V (K)RSp

cl .

Moreover, V (K)RSp
Arch is a countable union of compact sets as

V (K)RSp
Arch =

⋃

k∈N
B̃k(K) ∩ V (K)RSp

cl .

Proof: On the one hand, if (ρ,Fρ) ∈ V (K)RSp
Arch, then Fρ is Archimedean over

K. In particular, it is Archimedean over ρ(K[V ]) (see Remark 3.1.8) so that
(ρ,Fρ) ∈ V (K)RSp

cl . Since Fρ is Archimedean over K and b is a big element of K,
b is also a big element of Fρ. Thus there exists a natural number k that verifies
g(xρ) < bk so that the following inclusions hold

V (K)RSp
Arch ⊂

⋃

k∈N
Ãk(K) ∩ V (K)RSp

cl ⊂
⋃

k∈N
B̃k(K) ∩ V (K)RSp

cl .

On the other hand, consider (ρ,Fρ) ∈ B̃k(K) ∩ V (K)RSp
cl for some fixed k ∈ N. By

Proposition 3.1.7, Fρ is Archimedean over ρ(K[V ]) and we show that ρ(K[V ]) is
Archimedean over K. Consider f ∈ K[V ] and m1 ∈ N such that

f(xρ)
2 < bm1

(
1 + g(xρ)

d(f)
)
.

Since (ρ,Fρ) ∈ B̃k(K) it holds g(xρ) < bk. So, there exists m2 ∈ N with

f(xρ)
2 < bm1+m2 .

Hence ρ(K[V ]) is Archimedean over K. Thus, also Fρ is Archimedean over K and

V (K)RSp
Arch =

⋃

k∈N
Ãk(K) ∩ V (K)RSp

cl =
⋃

k∈N
B̃k(K) ∩ V (K)RSp

cl .

In particular, the Archimedean spectrum of an algebraic set is the intersection of
a countable union of open constructible sets with V (K)RSp

cl . Consequently, it forms
an open subset of a compact Hausdorff space and, therefore, is locally compact
[Mun18, Corollary 29.2].

Corollary 3.4.4. Let L be a real closed field, L ⊂ K a real closed field with a big
element b, and V ⊂ Ln an algebraic set. The topological space V (K)RSp

Arch is an open
and dense subset of V (K)RSp

cl . In particular, V (K)RSp
cl is a natural compactification

of V (K)RSp
Arch.

61



Proof. By Theorem 3.4.3, V (K)RSp
Arch is open in V (K)RSp

cl . Moreover, the evaluation
map on elements of V (K) provides a topological embedding of V (K) in V (K)RSp

Arch

as a dense subset (Theorem 3.3.1). Thus V (K)RSp
Arch is also dense in V (K)RSp

cl .

Proposition 3.4.5. Let L,K be real closed fields such that L ⊂ K, with K is
Archimedean over Z, and V ⊂ Ln an algebraic set. The evaluation map

ev : V (R) −→ V (K)RSp
Arch;

(v1, . . . , vn) 7−→ (ev(v1, . . . , vn),R)

is an homeomorphism from V (R), with its Euclidean topology, to V (K)RSp
Arch with its

spectral topology. Thus, V (K)RSp
cl is a natural compactification of V (R).

Proof. First, Notice that R is Archimedean over Z so that ev is well defined. By
[BIPP23, Proposition 2.33 (1)], ev is a continous and open injection from V (R)
with its Euclidean topology to V (K)RSp

cl with its spectral topology, see Remark 3.2.1.
So it remains to show that ev is a surjection onto the Archimedean spectrum.

Let (ρ,Fρ) ∈ V (K)RSp
Arch and consider σ : Fρ → R an ordered field monomorphism

as in [Hal11, Theorem 3.5]. Then by the fourth item of Proposition 3.1.2

(ρ,Fρ) = (σρ,R) ∈ V (K)RSp
Arch.

Let K[V ] = K[x1, . . . , xn]/I(V ) be the coordinate ring of V (K) as in Definition
2.2.5. Using Notation 3.2.3, it holds (σρ(x1), . . . , σρ(xn)) ∈ V (R) and

(ev(σρ(x1), . . . , σρ(xn)),R) = (σρ,R) ∈ V (K)RSp
Arch.

Thus ev is surjective as wanted, hence a homeomorphism.

Remark 3.4.6. One might wish to generalize this result to the setting of complete
Archimedean fields, see [SC21, Section 3]. However, the notion of Archimedicity
used to define generalized Hahn fields is stronger than the definition of Archimedicity
employed in this text, so that the uniqueness of a complete Archimedean field fails.

As an example of computation, we describe the Archimedean spectrum of A1

in terms of Dedekind cuts, where a Dedekind cut of a real field L is a partition of
L into two nonempty subsets D− and D+ such that D− is closed downwards and
does not contain a greatest element.

Proposition 3.4.7. For a real closed field K

A1(K)RSp
Arch = K ∪

{
K = D− ∪D+

∣∣∣∣
D− ̸= ∅ has not lowest upper bound,
D+ ̸= ∅ has no greatest lower bound

}
.
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Proof. With the notation of the third item of Proposition 3.1.2, let (ρ,Fρ) be
an element of A1(K)RSp. The coordinate ring K[x] of A1(K) is principal so that
the kernel of ρ is either trivial or a principal ideal generated by an irreducible
polynomial f . On the one hand, suppose ker(ρ) = (f). If f is linear, then Fρ = K
and ρ is the evaluation on an element in K. Otherwise, since K is real closed, f is
quadratic. However, in this case, Fρ = K(

√
−1) which is not orderable. This is a

contradiction with Fρ is real closed. On the other hand, ρ is injective and gives an
ordering of K(x) = Frac(K[x]). Thus

A1(K)RSp =K ∪ { orderings on K(x) },
A1(K)RSp

Arch =K ∪ { orderings on K(x) Archimedean over K }.

Claim: There is a one-to-one correspondence between the orderings of K(x) which
are Archimedean over K and the Dedekind cuts of K with no lowest upper bound
and no greatest lower bound.
Proof: On the one hand, consider an ordering ≤ on K(x) Archimedean over K and
the sets

D− := { a ∈ K | a ≤ x },
D+ := { a ∈ K |x ≤ a }.

Since the ordering is Archimedean over K, D+ is nonempty and x−1 is bounded
from above. So the set D− is nonempty. Suppose D− has a lowest upper bound
u in K. If u is an element in D−, then u ≤ x ≤ u + ε for every 0 ≤ ε ∈ K. In
particular,

ε−1 ≤ (x− u)−1 for every 0 ≤ ε ∈ K,

which is a contradiction with the ordering on K(x) is Archimedean over K. If u is
an element in D+, then u− ε ≤ x ≤ u for every 0 ≤ ε ∈ K so that

ε−1 ≤ (u− x)−1 for every 0 ≤ ε ∈ K.

This is also a contradiction with: the ordering on K(x) is Archimedean over K.
Hence D− does not have a lowest upper bound, and by a similar reasoning, D+

does not have a greatest lower bound. Therefore, an Archimedean ordering on K(x)
defines a Dedekind cut of K with no lowest upper bound and greatest lower bound.

On the other hand, consider a partition K = D− ∪D+ where D− has not lowest
upper bound and D+ has no greatest lower bound. Define an ordering on K(x)
generated by

a < x for every a ∈ D−,

x < b for every b ∈ D+.
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Since K is real closed, any g ∈ K(x)\{ 0 } has a decomposition

g(x) =
∏

ci∈D−

(x− ci)
mi

∏

cj∈D+

(x− cj)
mj

ℓ∏

k=1

hk(x),

where the ci’s are the distinct roots of g, and hk are irreducible quadratic polyno-
mials. In particular, 0 < hk for every 1 ≤ k ≤ ℓ so that

0 < g if and only if
∑

cj∈D+

mj ∈ 2Z.

Equivalently 0 < g if and only if there exists a ∈ D− such that the restriction
g|K>a∩D− is strictly positive. We show that this ordering is Archimedean. By
definition of the ordering, the linear terms of the decomposition of g are bounded
by some element in the ordered field K. Therefore it remains to prove that the
quadratic terms are also bounded in K. Since all hk are irreducible, there exists
0 < ε with ε <

∏
k hk(a) for every a ∈ K. In particular, there exists ε′ ∈ K so that

g−1 < ε′. This is true for every g in the real field K(x) so that the ordering is
Archimedean.

Remark 3.4.8. For every non-Archimedean real closed field K, A1(K)RSp
Arch does

not have the structure of a field. Indeed, the natural addition of the Dedekind
completion of a non-Archimedean field is not invertible, see [Hal11, Lemma 3.10].

We introduced the Archimedean spectrum of the K-extension of an algebraic
set V and studied one of its natural compactifications given by the closed points of
the real spectrum. Before further exploring the Archimedean spectrum using the
Berkovich analytification of V (K) in Section 4.2, we first study universal geometric
spaces over the real spectrum compactification ofMΓ. This allows us to show strong
convergence properties within the real spectrum in Subsection 4.1.3. Consequently,
we gain a deeper understanding of the dynamical properties of MΓ by leveraging
the local compactness of the Archimedean spectrum.
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Chapter 4

Real spectrum compactifications
of universal geometric spaces

Section 4.1 constructs universal geometric spaces over MΓ(R)RSp
cl and studies

properties of the projection map onto MΓ(R)RSp
cl . The fibers of the projection

map, at the level of the real spectrum, are well organized over MΓ(R)RSp
cl and

coincide with the Archimedean spectrum, yielding new accessibility results in the
real spectrum. In the first subsection, we construct this universal geometric space
using the SLn(R)-action on Pn−1(R). In the final two subsections, we construct a

suitable subset of (MΓ(R)× ̂P1(n,R))RSp
cl which contains MΓ(R)× ̂P1(n,R) and

serves as a universal symmetric space over MΓ(R)RSp
cl .

Section 4.2 reviews the theory of Berkovich and real analytification, and con-
nects them to the theory of the Archimedean spectrum. We use the canonical
homeomorphism between the Archimedean spectrum and the real analytification
to construct a continuous and proper map from the Archimedean spectrum to the
Berkovich analytification. We characterize its image completely and examine the
specific case of the Archimedean spectrum of the projective line. In this setting,
the image in the Berkovich analytification is a PSL2(F)-invariant R-subtree.

4.1 Universal geometric spaces over minimal vec-

tors

In this section, we study the real spectrum compactification ofMΓ(R), the algebraic
set of minimal vectors of a finitely generated group Γ in SLn(R), its interaction with
compact algebraic sets (as the projective space Pn−1), and the symmetric space

P̂1(n). A key focus is on providing a geometric understanding of the convergence
of sequences in the real spectrum. Specifically, we demonstrate that representations
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on the boundary of MΓ(R)RSp
cl induce actions of Γ on Pn−1(K)RSp

Arch and ̂P1(n,K)
RSp

Arch,
where K is a well-chosen non-Archimedean real closed field. This motivates the
relationship we exhibit in Section 4.2 between the Archimedean spectrum and the
Berkovich analytification.

4.1.1 The universal projective space

We examine the lift of the projection map π : (V ×W )(R) → V (R) when V ⊂ Rn

is an algebraic set and W ⊂ Rm is a compact algebraic set. We analyze the fibers
of πRSp

cl : (V ×W )(R)RSp
cl → V (R)RSp

cl using the Archimedean spectrum and show
that the fibers are well organized over V (R)RSp

cl . As an application, we construct a
universal projective space over MΓ(R)RSp

cl that encodes degeneracies of Γ-actions
on Pn−1(R) induced by representations in MΓ(R).

Remark 4.1.1. Let L ⊂ K be real closed fields and V ⊂ Ln,W ⊂ Lm algebraic sets.
From [BCR13, Theorem 2.8.3. (iii)], there exists a natural K-algebra isomorphism

ι : K[V ]⊗K K[W ] ∼= K[V ×W ]

given by ι(
∑
fi ⊗ gi)(v, w) =

∑
fi(v)gi(w) for every (v, w) ∈ (V ×W )(K), see

[Sha74, Chapter 1, Subsection 2.2, Example 4, page 17]. In particular, by the
universal property of the tensor product, for every (ρ,F) ∈ (V ×W )(K)RSp, there
exists (ρ1,F) ∈ V (K)RSp, (ρ2,F) ∈ W (K)RSp such that the following diagram
commutes

K[V ]

K[V ]⊗K K[W ] K[V ×W ] F,

K[W ]

ρ1

ι ρ

ρ2

where the vertical arrows are the inclusions. Hence, for every h ∈ K[V ×W ]

ρ(h) =
∑

ρ1
(
h1i
)
ρ2
(
h2i
)

where ι−1(h) =
∑

h1i ⊗ h2i ∈ K[V ]⊗K K [W ] .

We denote by (ρ1, ρ2,F) this decomposition of the morphism (ρ,F).

Proposition 4.1.2 ([CR82, Proposition 4.3]). Let π : A→ B be a ring morphism,
and (ρ,Fρ) ∈ ARSp. Then (πRSp)−1(ρ,Fρ) is homeomorphic to (Fρ ⊗A B)RSp.

We refer to [CR82, Proposition 2.5] for a description of the homeomorphism.
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Theorem 4.1.3. Let V ⊂ Rn be an algebraic set and W ⊂ Rm a compact algebraic
set. If π : (V ×W )(R) → V (R) is the projection map, then the restriction to the
closed points of the induced map πRSp takes its values in W (R)RSp

cl , that is

πRSp
cl : (V ×W )(R)RSp

cl → V (R)RSp
cl .

Moreover, it is continuous, surjective and the fiber of (ρ,Kρ) ∈ V (R)RSp
cl is homeo-

morphic to W (Kρ)
RSp
Arch.

Proof. Since W (R) is compact, the projection map is algebraic and proper. Thus,
by Theorem 3.2.4, the map πRSp

cl : (V × W )(R)RSp
cl → V (R)RSp

cl is well-defined,
continuous and surjective.

We show that the fiber of an element (ρ1,Kρ1) ∈ V (R)RSp
cl is homeomorphic

to W (Kρ1)
RSp
Arch. Consider (πRSp)−1(ρ1,Kρ1) endowed with the subspace topology

induced by the spectral topology on (V ×W )(R)RSp. By Proposition 4.1.2, there
exists a canonical homeomorphism

(
πRSp

)−1
(ρ1,Kρ1) ∼= (Kρ1 ⊗R[V ] R [V ×W ])RSp

∼= (Kρ1 ⊗R[V ] R [V ]⊗R R [W ])RSp

∼= (Kρ1 [W ])RSp = W (Kρ1)
RSp ,

where the second homeomorphism comes from [BCR13, Theorem 2.8.3. (iii)]. We
study the intersection of this preimage with (V ×W )(R)RSp

cl . Consider (ρ,Fρ) ∈
(πRSp)−1(ρ1,Kρ1) ∩ (V ×W )(R)RSp

cl and its decomposition (ρ,Fρ) = (ρ1, ρ2,Fρ) as
in Remark 4.1.1. Consider the coordinate ring

R [V ×W ] := R[x1, . . . , xn]/I (V ×W ) ,

as in Definition 2.2.5 and the element vρ := (ρ(x1), . . . , ρ(xn)) ∈ V (Fρ) defined in
Notation 3.2.3. By Lemma 3.2.2, there exist constants c, d ∈ N such that

for every v ∈ V (R) : |xi(v)| ≤ c
(
1 +N(π(v))2

)d
.

So by the Transfer principle (Theorem 2.2.2)

|xi(vρ)| ≤ c(1 +N
(
πFρ(vρ))

2
)d
,

such that ρ(R[V ×W ]) is Archimedean over ρ1(R[V ]) ⊂ Kρ1 . In particular, Fρ is
Archimedean over Kρ1 so that (ρ2,Fρ) ∈ Kρ1 [W ]RSp

Arch. Hence

(
πRSp
cl

)−1

(ρ1,Kρ1) ⊂ W (Kρ1)
RSp
Arch.
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We prove the remaining inclusion. Consider (ρ2,F) ∈ W (K1
ρ)

RSp
Arch. Then

ρ2|Kρ1
: Kρ1 → F is an ordered field morphism (see Remark 3.1.8). Since F is

Archimedean over Kρ1 which is Archimedean over ρ1(R[V ])

(
ρ2|Kρ1

◦ ρ1, ρ2,F
)
∈ (V ×W )(R)RSp

cl .

Moreover, πRSp(ρ2|Kρ1
◦ ρ1, ρ2,F) = (ρ2|Kρ1

◦ ρ1,F) = (ρ1,Kρ1) by Proposition 3.1.2
so that (

πRSp
cl

)−1

(ρ1,Kρ1) ∼= W (Kρ1)
RSp
Arch.

In the setting of Theorem 4.1.3, the fibers over V (R)RSp
cl exhibit good behavior

under projection. Informally, we show that if a sequence of elements in V (R)RSp
cl

converges to (ρ,Kρ), then the corresponding fibers also converge to the fiber of
(ρ,Kρ). To describe this behavior, we use that πRSp is an open map, which is
described in [CR82, Theorem 6.3], though our setting provides a natural proof.

Lemma 4.1.4 ([CR82, Theorem 6.3]). Let L ⊂ K be real closed fields and V ⊂ Ln,
W ⊂ Lm algebraic sets. If π : (V ×W )(K) → V (K) is the projection map, then the
lift πRSp : (V ×W )(K)RSp → V (K)RSp is open.

Proof. Since for two open sets U1, U2 ⊂ (V ×W )(K)RSp, the equality

πRSp(U1 ∪ U2) = πRSp(U1) ∪ πRSp(U2)

holds, it is enough to show that the image of a basis element

Ũ(f1, . . . , fp) ⊂ (V ×W )(K)RSp

is open for any fi ∈ K[V × W ]. Consider the open subset U(f1, . . . , fp) =
Ũ(f1, . . . , fp) ∩ (V × W )(K), see the fifth item of Proposition 3.3.4. Since the
projection map is open, π(U(f1, . . . , fp)) is an open subset of V (K). In particular,
by the Finiteness Theorem [BCR13, Theorem 2.7.2], there exists gi1, . . . , g

i
qi
∈ K[V ]

with
π(U(f1, . . . , fp)) =

⋃

i

U
(
gi1, . . . , g

i
qi

)
.

We show that πRSp(Ũ(f1, . . . , fp)) = ∪i ˜U(gi1, . . . , g
i
qi
) which is open by Proposition

3.3.4. As in Definition 2.2.5, consider the coordinate rings

K [V ] = K[x1, . . . , xn]/I (V ) and K[W ] = K[y1, . . . , ym]/I(W ).
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Let (ρ,Fρ) ∈ Ũ(f1, . . . , fp) and, as in Notation 3.2.3, its associated element

zρ = (ρ(x1), . . . , ρ(xn), ρ(y1), . . . , ρ(ym)) ⊂ (V ×W )(Fρ).

By definition zρ ∈ U(f1, . . . , fp)(Fρ) := { v ∈ V (Fρ) | fi(v) > 0 ∀i }. By [BCR13,
Proposition 5.2.1]

πFρ(zρ) ∈
(⋃

i

U
(
gi1, . . . , g

i
qi

)
)
(Fρ) =

⋃

i

U
(
gi1, . . . , g

i
qi

)
(Fρ),

and by the third item of Proposition 3.3.4

⋃

i

U
(
gi1, . . . , g

i
qi

)
(Fρ) ⊂

⋃

i

˜U
(
gi1, . . . , g

i
qi

)
.

Hence the following inclusion holds

πRSp
(
Ũ(f1, . . . , fp)

)
⊂
⋃

i

˜U
(
gi1, . . . , g

i
qi

)
.

Moreover, for every w ∈ ∪iU(gi1, . . . , giqi) there exists v ∈ U(f1, . . . , fp) such that
π(v) = w. So, by [BCR13, Proposition 5.2.1], for every wF ∈ ∪iU(gi1, . . . , giqi)(F)
there exists vF ∈ U(f1, . . . , fp)(F) with π(vF) = wF. So

πRSp
(
Ũ(f1, . . . , fp)

)
=
⋃

i

˜U
(
gi1, . . . , g

i
qi

)
,

which is an open subset of V (K)RSp.

In our context, this lemma has an analogue at the level of closed points.

Theorem 4.1.5. Let L ⊂ K be real closed fields, V ⊂ Ln, W ⊂ Lm algebraic
sets, and π : (V ×W )(K) → V (K) the projection map. If there exist open sets
Uk(K) ⊂ (V ×W )(K) for k ∈ N such that the restriction of πRSp to

E :=
⋃

k∈N
Ũk(K) ∩ (V ×W )(K)RSp

cl

has value in the closed points and is surjective, that is

πRSp|E : E → V (K)RSp
cl ,

then πRSp|E is also open.
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Proof. Consider an open set UE ⊂ E, such that there exists an open set U ⊂
(V ×W )(K)RSp with UE = U ∩E. Since ∪k∈NŨk(K) ⊂ (V ×W )(K)RSp is open by

Proposition 3.3.4, we suppose U ⊂ ∪k∈NŨk(K). It holds

πRSp
cl

(
UE
)
⊂ πRSp(U) ∩ V (K)RSp

cl ,

and we prove the reverse inclusion. Consider an element
(
ρ1,Kρ1

)
∈ πRSp(U) ∩ V (K)RSp

cl

so that (πRSp)−1(ρ1,Kρ1)∩U is a non-empty open subset of (πRSp)−1(ρ1,Kρ1) for the
subspace topology. By Proposition 4.1.2, there exists a canonical homeomorphism

(
πRSp

)−1
(ρ1,Kρ1) ∼= (Kρ1 ⊗K[V ] K [V ×W ])RSp

∼= (Kρ1 ⊗K[V ] K [V ]⊗K K [W ])RSp

∼= (Kρ1 [W ])RSp = W (Kρ1)
RSp ,

where the second homeomorphism comes from [BCR13, Theorem 2.8.3.(iii)]. Denote
by φ : (πRSp)−1(ρ1,Kρ1) → W (Kρ1)

RSp this homeomorphism. Then

φ
((
πRSp

)−1 (
ρ1,Kρ1

)
∩ U

)

is a non-empty open subset ofW (Kρ1)
RSp. By Theorem 3.3.1, this open set contains

a closed point

(ρ2,Kρ2) ∈ φ
((
πRSp

)−1 (
ρ1,Kρ1

)
∩ U

)
∩W (Kρ1)

RSp
cl

.

Since φ is continuous, φ−1(ρ2,Kρ2) = (ψ,F) is a closed subset of (πRSp)−1(ρ1,Kρ1)
which is in U . In particular, there exists a closed set A ⊂ (V ×W )(K)RSp with

(ψ,F) = A ∩
(
πRSp

)−1
(ρ1,Kρ1).

Since (ρ1,Kρ1) ∈ V (K)RSp
cl and πRSp is continuous, the fiber (πRSp)−1(ρ1,Kρ1) is

closed in (V ×W )(K)RSp. Hence (ψ,F) = A ∩ (πRSp)−1(ρ1,Kρ1) is closed and

(ψ,F) ∈ (V ×W )(K)RSp
cl ∩ U ∩

(
πRSp

)−1
(ρ1,Kρ1)

= (V ×W )(K)RSp
cl ∩

⋃

k∈N
Ũk(K) ∩ U ∩

(
πRSp

)−1
(ρ1,Kρ1)

= E ∩ U ∩
(
πRSp

)−1
(ρ1,Kρ1).

Hence
πRSp
cl

(
UE
)
= πRSp(U) ∩ V (K)RSp

cl ,

which is open by Lemma 4.1.4.
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We now present the convergence of the fibers in (V × W )(R)RSp
cl in a fully

constructive manner.

Theorem 4.1.6. Consider the same setting as in Theorem 4.1.5. Let (ρ1n,Kρ1n
) ⊂

V (R)RSp
cl be a sequence converging to an element (ρ1,Kρ1) ∈ V (R)RSp

cl . For every

element of the fiber (ρ1, ρ2,F) ∈ (πRSp
cl )−1(ρ1,Kρ1) and every open set U in E around

this element, there exists M ∈ N and

(ρ1M , ρ
2
M ,FM) ∈

(
πRSp
cl

)−1

(ρ1M ,Kρ1M
) ∩ U.

Proof. As in the statement, consider (ρ1, ρ2,F) ∈ (πRSp
cl )−1(ρ1,Kρ1) and U ⊂ E an

open set around it. By Theorem 4.1.5, the map πRSp|E is open. Thus

U ′ := πRSp|E(U)

is open in MΓ(R)RSp
cl and contains (ρ1,Kρ1). Since the sequence (ρ

1
n,Kρ1n

) converges
towards (ρ1,Kρ1), there exists M ∈ N so that (ρ1M ,Kρ1M

) ∈ U ′. Moreover, since

U ′ = πRSp|E(U), there exists (ρ,Fρ) ∈ U such that

πRSp|E ((ρ,Fρ)) =
(
ρ1M ,Kρ1M

)
.

Hence
(ρ,Fρ) ∈

(
πRSp

)−1
(ρ1M ,Kρ1M

) ∩ U
is the desired element in the fiber.

We apply these results to the case V (K) = MΓ(R) and W (K) = Pn−1(R).
There exists a natural continuous action of Γ on MΓ(R)× Pn−1(R) given by

γ. (ϕ, x) = (ϕ, ϕ(γ)x) .

Proposition 4.1.7. The Γ-action on MΓ(R)× Pn−1(R) extends to an action by
homeomorphisms on (MΓ(R)× Pn−1(R))RSp preserving (MΓ(R)× Pn−1(R))RSp

cl .

Proof. Since SLn(R) acts on Pn−1(R) semialgebraically, the graph of the action
of one element of Γ on MΓ(R) × Pn−1(R) is semialgebraic. Thus by [BCR13,
Proposition 7.2.8], the action extends canonically to an action by homeomorphisms
of (MΓ(R)× Pn−1(R))RSp preserving (MΓ(R)× Pn−1(R))RSp

cl .

We now prove that (MΓ(R)× Pn−1(R))RSp
cl forms a universal geometric space

over MΓ(R)RSp
cl . Informally, we show that (MΓ(R) × Pn−1(R))RSp

cl behaves simi-
larly to the product MΓ(R)RSp

cl × Pn−1(R)RSp
cl , even though these spaces are not

homeomorphic when endowed with the spectral topology.
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Theorem 4.1.8. If π : MΓ(R)× Pn−1(R) → MΓ(R) is the projection map, then
the restriction to the closed points of the induced map πRSp takes its values in
MΓ(R)RSp

cl , that is

πRSp
cl :

(
MΓ(R)× Pn−1(R)

)RSp

cl
→ MΓ(R)RSp

cl .

Moreover, it is continuous, surjective, Γ-equivariant, and the fiber of (ρ,Kρ) ∈
MΓ(R)RSp

cl is homeomorphic to Pn−1(Kρ)
RSp
Arch.

Proof. The projective space is identified with the set of orthogonal projections onto
subspaces of dimension 1 of Rn [BCR13, Theorem 3.4.4]

Pn−1(R) := {A ∈Mn×n(R) |AT = A,A2 = A, tr(A) = 1 }.

It is a compact algebraic set so that by Theorem 4.1.3, the map

πRSp
cl :

(
MΓ(R)× Pn−1(R)

)RSp

cl
→ MΓ(R)RSp

cl

is continuous, surjective, and the fiber of (ρ,Kρ) ∈ MΓ(R)RSp
cl is homeomorphic to

Pn−1(Kρ)
RSp
Arch.

We show that πRSp
cl is Γ-equivariant for the Γ-action on (MΓ(R)× Pn−1(R))RSp

cl

described in Proposition 4.1.7, and the trivial action of Γ on MΓ(R)RSp
cl . Let

(ρ,Fρ) ∈ (MΓ(R)×Pn−1(R))RSp
cl . By Remark 4.1.1, there exist (ρ1,Fρ) ∈ MΓ(R)RSp

and (ρ2,Fρ) ∈ Pn−1(R)RSp such that

∀h ∈ R
[
MΓ × Pn−1

]
ρ(h) =

∑
ρ1(h1i )ρ

2(h2i ),

where ι−1(h) =
∑
h1i ⊗ h2i ∈ R[MΓ]⊗R R[Pn−1]. For γ ∈ Γ and h1 ∈ R[MΓ], the

following equalities hold:

πRSp
cl (γρ)

(
h1
)
= πRSp

cl

(
ρ1, ρ2 ◦ γ

) (
h1
)

= ρ1
(
h1
)

= γρ1
(
h1
)
= γπRSp

cl (ρ)
(
h1
)
.

Thus, πRSp
cl is Γ-equivariant, as desired.

Remark 4.1.9. The map πRSp
cl is Γ-equivariant, so its fibers are Γ-invariant. Thus

every (ρ1,Kρ1) ∈ MΓ(R)RSp
cl induces a Γ-action on Pn−1(Kρ)

RSp
Arch such that, for

γ ∈ Γ, (ρ2,Kρ2) ∈ (πRSp
cl )−1(ρ1,Kρ1), and h ∈ Kρ1 [Pn−1] we have:

γρ2(h) = ρ2(ρ1(γ)h).

Finally, we can explicitly characterize the well organization of the fibers of πRSp
cl .
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Corollary 4.1.10. Let (ρ1n,Kρ1n
) ⊂ MΓ(R)RSp

cl be a sequence converging to an

element (ρ1,Kρ1) ∈ MΓ(R)RSp
cl . For every element of the fiber (ρ1, ρ2,F) ∈

(πRSp
cl )−1(ρ1,Kρ1) and every open set in (MΓ(R)×Pn−1(R))RSp

cl around this element,

there exists M ∈ N and (ρ1M , ρ
2
M ,FM) in (πRSp

cl )−1(ρ1M ,Kρ1M
) ∩ U . In particular,

(ρ2M ,FM) is in Pn−1(K)RSp
Arch.

Proof. Consider the open subsets Uk(R) := MΓ(R)×Pn−1(R) of MΓ(R)×Pn−1(R)
for every k ∈ N such that with the notation from Theorem 4.1.5

E =
(
MΓ(R)× Pn−1(R)

)RSp

cl
.

Then, πRSp|E = πRSp
cl and by Theorem 4.1.8, the map πRSp

cl verifies all the conditions
from Theorem 4.1.6. Thus, the statement is a consequence of the more general
Theorem 4.1.6.

Remark 4.1.11. By combining P1(R)RSp
Arch

∼= P1(R) with the accessibility theorem
from [BIPP23, Corollary 3.9], we also obtain an accessibility theorem stating that
all Γ-actions on P1(F)RSp

Arch arise from Γ-actions on P1(R).

We constructed a universal projective space over MΓ(R)RSp
cl . This provides a

framework for studying the actions induced by elements of MΓ(R)RSp
cl on Pn−1(K)

within Pn−1(K)RSp
Arch. In the following subsections, we extend this approach to analyze

the induced actions on the symmetric space P1(n). Specifically, we construct a
universal symmetric space over MΓ(R)RSp

cl .

4.1.2 Displacement of an action and its associated geomet-
ric space

In this subsection, we construct a Γ-invariant open subsetE of (MΓ(R)× ̂P1(n,R))RSp
cl

which is a countable union of compact subsets of (MΓ(R)× ̂P1(n,R))RSp
cl and that

contains MΓ(R)× ̂P1(n,R). Moreover, as we see in the next subsection, E surjects
continuously onto MΓ(R)RSp

cl .

Remark 4.1.12. There exists a natural Γ-action on MΓ(R)× ̂P1(n,R) given by

γ. (ϕ, (A, t1, . . . , tn−1)) = (ϕ, ϕ(γ).(A, t1, . . . , tn−1)) .

To encode the Γ-action on ̂P1(n,R) induced by an element in MΓ(R) and define
a universal space overMΓ(R)RSp

cl , we look at elements of the symmetric space within
specified balls defined by the displacement function of the representation. Consider
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F = { γ1, . . . , γs } a finite generating set of Γ and recall that, as in Subsection 2.3,
Mn×n(R)F is equipped with a scalar product

⟨ (A1, . . . , As) , (B1, . . . , Bs) ⟩ :=
s∑

i=1

tr
(
ATi Bi

)
,

for every A1, . . . , As, B1, . . . , Bs ∈Mn×n(R). Then we define the norm

η : Hom(Γ, SLn(R)) −→ R≥0;
ρ 7−→ ⟨ (ρ(γ1), . . . , ρ(γs)) , (ρ(γ1), . . . , ρ(γs)) ⟩ .

In particular, η is semialgebraically continuous. Let dδ be the semialgebraically
continuous Cartan multiplicative distance on P1(n,R) given in Proposition 2.4.4,

and d̂δ its extension to ̂P1(n,R). Consider for every k ∈ N

Uk(R) :=
{
(ρ, (A, t)) ∈ MΓ(R)× ̂P1(n,R)

∣∣∣ d̂δ(Id, (A, t)) < η(ρ)k
}
,

which is open and semialgebraic in MΓ(R)× ̂P1(n,R) as both d̂δ and η are, see
Proposition 2.4.4.

Definition 4.1.13. Define the open subset of (MΓ(R)× ̂P1(n,R))RSp
cl given by

E :=
⋃

k∈N
Ũk(R) ∩

(
MΓ(R)× ̂P1(n,R)

)RSp

cl
,

where Ũk(R) is the constructible set associated to Uk(R), see Definition 3.3.3.

Denote by ∥·∥F the word length with respect to the generating set F of Γ.

Lemma 4.1.14. For every (ρ,A) ∈ MΓ(R)× P1(n,R) and γ ∈ Γ, it holds

dδ(Id, ρ(γ).A) ≤ η(ρ)
n
2
∥γ∥F dδ(Id, A).

Proof. Using the first item of Proposition 2.4.4 and the SLn(R)-invariance of the
Cartan’s multiplicative distance we obtain for every γ ∈ Γ

dδ(Id, ρ(γ).A) = dδ(Id, ρ(γ1 · · · γℓ).A) ≤
(

ℓ∏

j=1

dδ(Id, ρ(γi).Id)

)
dδ(Id, A), (4.1)

where ∥γ∥F = ℓ, γi ∈ F for every 1 ≤ i ≤ ℓ and γ = γ1 · · · γℓ. We now bound
the value of dδ(Id, ρ(γi).Id) by powers of η(ρ). As seen in Subsection 2.4, any
g ∈ SLn(R) has a Cartan decomposition g = kc(g)k′ where k, k′ ∈ SO(n,R) and

c(g) =



λ1

. . .

λn


 where the λi are ordered so that λn ≤ · · · ≤ λ1.
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Then gTg = k′−1c(g)2k′ so that tr(gTg) = λ21 + · · · + λ2n and dδ(Id, g.Id) =
λ1λ

−1
n . Since det(g) is the product of the λi and is equal to one, we obtain

λ1 ≤ dδ(Id, g.Id) ≤ λn1 and λ21 ≤ tr(gTg) ≤ nλ21. Hence

dδ(Id, g.Id) ≤ tr
(
gTg
)n

2 . (4.2)

Furthermore, from the inequalities (4.1) and (4.2), we obtain

dδ(Id, ρ(γ).A) ≤
(

ℓ∏

j=1

dδ(Id, ρ(γi).Id)

)
dδ(Id, A)

≤
(

ℓ∏

j=1

tr
(
ρ(γi)

Tρ(γi)
)
)n

2

dδ(Id, A)

≤ η(ρ)
n
2
∥γ∥F dδ(Id, A).

Hence we obtain the desired inequality.

Corollary 4.1.15. For every γ ∈ Γ and k ∈ N, we have the inclusion γ.Uk(R) ⊂
Uk+n

2
∥γ∥F (R).

Corollary 4.1.16. The Γ-action on MΓ(R)× ̂P1(n,R) extends to an action by

homeomorphisms on (MΓ(R)× ̂P1(n,R))RSp preserving E.

Proof. Since SLn(R) acts on ̂P1(n,R) semialgebraically, the graph of the action of

one element of Γ on MΓ(R) × ̂P1(n,R) is semialgebraic. Therefore, by [BCR13,
Proposition 7.2.8], the action extends canonically to a homeomorphism of (MΓ(R)×
̂P1(n,R))RSp, preserving (MΓ(R)× ̂P1(n,R))RSp

cl . Additionally, by Corollary 4.1.15,
this homeomorphism preserves E.

Since the sets Ũk(R) are open subsets of (MΓ(R)× ̂P1(n,R))RSp for any k ∈ N,
the above defined set E is a locally compact open subset of (MΓ(R)× ̂P1(n,R))RSp

cl

which contains MΓ(R)× ̂P1(n,R) and on which Γ acts by homeomorphisms.

Remark 4.1.17. As in Theorem 3.4.3, if we replace Uk(R) in the definition of E
by

Vk :=
{
(ρ, (A, t)) ∈ MΓ(R)× ̂P1(n,R)

∣∣∣ d̂δ(Id, (A, t)) ≤ η(ρ)k
}
,

which are closed and semialgebraic in MΓ(R)× ̂P1(n,R). Then

E :=
⋃

k∈N
Ũk(R)∩

(
MΓ(R)× ̂P1(n,R)

)RSp

cl
=
⋃

k∈N
Ṽk(R)∩

(
MΓ(R)× ̂P1(n,R)

)RSp

cl
.
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so that E is also a countable union of compact subsets of (MΓ(R)× ̂P1(n,R))RSp
cl .

Thus it is σ-compact.

Using constructible subsets of the real spectrum, we constructed a topological
space E on which Γ acts by homeomorphisms. In the following subsection, we

study the lift of the projection map π : MΓ(R)× ̂P1(n,R) → MΓ(R) to the real
spectrum, particularly focusing on its restriction to E. This results in a universal
symmetric space over MΓ(R)RSp

cl .

4.1.3 The universal symmetric space

In this subsection, we construct a universal symmetric space over MΓ(R)RSp
cl that

encodes the degeneracies of Γ-actions on ̂P1(n,R) induced by representations in
MΓ(R). In particular, the Archimedean spectrum allows us to describe the fibers of

the projection π : MΓ × P̂1(n) → MΓ at the level of the real spectrum, especially
its restriction to E. Moreover, we prove that the fibers are well organized over the
target space and establish convergence results about them. To do this, we need
the following two linear algebra results.

Lemma 4.1.18. Let A ∈Mn×n(R) be a symmetric matrix with eigenvalues λn ≤
· · · ≤ λ1.

1. If A is positive semidefinite, then for every 1 ≤ i, j ≤ n it holds

|Ai,j| = | ⟨Aei , ej ⟩ | ≤ |λ1|.

2. For every 1 ≤ ℓ ≤ n, we have λℓn ≤ det(A[ℓ]), where det(A[ℓ]) is the ℓ-
principal minor of A.

Proof. For the first item, let 1 ≤ i, j ≤ n such that

|Ai,j| = | ⟨Aei , ej ⟩ | ≤ max
∥x∥=1,∥y∥=1

| ⟨Ax , y ⟩ |.

Since A is positive semidefinite, by the Rayleigh–Ritz Theorem (see for example
[HJ85, Theorem 4.2.2])

0 < max
∥x∥=1,∥y∥=1

| ⟨Ax , y ⟩ | ≤ λ1.

Hence |Ai,j| ≤ λ1. The second item is a consequence of the Cauchy’s interlacing
theorem [HJ85, Theorem 4.3.17]. Indeed, if the eigenvalues of A[ℓ] are µℓ ≤ · · · ≤ µ1,
then by the Cauchy’s interlacing theorem λn ≤ µi for every 1 ≤ i ≤ n. Hence

λℓn ≤
ℓ∏

i=1

µi = det(A[ℓ])

as desired.
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Recall that there exists a multiplicative Cartan pseudo-distance d̂δ defined on

P̂1(n) (Proposition 2.4.4) and that η : ϕ 7→∑s
i=1 tr(ϕ(γi)

Tϕ(γi)) defines a scalar
product on the representation space Hom(Γ, SLn(R)). Moreover, these two maps
are semialgebraically continuous, which allows us to extend them using the Transfer

principle (Theorem 2.2.2) to a K-multiplicative pseudo-distance on ̂P1(n,K) and a
scalar product on Hom(Γ, SLn(K)) for any real closed field K. This allows us to
prove the following theorem using similar techniques as in Subsection 4.1.1

Theorem 4.1.19. If π : MΓ(R)× ̂P1(n,R) → MΓ(R) is the projection map, then
the restriction to E of the induced map πRSp takes its values in MΓ(R)RSp

cl , that is

πRSp|E : E → MΓ(R)RSp
cl .

Moreover, it is continuous, surjective, Γ-equivariant, and the fiber of (ρ,Kρ) ∈
MΓ(R)RSp

cl is homeomorphic to ̂P1(n,Kρ)
RSp

Arch.

Proof. As in the notation of the third item of Proposition 3.1.2, consider (ρ,Fρ) ∈
Ũk(R)∩ (MΓ(R)× ̂P1(n,R))RSp

cl for some k ∈ N, where Fρ is the real closure of the
field of fractions of ρ(R[MΓ × P̂1(n)]). We first prove that Fρ is Archimedean over
ρ(R[MΓ]). For every 1 ≤ i, j ≤ n, 1 ≤ ℓ ≤ n− 1 and 1 ≤ m ≤ sn2, consider the
coordinates xi,j, yℓ and zm and the coordinate rings as in Definition 2.2.5

R
[
P̂1(n)

]
= R[xi,j, yℓ]/I

(
P̂1(n)

)
and R[MΓ] = R[zm]/I(MΓ).

Consider also the element wρ = (ρ(zm), ρ(xi,j), ρ(yℓ)) ∈ MΓ(Fρ) × ̂P1(n,Fρ)
defined in Notation 3.2.3. With the notations from Proposition 2.4.4, for any

(A, t1, . . . , tn−1) ∈ ̂P1(n,R) where 0 < λn ≤ · · · ≤ λ1 are the eigenvalues of A

dδ(Id, A) = N(diag(λ1, . . . , λn)) = λ1/λn.

Thus, using Lemma 4.1.18, we obtain

|xi,j(A)| = | ⟨Aei , ej ⟩ | ≤ λ1 ≤
λ1
λn

= dδ(Id, A),

t2ℓ =
1

det (A[ℓ])
≤ λ−ℓn ≤

(
λ1
λn

)ℓ
= dδ(Id, A)

ℓ.

Using that (ρ,Fρ) is an element of Ũk(R), the Fρ-extensions of d̂δ and η verify

d̂δ (Id, xi,j(wρ), yℓ(wρ)) < η (zm(wρ))
k .
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Hence, by the Transfer principle (Theorem 2.2.2)

|xi,j(wρ)| ≤ d̂δ (Id, xi,j(wρ), yℓ(wρ)) < η (zm(wρ))
k , (4.3)

yℓ(wρ)
2 ≤ d̂δ (Id, xi,j(wρ), yℓ(wρ))

ℓ < η (zm(wρ))
kℓ , (4.4)

so that xi,j(wρ) and yℓ(wρ) are bounded by η(zm(wρ))
kℓ for every 1 ≤ i, j ≤

n and every 1 ≤ ℓ ≤ n − 1. Hence ρ(R[MΓ × P̂1(n)]) is Archimedean over
ρ(R[MΓ]). Since (ρ,Fρ) is a closed point of the real spectrum, Fρ is Archimedean

over ρ(R[MΓ × P̂1(n)]) by Proposition 3.1.7. Hence Fρ is Archimedean over
ρ(R[MΓ]) so that

πRSp(E) ⊂ MΓ(R)RSp
cl .

Second, we prove that πRSp|E is surjective onto MΓ(R)RSp
cl . Let (ρ1,Kρ1) ∈

MΓ(R)RSp
cl . Using R[MΓ × P̂1(n)] ∼= R[MΓ]⊗ R[P̂1(n)] [BCR13, Theorem 2.3.8.

iii], we extend ρ1 trivially on R[MΓ]⊗ R[P̂1(n)] as

ρ : R[MΓ]⊗ R[P̂1(n)] −→ Kρ1 ;∑
h1i ⊗ h2i 7−→ ∑

ρ1(h1i ).

Since η(zm(wρ)) is a big element of Kρ1 , there exists a natural number k with

d̂δ(Id, xi,j(wρ), yℓ(wρ)) < η(zm(wρ))
k so that (ρ,Kρ1) ∈ E. Moreover, for every

f ∈ R[MΓ], as in Remark 4.1.1

πRSp
cl (ρ,Kρ1) (f) = f ◦ π(ρ1(zm), 1) = f(ρ1(zm)) = ρ1(f),

so that πRSp
cl |E is surjective.

Third, we show that πRSp|E is Γ-equivariant for the trivial action of Γ on

MΓ(R)RSp
cl and the Γ-action on (MΓ(R) × ̂P1(n,R))RSp

cl described in Corollary

4.1.16. Let (ρ,Fρ) ∈ (MΓ(R) × ̂P1(n,R))RSp
cl . By Remark 4.1.1, there exist

elements (ρ1,Fρ) ∈ MΓ(R)RSp and (ρ2,Fρ) ∈ ̂P1(n,R)
RSp

such that, for every

h ∈ R[MΓ × ̂P1(n,R)]

ρ(h) =
∑

ρ1(h1i )ρ
2(h2i ) where ι−1(h) =

∑
h1i ⊗ h2i ∈ R[MΓ]⊗R R

[
P̂1(n)

]
.

Thus, for γ ∈ Γ and h1 ∈ R[MΓ], the following equalities hold:

πRSp
cl (γρ)

(
h1
)
= πRSp

cl

(
ρ1, ρ2 ◦ γ

) (
h1
)

= ρ1
(
h1
)

= γρ1
(
h1
)
= γπRSp

cl (ρ)
(
h1
)
.
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Hence, πRSp
cl is Γ-equivariant, as desired.

Finally, we show that the fiber in E of an element (ρ1,Kρ1) ∈ MΓ(R)RSp
cl is

homeomorphic to ̂P1(n,Kρ1)
RSp

Arch
. Consider (πRSp)−1(ρ1,Kρ1) endowed with the

subspace topology induced by the spectral topology on (MΓ(R) × ̂P1(n,R))RSp.
By Proposition 4.1.2, there exists a canonical homeomorphism

(
πRSp

)−1
(ρ1,Kρ1) ∼=

(
Kρ1 ⊗R[MΓ] R

[
MΓ × P̂1(n)

])RSp

∼=
(
Kρ1 ⊗R[MΓ] R [MΓ]⊗R R

[
P̂1(n)

])RSp

∼=
(
Kρ1

[
P̂1(n)

])RSp

= ̂P1(n,Kρ1)
RSp

,

where the second homeomorphism comes from [BCR13, Theorem 2.8.3. (iii)]. We
examine the intersection of this preimage with E. Consider

(ρ,Fρ) ∈
(
πRSp

)−1
(ρ1,Kρ1) ∩ E

and its decomposition (ρ,Fρ) = (ρ1, ρ2,Fρ), as in Remark 4.1.1. By Equations

4.3 and 4.4 above, ρ(R[MΓ × P̂1(n)]) is Archimedean over ρ1(R[MΓ]) ⊂ Kρ1 . In

particular, Fρ is Archimedean over Kρ1 so that (ρ2,Fρ) ∈ Kρ1 [P̂1(n)]RSp
Arch. Hence

πRSp|−1
E (ρ,Fρ) ⊂ ̂P1(n,Kρ1)

RSp

Arch
.

We prove the remaining inclusion. Consider (ρ2,Kρ2) ∈ ̂P1(n,Kρ1)
RSp

Arch
. Then

ρ2|Kρ1
: Kρ1 → Kρ2 is an ordered field morphism by Remark 3.1.8. Then

(
ρ2|Kρ1

◦ ρ1, ρ2,Kρ2

)
∈
(
MΓ(R)× ̂P1(n,R)

)RSp

cl

as Kρ2 is Archimedean over Kρ1 which is Archimedean over ρ1(R[MΓ]). Moreover,
πRSp(ρ2|Kρ1

◦ ρ1, ρ2,Kρ2) = (ρ2|Kρ1
◦ ρ1,Kρ2) = (ρ1,Kρ1) so

(
πRSp
cl

)−1

(ρ1,Kρ1) ∼= ̂P1(n,Kρ1)
RSp

Arch
.

Remark 4.1.20. The map πRSp
cl is Γ-equivariant, so its fibers are Γ-invariant. For

(ρ1,Kρ1) ∈ MΓ(R)RSp
cl , this induces a Γ-action on ̂P1(n,Kρ1)

RSp

Arch
such that, for

γ ∈ Γ, (ρ2,Kρ2) ∈ (πRSp
cl )−1(ρ1,Kρ1), and h ∈ Kρ1 [P̂1(n)] we have:

γρ2(h) = ρ2(ρ1(γ)h).
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As in Subsection 4.1.1, fibers over points in the real spectrum compactification
of MΓ(R) behave well with respect to the projection. Informally, we show that
for a sequence of elements in MΓ(R)RSp

cl that converges to some element (ρ,Kρ),
the fibers of the elements in the sequence converge to the fiber of the element

(ρ,Kρ). This highlights some similar behavior between (MΓ(R)× ̂P1(n,R))RSp
cl and

MΓ(R)RSp
cl × ̂P1(n,R)

RSp

cl .

Corollary 4.1.21. Let (ρ1n,Kρ1n
) ⊂ MΓ(R)RSp

cl be a sequence converging to an

element (ρ1,Kρ1) ∈ MΓ(R)RSp
cl . For every element of the fiber (ρ1, ρ2,F) ∈

(πRSp|E)−1(ρ1,Kρ1) and every open set in E around this element, there existsM ∈ N
and (ρ1M , ρ

2
M ,FM) in the intersection (πRSp|E)−1(ρ1M ,Kρ1M

) ∩ U .

Proof. By Theorem 4.1.19πRSp|E verifies all the conditions from Theorem 4.1.6.
Thus, the statement is a consequence of the more general Theorem 4.1.6.

We constructed a universal symmetric space over MΓ(R)RSp
cl . This provides a

framework for studying the actions induced by elements of MΓ(R)RSp
cl on ̂P1(n,K)

within ̂P1(n,K)
RSp

Arch. Furthermore, an element (ρ,K) ∈ MΓ(R)RSp
cl induces an action

of Γ on the nonstandard symmetric space P1(n,K) and its associated building
BK, see [BIPP23, Section 5] and [App24, Theorem 8.1]. This action of Γ on both
spaces is well-described by the actions induced by sequences (ρn,R) ∈ MΓ(R)RSp

cl

that converge to (ρ,K). However, unlike the Archimedean spectrum, P1(n,K) and

BK are not locally compact. In contrast, ̂P1(n,K)
RSp

Arch provides a locally compact

space containing ̂P1(n,K), offering a suitable framework to study the geometry
and dynamics of elements in MΓ(R)RSp

cl . Consequently, the next section focuses on
exploring the relationship between the Archimedean spectrum of an algebraic set
and its Berkovich analytification, using real analytification as an intermediary step.

4.2 The Archimedean spectrum and the analyti-

fication of an algebraic set

The Berkovich analytification offers a framework for applying complex analysis
techniques to the study of algebraic sets defined over ultrametric fields. Similarly,
the real analytification provides its real counterpart for studying algebraic sets
defined over non-Archimedean real fields using analytic methods. In this section,
we explore the identification between the Archimedean spectrum and the real
analytification of an algebraic set. We further examine its relationship with the
Berkovich analytification. Specifically, we compute the image of the Archimedean
spectrum within the Berkovich analytification and derive actions on R-trees.
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4.2.1 Berkovich and real analytifications of algebraic sets

We present the material necessary to study the real and Berkovich analytifica-
tions applied to our context. For a more detailed study of real and Berkovich
analytifications, we refer to the texts [Ber90], [BR10], and [JSY22].

In this subsection, K is a real closed field non-Archimedean over the reals with
a non-trivial absolute value | · |K which is compatible with the order. That is,
| · |K : K → R is a non-Archimedean absolute value if for every h, k ∈ K:

• |k|K ≥ 0 with equality if and only if k = 0,

• |hk|K = |h|K|k|K,

• |h+ k|K ≤ max{ |h|K, |k|K }.

Also, A is a K-algebra and V = Spec(A) is an affine K-variety.

Remark 4.2.1. In the context of subsection 4.2.3, L ⊂ K are real closed fields
where K has a big element b, and V ⊂ Ln is an algebraic set. Then A = K[V ] is
a K-algebra and V (K) = Spec(K[V ]) is an affine K-variety. Moreover, for every
h ∈ K the two subsets of Q

{m
n

∣∣∣ bm ≤ hn, n ∈ N≥0,m ∈ Z
}

and

{
m′

n′

∣∣∣∣ bm
′ ≥ hn

′
, n′ ∈ N≥0,m

′ ∈ Z
}

define a Dedekind cut of Q. Hence the two subsets above define a real number
denoted logb(h). Then

ν(h) := e− logb |h|, where |h| := max{h,−h }

is a non-trivial order compatible absolute value on K [Bru88a, Section 5].

A multiplicative seminorm on a K-algebra A is a map η : A→ R≥0 such that

• η(k) = |k|K for every k ∈ K,

• η(fg) = η(f)η(g) for every f, g ∈ A,

• η(f + g) ≤ max { η(f), η(g) } for every f, g ∈ A.

A signed multiplicative seminorm on a K-algebra A is a map η : A→ R such that

• η(k) = sgn(k)|k|K for every k ∈ K,

• η(fg) = η(f)η(g) for every f, g ∈ A,

• min { η(f), η(g) } ≤ η(f + g) ≤ max { η(f), η(g) } for every f, g ∈ A.
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We now define the Berkovich analytification and the real analytification of an
affine K-variety.

Definition 4.2.2 ([Ber90, Definition 1.5.1] and [JSY22, Definition 3.3]). Let A be
a K-algebra. The Berkovich analytification of V = Spec(A) is the topological space

M(A) := { η : A→ R≥0 | η is a multiplicative seminorm },

with the coarsest topology that makes the evaluation map

M(A) −→ R≥0;
η 7−→ η(f),

continuous for every element f in A.
Similarly, the real analytification of V is

MR(A) := { η : A→ R | η is a signed multiplicative seminorm },

with the coarsest topology that makes the evaluation map

MR(A) −→ R;
η 7−→ η(f),

continuous for every element f in A.

Both the Berkovich and the real analytifications have definitions in terms of
ideals in the affine variety and absolute value on the residue field. This gives a
relation between the spectrum of an algebraic set and its analytification.

Proposition 4.2.3 ([Ber90, Remark 3.4.2]). The Berkovich analytification of
V = Spec(A) is in bijective correspondence with

V an :=

{
(p, | · |p)

∣∣∣∣
p is a prime ideal in A,
| · |p an absolute value on Frac(A/p) extending | · |K

}
.

Moreover, if V an is endowed with the coarsest topology such that

supp : V an −→ V ;
(p, | · |p) 7−→ p

is continuous and the map

supp(U)−1 ⊂ V an −→ R≥0;
(p, | · |p) 7−→ |f |p,

is continuous for every open U ⊂ V and every regular map f on U , then the
bijection is a homeomorphism.
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Proposition 4.2.4 ([JSY22, Proposition 3.4]). The real analytification of V =
Spec(A) is in bijective correspondence with the set

V an
R :=



(p, | · |p, <p)

∣∣∣∣∣∣

p a prime ideal in A,
| · |p an absolute value on Frac(A/p) extending | · |K,
<p an order on Frac(A/p) compatible with | · |K



 .

Furthermore, if the set of triples is endowed with the coarsest topology such that

supp : V an
R −→ V ;

(p, | · |p, <p) 7−→ p

is continuous and the map

supp(U)−1 ⊂ V an
R −→ R;

(p, | · |p, <p) 7−→ sgnp(f)|f |p,

is continuous for every open U ⊂ V and every regular map f on U , then the
bijection is a homeomorphism.

These two spaces represent distinct structures of algebraic varieties. However,
they are connected by the following proposition.

Proposition 4.2.5 ([JSY22, Lemma 3.9]). The map

V an
R −→ V an;

(p, | · |p, <p) 7−→ (p, | · |p),

is a proper continuous map of topological spaces.

Both spaces are crucial in the study of analytic properties of ultrametric spaces.
Although ultrametric spaces are totally disconnected, their Berkovich analytification
offers a method to embed them within a uniquely path connected space.

Proposition 4.2.6 ([Ber90, Theorem 3.4.8]). The Berkovich analytification of
V = Spec(A) is

• a locally compact Hausdorff space which is locally contractible.

• uniquely path connected if and only if V , with the Zariski topology, is con-
nected.

Moreover, there exists a canonical embedding from V to V an and V is dense in its
Berkovich analytification.
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The real analytification also exhibits intriguing characteristics similar to those
of the Berkovich analytification.

Proposition 4.2.7 ([JSY22, Proposition 3.6, Corollary 3.18]). If V is an affine K-
variety, then V an

R is a Hausdorff space. Moreover, there exists a canonical embedding
from V to V an and V is dense in its real analytification.

While the real analytification provides a topological space that retains the
real structure of the studied algebraic set, it does not preserve all the favorable
topological properties of the Berkovich analytification. As a result, the analytic
study of real algebraic sets becomes more challenging.

Proposition 4.2.8 ([JSY22, Theorem 3.20]). Let F : [0, 1] → V an
R be a continuous

map, where V is an affine K-variety. Then F is constant. In particular, the real
analytification of an affine K-variety is totally path disconnected.

Moreover, using hyperfield theory [Jun21], one can show that both the Berkovich
and real analytifications are functors from K-algebras to topological spaces.

Proposition 4.2.9 ([Jun21, Proposition 5.5]). The Berkovich and the real analyti-
fications are contravariant functors HomK(·,T) and HomK(·,RT) from K-algebras
to topological spaces.

We introduced two analytifications with desirable topological properties for
affine algebraic varieties over non-Archimedean real closed fields. In the next
subsection, we study in more detail the relationship between the Archimedean
spectrum, the real analytification and the Berkovich analytification.

4.2.2 Archimedean spectrum and real analytification

The Archimedean spectrum of an algebraic set is homeomorphic to its real analyti-
fication [JSY22]. We use this homeomorphism to deduce topological properties of
the Archimedean spectrum. Moreover, we describe the image of the Archimedean
spectrum of a K-algebra in its Berkovich analytification.

Theorem 4.2.10 ([JSY22, Theorem 3.17]). Let K be a real closed field with a
non-trivial order compatible absolute value, A a K-algebra and V = Spec(A) an
affine K-variety. There exists a canonical map from ARSp

Arch to V an
R , which is a

homeomorphism (this map is ψ1 in the proof of Theorem 4.2.14).

A direct consequence of Theorem 4.2.10 and Theorem 3.4.3 is the local com-
pactness of the real analytification.

Corollary 4.2.11. The real analytification of an affine K-variety is a countable
union of compact sets. Thus, it is σ-compact and locally compact.
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Furthermore, the real spectrum of an affine K-variety is metrizable under
a countability condition on K [BIPP23, Proposition 2.33]. This gives a real
counterpart to the metrizability theorem, stated in [HLP15, Remark 1.5] for the
Berkovich analytification, which is a direct consequence of Theorem 4.2.10.

Corollary 4.2.12. Let K be a real closed field with a non-trivial absolute value
and V an affine K-variety. If K is countable, then the real analytification V an

R is
metrizable.

The following result is a direct consequence of Proposition 4.2.8.

Corollary 4.2.13. The Archimedean spectrum is a functor from K-algebras to
Hausdorff and totally path disconnected topological spaces.

In particular, the Archimedean spectrum of the K-extension of an algebraic set
is totally disconnected. Finally, we describe the image of the Archimedean spectrum
of a K-algebra in its Berkovich analytification using the maps from Theorem 4.2.10
and Proposition 4.2.5.

Theorem 4.2.14. The image of ψ : ARSp
Arch → M(A) is

{
η ∈ M(A)

∣∣∣ η
(
f 2
1 + · · ·+ f 2

q

)
= max

i
η
(
f 2
i

)
∀f1, . . . , fq ∈ A

}
.

Proof. We consider two maps. The first one is the homeomorphism from Theorem
4.2.10:

ψ1 : ARSp
Arch → Spec(A)anR → Spec(A)an,
α 7→ (supp (α) ,≤α, | · |α) 7→ (supp(α), | · |α) .

Here, as in Proposition 3.1.2, supp(α) is the prime ideal α ∩ −α associated to the
prime cone α, ≤α is the order on Frac(A/supp(α)) such that 0 ≤α f/g if fg ∈ α
and ∣∣f

∣∣
α
:= sup

{
|k|K

∣∣ k ∈ K≥0, k ≤α sgn
(
f
)
· f
}

is an absolute value on the fraction field [JSY22, Lemma 3.13]. This absolute value
is well defined because the real closure of the fraction field of Frac(A/supp(α)) is
Archimedean over K. The second map

ψ2 : Spec(A)an → M(A),
(supp (α) , | · |α) 7→ | · |sα

where | · |sα : f 7→ |f |α defines the homeomorphism from Proposition 4.2.3. We study
the image of ARSp

Arch in M(A) using the composition ψ := ψ2 ◦ψ1. For f1, . . . , fq ∈ A,

α ∈ ARSp
Arch a prime cone, and by positivity of a sum of squares, it holds

ψ(α)
(
f 2
1 + · · ·+ f 2

q

)
=
∣∣f 2

1 + · · ·+ f 2
q

∣∣s
α

= sup
{
|k1 + · · ·+ kq|K

∣∣∣ ki ∈ K≥0, ki ≤α fi
2
, 1 ≤ i ≤ q

}
.

85



The absolute values on K is non-Archimedean. Thus, the following inequality holds

|k1 + · · ·+ kq|K ≤ max
1≤i≤q

|ki|K.

Moreover, the inequality is an equality. Indeed, all the ki are positive and the
non-Archimedean absolute value on K is compatible with the order. Hence

|k1 + · · ·+ kq|K ≥ |ki|K
for every 1 ≤ i ≤ q. Hence ψ(α)

(
f 2
1 + · · ·+ f 2

q

)
= maxi |f 2

i |sα so that

Im(ψ) ⊂
{
η ∈ M(A)

∣∣∣ η
(
f 2
1 + · · ·+ f 2

q

)
= max

i
η
(
f 2
i

)}
.

We prove the inverse inclusion. Let η : A→ R be a K-seminorm so that η(f 2
1 + · · ·+

f 2
q ) = maxi η(f

2
i ) for every f1, . . . , fq ∈ A. This seminorm defines a K-absolute

value on the real closure of the fraction field of A/Iη via
∣∣f
∣∣ = η(f),

where Iη is the support of the seminorm η. Suppose Frac(A/Iη) is not orderable.
Then, there exists f1, . . . , fn, g1, . . . , gn ∈ A with g1, . . . , gn ̸∈ Iη such that

−1 =
n∑

i=1

(
fi
gi

)2

or equivalently −
(

n∏

i=1

gi

)2

=
n∑

i=1

(∏

j ̸=i
figj

)2

.

Thus, using the seminorm η, we obtain

0 = η(0) = η




n∑

i=1

(∏

j ̸=i
figj

)2

+

(
n∏

i=1

gi

)2



= max



max

i



 η

(∏

j ̸=i
figj

)2


 , η

(
n∏

i=1

gi

)2


 > 0.

The last inequality holds because every gi ̸∈ Iη so that the seminorm of their
product is no zero. Now, consider an order ≤η on Frac(A/Iη) and its associated
absolute value defined by

∣∣f
∣∣
η
:= sup

{
|k|K

∣∣ k ∈ K≥0, k ≤η sgn
(
f
)
· f
}
.

This absolute value is compatible with the order on the fraction field so that
(Iη,≤η, | · |η) defines an element in ARSp

Arch. Hence

Im(ψ) =
{
η ∈ M(A)

∣∣∣ η
(
f 2
1 + · · ·+ f 2

q

)
= max

i
η
(
f 2
i

)
∀f1, . . . , fq ∈ A

}
.
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Definition 4.2.15. An element in the image of ψ : ARSp
Arch → M(A) is called a real

element of M(A).

Corollary 4.2.16. The image T of ARSp
Arch inside M(A) is closed.

Proof. For a fixed finite collection f1, . . . , fq ∈ A, define the map

φf1,...,fq : M(A) −→ R;
η 7−→ η

(
f 2
1 + · · ·+ f 2

q

)
−max

{
η (f 2

1 ) , . . . , η
(
f 2
q

) }
.

By Definition 4.2.2, this map is continuous, so that

Zf1,...,fq :=
{
η ∈ M(A)

∣∣φf1,...,fq(η) = 0
}

is closed for every f1, . . . , fq ∈ A. Hence, by Theorem 4.2.14

T =
⋂

q≥1

⋂

f1,...,fq∈A
Zf1,...,fq ,

which is a closed subset of M(A).

We studied the connections between the Archimedean spectrum, the real analyti-
fication, and the Berkovich analytification. In particular, we provided a description
of the image of the Archimedean spectrum in the Berkovich analytification. In the
next subsection, we apply this connection to the projective line to derive actions
on R-trees from these results.

4.2.3 Application to the universal projective line

We prove that the image of P1(K)RSp
Arch in P1(K)an is a PSL2(K)-invariant closed

uniquely path connected subset, where K is a non-Archimedean real closed field
with a big element. In particular, the image of P1(K)RSp

Arch\P1(K) in P1(K)an\P1(K)
is a R-tree. To show this, we first describe the R-tree structure of P1(F)an for any
non-Archimedean field F with an absolute value. For further details, we refer the
reader to [Ber90, Subsection 4.2], [BR10, Section 2] and [DF19, Section 1].

Let F be an algebraically closed non-Archimedean complete field with an
absolute value | · |F. Following Definition 4.2.2, the space A1(F)an has a natural
partial order defined by

η1 ≤ η2 if and only if η1(f) ≤ η2(f) for every f ∈ F[x].

With this order, any two elements η1, η2 ∈ A1(F)an admit a unique least upper
bound η1 ∨ η2 ∈ A1(F)an, see Example 4.2.20. By viewing P1(F)an as the one point
compactification A1(F)an ∪ {∞}, we extend the partial order from A1(F)an to
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P1(F)an by setting η ≤ ∞ for every η ∈ A1(F)an [BR10, Section 2]. For any two
elements η1, η2 ∈ P1(F)an, define the unique path joining them by

ℓ(η1, η2) :=
{
η3 ∈ P1(F)an

∣∣ η1 ≤ η3 ≤ η1 ∨ η2
}

∪
{
η3 ∈ P1(F)an

∣∣ η2 ≤ η3 ≤ η1 ∨ η2
}
.

Remark 4.2.17. We refer to [BR10, Subsection 2.2] for a description of P1(F)an in
terms of F-multiplicative seminorms on the homogeneous coordinate ring of P1(F),
which provides a more natural approach for studying the action of PGL2(F) on
P1(F)an.

For v ∈ F and r ∈ R, set D(v, r) := {w ∈ A1(F) | |w − v|F ≤ r }.

Theorem 4.2.18 ([Ber90, Example 1.4.4. page 18]). For every η ∈ A1(F)an, there
exists a nested sequence of closed disks

A1(F) ⊇ D(v1, r1) ⊇ D(v2, r2) ⊇ · · · ,

where vi ∈ A1(F) and ri ∈ R≥0 such that for every f ∈ F[x]

η(f) = lim
i→∞

sup
w∈D(vi,ri)

|f(w)|F.

Two nested sequences define the same element if and only if

• each has a nonempty intersection, and their intersections are the same,

• both have empty intersection, and the sequences are cofinal.

Remark 4.2.19 ([Ber90, Example 1.4.4. page 18]). If an element η ∈ A1(F)an
corresponds to a nested sequence of closed disks

A1(F) ⊇ D(v1, r1) ⊇ D(v2, r2) ⊇ · · · ,

then we denote η by (D(vi, ri))i. In the following, we use the notation

H
(
A1(F)

)
:=
{
D(v, r) ∈ A1(F)an

∣∣ v ∈ F, r ∈ R>0

}
.

Moreover, for every f ∈ F[x]

sup
w∈D(v,r)

|f(w)|F = max
n

|an|Frn,

where f(x) =
∑

n an(x
n − v) is the expansion of f with center v.

88



Example 4.2.20. With the notation from Theorem 4.2.18, the unique least upper
bound of D(v1, r1) and D(v2, r2) ∈ A1(F)an is

D(v1,max{ r1, r2, |v2 − v1|F }).
So the unique path between D(v1, r1) and D(v2, r2) ∈ A1(F)an corresponds to

ℓ(D(v1, r1), D(v2, r2)) ={D(v1, r) | r1 ≤ r ≤ max{ |v2 − v1|F, r2 } }
∪ {D(v2, s) | r2 ≤ s ≤ max{ |v2 − v1|F, r1 } },

where we use the strong triangular inequality to argue that every point in D(v, r)
is the center of the closed disk D(v, r).

Through the identification P1(F)an = A1(F)an ∪ {∞}, Theorem 4.2.18 allows
us to further study the topology on P1(F)an

Definition 4.2.21. Identifying P1(F)an with A1(F)an ∪ {∞}, define the open and
closed Berkovich discs

D(v, r)− := { η ∈ A1(F)an | η(x− v) < r },
D(v, r) := { η ∈ A1(F)an | η(x− v) ≤ r },

and we view them as subsets of P1(F)an.

Proposition 4.2.22 ([BR10, Proposition 2.7]). A basis for the open sets of P1(F)an
is given by the sets of the form

D(v, r)−, D(v, r)−\
M⋃

i=1

D(vi, ri), and P1(F)an\
M⋃

i=1

D(vi, ri),

where v, vi ∈ F and r, ri ∈ R>0.

Remark 4.2.23 ([BR10, Lemma 2.9]). Let (D(vi, ri))i be an element in P1(F)an
associated to the F-multiplicative seminorm η and

U := D(v, r)− or U := D(v, r)−\
M⋃

i=1

D(wi, si)

a basis open set around (D(vi, ri))i. By Theorem 4.2.18, for every 1 ≤ i ≤M

η(x− v) = lim
n

sup
z∈D(vn,rn)

|z − v|F and η(x− wi) = lim
n

sup
z∈D(vn,rn)

|z − wi|F

such that there exists N ∈ N with D(vn, rn) ∈ U for every n ≥ N . Hence, the
sequence of discs D(vi, ri) converges in the Berkovich topology to the element
(D(vi, ri))i. If U is of the form P1(F)an\ ∪Mi=1 D(wi, si), a similar argument proves
the convergence so that H(A1(F)) is dense in P1(F)an.
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Lemma 4.2.24 ([BR10, Lemma 2.10]). With the definition of paths from above,
P1(F)an is uniquely path connected.

This property can be studied further as follows. Using the notation from
Theorem 4.2.18, define the diameter function

diam: A1(F)an −→ R≥0;
(D(vi, ri))i 7−→ limi ri.

This definition is independent of the choice of the nested sequence. As in [BR10,
Subsection 2.7], we obtain a well defined distance

dan : (P1(F)an\P1(F))2 −→ R≥0;

((D(vi, ri)), (D(wj, sj)) 7−→ log
(

diam(D(vi,ri)∨D(wj ,sj))
2

diam(D(vi,ri))diam(D(wj ,sj))

)
.

We extend dan to a pseudo-metric on P1(F)an by: for every D(vi, ri), D(wi, si) ∈
P1(F)an

dan(D(vi, ri), D(wj, sj)) = ∞ if D(vi, ri) ̸= D(wj, sj)

dan(D(vi, ri), D(wj, sj)) = 0 otherwise.

Remark 4.2.25. The topology on P1(F)an induced by dan is stronger than the
Berkovich topology.

Theorem 4.2.26 ([DF19, Lemma 1.3]). The metric dan turns P1(F)an\P1(F) into
a complete R-tree on which PSL2(F) acts by isometries.

Finally, by applying Galois theory, this construction extends to non-algebraically
closed fields, see [DF19, Subsection 1.6]. Let K be a non-Archimedean real closed
field with an absolute value and F = K(

√
−1) its algebraic closure. The Galois

group Gal(F/K) acts on F by complex conjugation. Thus, Gal(F/K) acts by
isometries on P1(F)an as

(D(vi, ri))i 7→ (D(vi, ri))i.

By [DF19, page 525], P1(K)an is then homeomorphic to P1(F)an/Gal(F/K).

Proposition 4.2.27 ([DF19, Lemma 1.6]). The set of fixed points of the action of
Gal(F/K) on P1(F)an is the closure of the convex hull of P1(K).

Lemma 4.2.28 ([DF19, Proposition 1.7]). The space P1(K)an\P1(K), with the
metric induced from P1(F)an\P1(F), is a complete R-tree on which PSL2(K) acts
by isometries.
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We show that the image T of ψ : P1(K)RSp
Arch\P1(K) → P1(K)an\P1(K) is a R-

subtree which is PSL2(K)-invariant. This will follow from the description of the
image of A1(K)anR in A1(K)an.

Example 4.2.29 ([JSY22, Example 3.12]). An element η ∈ A1(K)an is real, see
Definition 4.2.15, if it can be represented by a sequence (D(vi, ri))i ⊂ A1(F)an such
that D(vi, ri) ∩ A1(K) ̸= ∅ for every i.

Theorem 4.2.30. The image T1 of ψA : A1(K)anR → A1(K)an is uniquely path
connected.

Proof. Let D(v, r), D(w, s) be elements of T1, where v, w ∈ K(
√
−1), r, s ∈ R≥0,

and denote by | · |K(
√−1)the absolute value on K(

√
−1) defined by

|k + h
√
−1|K(

√−1) = |
√
k2 + h2|K.

By Example 4.2.29

D(v, r) ∩ A1(K) ̸= ∅ ̸= D(w, s) ∩ A1(K).

In particular, any D(v, r′) such that r ≤ r′ ≤ max{ r, |v − w|K(
√−1) } verifies

D(v, r′) ∩ A1(K) ̸= ∅ and any D(w, s′) such that s ≤ s′ ≤ max{ s, |v − w|K(
√−1) }

verifies D(s, s′)∩A1(K) ̸= ∅. Hence the unique path ℓ(D(v, r), D(w, s)) in A1(K)an

is contained in T1. Moreover, by Example 4.2.29, any element (D(vi, ri))i ∈ T1
verifies

D(vi, ri) ∩ A1(K) ̸= ∅ for every i ∈ N.
So, by Proposition 4.2.22 and Remark 4.2.23, the real point (D(vi, ri))i is the limit
of the disks D(vi, ri), which are real. In particular, every element of T1 is contained
in the closure of H(A1(F)). Thus, T1 is a connected subset of a uniquely path
connected set. Hence, T1 is a uniquely path connected subspace of A1(K)an.

Corollary 4.2.31. The image of ψ : P1(K)RSp
Arch → P1(K)an is uniquely path con-

nected.

Proof. By the Chinese remainder Theorem, the coordinate ring of P1(K) = A1(K)∪
{∞} is the product K[A1]×K. By [DST19, Subsection 13.4.1]

P1(K)RSp
Arch =

(
K
[
A1
]
×K

)RSp

Arch
= A1(K)RSp

Arch ∪ {∞},
so we extend continuously ψA : A1(K)anR → A1(K)an from Theorem 4.2.30 to

ψ : P1(K)RSp
Arch → P1(K)an

by setting ψ({∞}) = {∞}. Since {∞} is in the closure of the real elements of
A1(K)an, the image of P1(K)RSp

Arch in P1(K)an is a connected subset of a uniquely
path connected space. Hence, it is uniquely path connected.
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Corollary 4.2.32. Let K be a non-Archimedean real closed field with a big element.
The image of P1(K)RSp

Arch\P1(K) inside P1(K)an\P1(K) is a closed, PSL2(K)-invariant
R-subtree of the space P1(K)an.

Proof. As in Corollary 4.2.31, consider ψ : P1(K)RSp
Arch → P1(K)an. The map ψ sends

element of P1(K) ⊂ P1(K)RSp
Arch to elements of P1(K) ⊂ P1(K)an [JSY22, Example

3.12]. Hence, it induces a continuous map

Ψ: P1(K)RSp
Arch\P1(K) → P1(K)an\P1(K).

Since {∞} is the limit of real elements and the image of ψ is uniquely path
connected, the image of Ψ is uniquely path connected. In particular,

T := Ψ
(
P1(K)RSp

Arch\P1(K)
)

is a R-subtree of P1(K)an\P1(K), which is closed by Corollary 4.2.16. We now show
that T is PSL2(K)-invariant. Let

A =

(
a b
c d

)
∈ PSL2(K)

and f ∈ K[x]. We homogenize f(x)2 =
∑2n

i=0 αix
i by setting

g(x, y) =
2n∑

i=0

αix
iy2n−i ∈ K[x, y].

The induced action of A on the homogenous polynomial is Ag(x, y) = g(ax+b, cy+d)
such that

Af(x)2 = Ag(x, x)(cx+ d)−2n.

In particular, Af(x)2 = g(ax + b, cx + d)(cx + d)−2n = h(x)2 for some h ∈ K[x].
Hence, for η ∈ T and f1, . . . , fk ∈ K[x]

Aη
(
f 2
1 + · · ·+ f 2

k

)
= η

(
Af 2

1 + · · ·+ Af 2
k

)

= η
(
h21 + · · ·+ h2k

)

= max
1≤i≤k

η
(
h2i
)
= max

1≤i≤k
Aη
(
f 2
i

)
.

Hence, Aη ∈ T so that T is PSL2(K)-invariant.

92



Chapter 5

Real spectrum and oriented
Gromov equivariant
compactifications

Section 5.1 recalls the definitions of cyclic orders and oriented R-trees. We
remind the construction of the oriented Gromov equivariant compactification
Ξ(Γ,PSL2(R))O of the character variety Ξ(Γ,PSL2(R)) using the oriented Gromov
equivariant topology, as in [Wol11]. We prove that this topology is first countable,
and describe the Γ-actions by orientation preserving isometry on oriented R-trees
as Γ-actions by isometries on asymptotic cones of the hyperbolic plane endowed
with a limit orientation.

Section 5.2 uses a description of elements in ∂Ξ(Γ,PSL2(R))RSp
cl as representa-

tions of Γ in PSL2(F) for some well-chosen real closed field F, and a description of
the standard orientation on H2 via a semialgebraic equation to associate to every
element of Ξ(Γ,PSL2(R))RSp

cl a Γ-action by isometries preserving the orientation on
an oriented R-tree. We finally use an accessibility result from [BIPP23] involving
Robinson fields to characterize the constructed oriented R-trees using asymptotic
cones of the hyperbolic plane endowed with a limit orientation.

Finally, Section 5.3 constructs a continuous surjection from Ξ(Γ,PSL2(R))RSp
cl to

Ξ(Γ,PSL2(R))O using the above descriptions of Γ-actions by orientation preserving
isometries on R-trees as limits of Γ-actions on the oriented hyperbolic plane, and a
density argument.
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5.1 Oriented Gromov equivariant compactifica-

tion

This section reviews the construction of the oriented Gromov equivariant compacti-
fication Ξ(Γ,PSL2(R))O of the character variety Ξ(Γ,PSL2(R)) as introduced by
Wolff in [Wol11]. We provide the necessary notation to define oriented R-trees,
and recall that points of ∂Ξ(Γ,PSL2(R))O are Γ-actions by orientation preserving
isometries on oriented R-trees. We recall the construction of the oriented Gromov
equivariant topology and its invariance under small perturbations. Finally, we use
the theory of asymptotic cones to describe the Γ-actions on oriented R-trees that
appear on ∂Ξ(Γ,PSL2(R))O as limits of Γ-actions on the oriented hyperbolic plane.

5.1.1 Cyclic orders and oriented R-trees
Following [Wol11], we recall the definitions of cyclic orders, which formalizes
orientations on general sets, and of oriented R-trees. For R-trees with extendible
segments, this is equivalent to defining a coherent cyclic order on the visual boundary
of the R-tree. Finally, we examine the space of minimal actions by orientation
preserving isometries on R-trees.

Definition 5.1.1. Let Ω be a set. A cyclic order on Ω is a function o : Ω3 →
{−1, 0, 1 } such that

1. for every z1, z2, z3 ∈ Ω: o(z1, z2, z3) = 0 if and only if Card{ z1, z2, z3 } ≤ 2,

2. for every z1, z2, z3 ∈ Ω,: o(z1, z2, z3) = o(z2, z3, z1) = −o(z1, z3, z2),
3. for every z1, z2, z3, z4 ∈ Ω, if o(z1, z2, z3) = 1 = o(z1, z3, z4), then

o(z1, z2, z4) = 1.

A cyclic order is equivalent to defining an alternating 2-cocycle from Ω3 to
{−1, 0, 1 } which is zero if and only if the triple of points of Ω is not composed of
3 distinct points. Cyclic orders allow for the definition of orientations on R-trees,
thereby introducing the concept of oriented R-trees.

Definition 5.1.2. Let κ > 0, X be a CAT(−κ) space and P ∈ X. A germ of
oriented segments at P in X is an equivalence class of nondegenerate oriented
segments based at P for the following equivalence relation: two oriented segments
P -x, P -y are equivalent if and only if

∃ε > 0 such that P -x|[0,ε) = P -y|[0,ε).
Denote by GX(P ) the set of germs of oriented segments at P in X and by [P -x] an
equivalence class of oriented segment.
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Remark 5.1.3. In [Wol11], the space X is more generally a Gromov hyperbolic
space. Since H2 and R-trees are CAT(−κ) spaces, the restriction to CAT(−κ)
enables a simpler definition of the visual boundary of X later on.

Definition 5.1.4. An orientation of an R-tree T is the data, for every P ∈ T , of
a cyclic order or(P ) defined on GT (P ). An R-tree equipped with an orientation is
called an oriented R-tree. Denote by Or(T ) the set of orientations on T .

Definition 5.1.5. Let (T, or) and (T ′, or′) be two oriented R-trees and h an
isometry between T and T ′. Then, h defines at each point P ∈ T a bijection
GhP : GT (P ) → GT ′(h(P )). We say that h preserves the orientation of T if for every
P ∈ T and every triple of germs of oriented segments ([x], [y], [z]) ∈ GT (P )

or′(h(P ))(GhP ([x]),GhP ([y]),GhP ([z])) = or(P )([x], [y], [z]).

That is, the following diagram is commutative:

GT (P )3 {−1, 0, 1}.

GT ′(h(P ))3

(GhP )3

or(P )

or′(h(P ))

The set of isometries of T which preserve the orientation or forms a subgroup of
Isom(T ), denoted Isomor(T ). Finally, an action of a group on an oriented R-tree T
preserves the orientation if it takes its values in the orientation preserving group of
isometries of T .

As in [Wol11, Page 1269], if P ∈ T , denote by Trip(P ) the set of pairwise distinct
triples of germs of oriented segments starting at P , and set Trip(T ) := ∪P∈TTrip(P ).
Let [P -x], [P -y], [P -z] be three pairwise distinct germs of oriented segments starting
at P . The corresponding element in Trip(P ) is denoted by Trip(P, x, y, x) and
called germs of tripods of T . With this notation, an orientation of T is a function
or : Trip(T ) → {−1, 1 } verifying:

or(Trip(P, x, y, z)) = or(Trip(P, z, x, y)) = −or(Trip(P, x, z, y)),
if or(Trip(P, x, y, z)) = 1 = or(Trip(P, x, z, w)) then or(Trip(P, x, y, w)) = 1.

Then Or(T ) is a closed subspace of {−1, 1 }Trip(T ) when endowed with the product
topology. In the next subsection, we use a correspondence between an R-tree
T endowed with an orientation, and T endowed with a specific cyclic order on
its visual boundary ∂∞T . This correspondence holds for R-trees with extendible
segments.
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Definition 5.1.6. An R-tree has extendible segments if every oriented segment is
the initial segment of some ray.

If r is a ray in T , its initial segment defines a germ of oriented segment.

Definition 5.1.7. A germ of rays in T is an equivalence class of rays, for the
relation of defining the same germ of oriented segment.

To avoid any ambiguity regarding equivalence classes, we use the fact that X is
a CAT(−κ) space to identify the visual boundary ∂∞X with the set of geodesic
rays starting at P . This correspondence is a bijection (see [BH13, Proposition
II.8.2]).

Definition 5.1.8. Let T be an R-tree. We say that a cyclic order o on ∂∞T
is coherent if for every P ∈ T and every pairwise distinct triple ([a], [b], [c]) of
germs of rays starting at P , the element o(a, b, c) does not depend on the chosen
representatives a, b, c of [a], [b], [c].

Example 5.1.9 ([Wol11, page 1269]). For instance, in the following configuration

P

c

d

b

a

a total cyclic order o on the boundary { a, b, c, d } is coherent if and only if:

o(a, b, c) = o(a, b, d) and o(a, c, d) = o(b, c, d).

The set of coherent cyclic orders on ∂∞T is a subspace of {−1, 0, 1 }(∂∞T )3 ,
which we endow with the product topology. With this topology, one can show the
correspondence between cyclic orders on ∂∞T and orientation on T .

Remark 5.1.10 ([Wol11, Page 1270]). For every nondegenerate triple (a, b, c) ∈
(∂∞T )3, the intersection of the rays is a point denoted

Pabc := a-b ∩ b-c ∩ a-c ∈ T.

Proposition 5.1.11 ([Wol11, Proposition 3.8]). Let T be an R-tree with extendible

segments. The map Push: Or(T ) → {−1, 0, 1 }(∂∞T )3 that sends or ∈ Or(T ) to

Push(or) : (∂∞T )
3 −→ {−1, 0, 1};

(a, b, c) 7−→
{
0 if Card(a, b, c) ≤ 2,

or([Pabc-a], [Pabc-b], [Pabc-c]) otherwise

is a homeomorphism onto its image, where [Pabc-a] denotes the germ of oriented
segments defined by the ray between Pabc and a.
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Let Γ be a finitely generated group with finite generating set F . The action
of Γ by isometries on an R-tree T is minimal if T has no Γ-invariant subtree
distinct from ∅ and T . Using [Wol11, Proposition 3.9], the following quotient up
to equivariant isometry preserving the orientation is a set [Wol11, Page 1273]:

T ′ :=



(ϕ, T,o)

∣∣∣∣∣∣

T an R-tree not reduced to a point,
ϕ : Γ → Isomor(T ) a minimal action, and
o a coherent cyclic order on ∂∞T




/
∼ .

We also define its subset:

T o :=

{
[ϕ, T,o] ∈ T ′

∣∣∣∣∣
min
x∈T

max
γ∈F

distT (x, ϕ(γ)x) = 1 and

if ∃a ∈ ∂∞T with ϕ(Γ)a = a, then T ∼= R

}
.

Remark 5.1.12. A Γ-invariant minimal R-tree not reduced to a point is the union
of the translation axes of the hyperbolic elements in the image of Γ [MS84, Pau89].
In particular, such an R-tree has extendible segments [Pau89, Lemma 4.3]. Thus,
an orientation on a Γ-invariant minimal tree is equivalent to endow the R-tree with
a coherent cyclic order on its visual boundary by Proposition 5.1.11.

Wolff refines the Gromov–Hausdorff equivariant topology by incorporating the
orientation of the hyperbolic plane. The resulting oriented Gromov equivariant
topology on Ξ(Γ,PSL2(R)) ∪ T o uses the identification of PSL2(R) with the group
of orientation preserving isometries of H2. A key feature of this topology is that
cyclic orders of triples of points are stable under small perturbations, both in H2

and in oriented R-trees [Wol11, Subsection 3.2.2].

5.1.2 Construction of the oriented Gromov equivariant com-
pactification

Let X be either an oriented R-tree with extendible segments (so with a coherent
cyclic order on its boundary) or H2, the ball (Poincaré) model of the hyperbolic
plane, with its standard orientation (counterclockwise orientation on ∂∞H2 ∼= S1)
and a metric distH2 proportional to its standard metric. Denote by δ(X) its best
hyperbolicity constant and by o the cyclic order on ∂∞X. Following [Wol11], we
recapitulate the construction of the oriented Gromov equivariant topology. We
show that this topology is first countable on Ξ(Γ,PSL2(R)) ∪ T o and that the
standard orientation on H2 is described by a semialgebraic equation.

Lemma 5.1.13. If sgn denotes the sign function on R, then

oR : (S1)
3 −→ {−1, 0, 1 };

(z1, z2, z3) 7−→ sgn (det(z2 − z1, z3 − z2))
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defines a cyclic order on S1. In coordinates, if (x1, y1), (x2, y2), (x3, y3) ∈ S1, then

oR((x1, y1), (x2, y2), (x3, y3)) = sgn((y3 − y2)(x2 − x1)− (y2 − y1)(x3 − x2)).

Moreover, for every F real closed, oR extends to a cyclic order on S1(F) which is
PSL2(F)-invariant.
Remark 5.1.14. This formula describes the counterclockwise orientation on S1. It
is independent of the base point chosen for the identification ∂∞H ∼= S1, as shown
by the argument in the proof of [Wol11, Lemma 3.15].

Proof. It is a direct computation to verify that oR satisfies the second item of
Definition 5.1.1. That is, for every (z1, z2, z3) ∈ (S1)3 it holds

oR(z1, z2, z3) = oR(z2, z3, z1) = −oR(z1, z3, z2).
If Card{ z1, z2, z3 } ≤ 2 then oR(z1, z2, z3) = 0 is a direct computation. Suppose

oR(z1, z2, z3) = 0 for some (z1, z2, z3) ∈ (S1)3 such that

det(z2 − z1, z3 − z2) = 0.

If one column is 0, without loss of generality z2− z1 = 0, then Card{ z1, z2, z3 } ≤ 2.
Otherwise, there exists λ ∈ R∗ such that z2 − z1 = λ(z3 − z2). That is

z2 =
1

1 + λ
z1 +

λ

1 + λ
z3.

Thus z2 is on the line that connects z1 to z3 in R2. But this line intersects the
circle in at most two points, so Card{ z1, z2, z3 } ≤ 2. Hence oR(z1, z2, z3) = 0
if and only if Card{ z1, z2, z3 } ≤ 2, and oR satisfies the first item of Definition
5.1.1.

We verify that oR satisfies the last item of Definition 5.1.1. Consider four
elements z1, z2, z3, z4 ∈ S1, such that oR(z1, z2, z3) = 1 = oR(z1, z3, z4), and we
verify that oR(z1, z2, z4) = 1. Define the continuous functions

f : S1\{ z1, z3 } → {−1, 1 } r 7→ oR(z1, r, z3),

g : S1\{ z1, z2 } → {−1, 1 } r 7→ oR(z1, z2, r).

Since oR is continuous as a composition of continuous functions, the function f
is continuous. Since f(z2) = 1 and f(z4) = −1, the two elements z2 and z4 are
in different connected components of S1\{ z1, z3 }. Thus, z4 and z3 are in a same
connected component of S1\{ z1, z2 }. Hence, by continuity of g

1 = g(z4) = g(z3).

That is oR(z1, z2, z4) = 1 as desired so that oR is a cyclic order on S1. The
second part of the statement is a direct consequence of the Transfer principle
(Theorem 2.2.2) as oR is described by a semialgebraic equation and the determinant
is invariant by the PSL2(R)-action.
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Lemma 5.1.15 ([Wol11, Lemma 3.10]). Let X be an oriented R-tree or H2. If
x1, x2, x3 ∈ X, then there exists a unique P ∈ X which minimizes the function
x 7→ distX (x, x1) + distX (x, x2) + distX (x, x3). Moreover, the map X3 → X that
sends (x1, x2, x3) 7→ P is continuous. We call P the center of the triple.

For r ≥ 0, denote by V (r) ⊂ X3 the set of (x1, x2, x3) ∈ X3 such that for every
permutation (i, j, k) of (1, 2, 3), the Gromov product verifies

2(xi, xk)xj := distX (xi, xj) + distX (xj, xk)− distX (xi, xk) > 2r.

Lemma 5.1.16 ([Wol11, Lemma 3.12]). For every (x1, x2, x3) ∈ V (6δ(X)), the
center of the tripod P ̸∈ {x1, x2, x3 }.

This lemma allows to control the shape of tripods and specifically to avoid
their degeneration under small perturbations. We now define a rigid notion of
orientation, and of subsets of X that come in the same order.

Notation 5.1.17 ([Wol11, Subsection 3.2.2]). Given (x1, x2, x3) in V (6δ(X)), along
with P the center of the tripod, denote by

or(x1, x2, x3) := o(a1, a2, a3),

where ai is a ray based at P and passing through xi for i ∈ { 1, 2, 3 }. This is a well
defined quantity which does not depend on the chosen ray.

Remark 5.1.18 ([Wol11, Page 1274]). In H2, there exists a single ray ai, up to
parametrization, based at P and passing through xi. From above, the three rays
a1, a2, a3 define three points on ∂∞H2 and the quantity or(x1, x2, x3) is well defined
for o the cyclic order on ∂∞H2 as defined in Lemma 5.1.13. For every P ∈ H2,
by the uniqueness of ai passing through P and xi, the set GH2(P ) is naturally in
bijective correspondence with ∂∞H2. In particular, a cyclic order on ∂∞H2 defines
a cyclic order on GH2(P ).

Notation 5.1.19. For the rest of this text, denote an element of Ξ(Γ,PSL2(R))∪T o,
be it a class of actions on H2 or on oriented R-trees, by [ϕ,X, o] or [ϕ,X, or]. Denote
also or : V (6δ(X)) → {−1, 1 } the function defined in Notation 5.1.17 and or the
induced orientation on X (a cyclic order on GX(P ) for every P ∈ X). That is, if
X is an oriented R-tree with extendible segments

or = Push−1(o),

see Proposition 5.1.11, and if X = H2, then or is the standard orientation on H2,
see Remark 5.1.18.
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Let [ϕ,X,o], [ϕ′, X ′,o′] ∈ Ξ(Γ,PSL2(R)) ∪ T o. Let ε > 0, Q be a finite subset
of Γ, and K = (x1, . . . , xp) ⊂ X, K ′ = (x′1, . . . , x

′
p) ⊂ X ′ be finite sequences. As

in [Pau89], the sequence K ′ is a Q-equivariant ε-approximation of K if for every
g, h ∈ Q, and every i, j ∈ { 1, . . . , p } it holds

|distX (ϕ(g)xi, ϕ(h)xj)− distX′
(
ϕ′(g)x′i, ϕ

′(h)x′j
)
| ≤ ε.

Remark 5.1.20 ([Wol11, Remark 3.18]). Suppose that X, X ′ are either the
hyperbolic plane or an R-tree, α, ε1, ε2 > 0, and x1, x2, x3 ∈ X, x′1, x

′
2, x

′
3 ∈ X ′

verify

(x1, x2, x3) ∈ V (6δ(X) + α), |δ(X)− δ(X ′)| ≤ ε1 and

|distX (xi, xj)− distX′
(
x′i, x

′
j

)
| ≤ ε2 ∀i, j ∈ { 1, 2, 3 }.

Then (x′1, x
′
2, x

′
3) ∈ V (6δ(X ′) + α − 6ε1 − 3ε2). Therefore, the sets V (r) provide

open conditions, robust under ε-approximations guaranteeing that we can consider
the orientations defined by triples of points.

Definition 5.1.21. Let [ϕ,X, o], [ϕ′, X ′, o′] be two elements in Ξ(Γ,PSL2(R))∪T o.
Let ε > 0, Q be a finite subset of Γ with e ∈ Q, and K = (x1, . . . , xp) ⊂ X,
K ′ = (x′1, . . . , x

′
p) ⊂ X ′ be finite sequences. We say that K ′ is an oriented Q-

equivariant ε-approximation of K if K ′ is a Q-equivariant ε-approximation of K
and

or(xi, xj, xk) = or′
(
x′i, x

′
j, x

′
k

)

for every (xi, xj, xk) ∈ V (6δ(X) + 9ε).

If [ϕ,X,o] ∈ Ξ(Γ,PSL2(R)) ∪ T o, ε > 0, K = (x1, . . . , xp) ⊂ X is a finite
sequence, and Q ⊂ Γ a finite subset containing e, then denote by

UK,ε,Q(ϕ,X,o)

the subset of [ϕ′, X ′,o′] ∈ Ξ(Γ,PSL2(R)) ∪ T o such that X ′ contains an oriented
Q-equivariant ε-approximation of K.

Proposition 5.1.22 ([Wol11, Proposition 3.20]). The subsets defined above

UK,ε,Q(ϕ,X,o) ⊂ Ξ(Γ,PSL2(R)) ∪ T o

form a basis of open sets for the oriented Gromov equivariant topology.

On Ξ(Γ,PSL2(R)), the oriented Gromov equivariant topology is equivalent
to the compact-open topology [Wol11, Proposition 3.2.1]. The oriented Gromov
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equivariant compactification is the closure of Ξ(Γ,PSL2(R)) in the topological
space Ξ(Γ,PSL2(R)) ∪ T o, which is denoted by

Ξ(Γ,PSL2(R))O.

It is a natural compactification, in the sense that, Ξ(Γ,PSL2(R)) is open an dense
in the Hausdorff compact space Ξ(Γ,PSL2(R))O and the action of Out(Γ) on
Ξ(Γ,PSL2(R)) extends continuously to an action of Out(Γ) on Ξ(Γ,PSL2(R))O
[Wol11, Theorem 3.23].

Remark 5.1.23. Throughout this section, the hyperbolic plane is equipped with a
fixed orientation, its standard one. The novelty compared to the length spectrum
compactification is that the representations take values in the orientation preserving
isometry group of X. Furthermore, the equivalence relation defining T ′ in Subsec-
tion 5.1.1 specifically involves quotients by orientation preserving isometries, rather
than arbitrary isometries. This distinction is crucial for preserving the orientation
structure in our construction.

The following proposition adapts [Pau87, Proposition 1.6], incorporating a re-
mark from the proof of [Wol07, Théorème 5.4.6]. An ε-approximation Q-equivariant
between two metric spaces X,X ′ is a logical relation R within X ×X ′ which is
surjective [Pau87, Definition 1]. Then, an ε-approximation Q-equivariant between
X and X ′ is closed if it is closed as a subset of X ×X ′.

Proposition 5.1.24. If Γ is countable, then Ξ(Γ,PSL2(R))O is first countable.
That is, each element of Ξ(Γ,PSL2(R))O has a countable basis of open neighborhoods.

Proof. Let [ϕ,X,o] ∈ Ξ(Γ,PSL2(R))O and (Kn) a sequence of finite subsequences
in X, increasing for the inclusion, such that their union is dense in X and Γ-
invariant. We show that the open sets

{
(UKn,r,Q(ϕ,X,o))

∣∣Q a finite subset of Γ containing e, n ∈ N, r ∈ Q>0

}

form a basis of open neighborhoods of [ϕ,X, o] in the oriented Gromov equivariant
topology. Let K be a finite subsequence of X, Q a finite subset of Γ containing e,
and ε > 0. Cover K with a finite number of open balls of radius ε/12. By density
of the union of the Kn inside X, the centers of each of these balls is at distance
smaller than ε/12 from a point in one of the Kn. Denote by

K ′ ⊂ Kn

the finite subsequence of X formed by these points in Kn. Then K is contained in
the ε/6-neighborhood of K ′, and K ′ is contained in the ε/6-neighborhood of K.
Furthermore, by Γ-invariance of the union of the Kn, the union K ′ ∪ QK ′ is
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contained in one of the Kj, for j sufficiently large. Using [Pau87, Remarque 1.4,
Remarque 1.5], there exists a closed Q-equivariant ε-approximation

K ′′ of K,

where K ′′ is contained in Kj. Let r be a rational number with 0 < r < ε and we
show that

UKj ,r,Q(ϕ,X,o) ⊂ UK,2ε,Q(ϕ,X,o).

Let [ϕ∗, X∗,o∗] ∈ UKj ,r,Q(ϕ,X,o). There exists an r-approximation Q-equivariant
between K∗ ⊂ X∗ and Kj . In particular, there is an r-approximation Q-equivariant
between a finite subset A ⊂ K∗ and K ′′. By the last remark in the proof of [Pau87,
Lemme 1.2], there exists an (r + ε)-approximation between A and K. Since K
and Kj are subsets of the same oriented space, they come in the same order. Hence
[ϕ∗, X∗,o∗] ∈ UK,2ε,Q(ϕ,X,o) as wanted.

We described the oriented Gromov equivariant topology of character varieties
using orientations on R-trees. In the next subsection, we characterize the orientation
on R-trees appearing in ∂Ξ(Γ,PSL2(R))O as ultralimits of orientations on the
hyperbolic plane.

5.1.3 Description via asymptotic cones

This subsection describes elements of Ξ(Γ,PSL2(R))O as ultralimits of sequences
in Ξ(Γ,PSL2(R)). Building on [Pau89], we show that Γ-actions by isometry pre-
serving the orientation on oriented R-trees can be characterized as ultralimits of
Γ-actions on asymptotic cones equipped with an ultralimit orientation. For any
ϕ ∈ Hom(Γ,PSL2(R)), define the displacement of the representation as

lg(ϕ) := inf
x∈H2

max
γ∈F

distH2 (x, ϕ(γ)x) ,

where H2 denotes the ball (Poincaré) model of the hyperbolic plane equipped with
its standard metric, F is a finite generating set of Γ and PSL2(R) acts on H2 via
Möbius transformations. We rely on a key property of reductive homomorphisms.

Proposition 5.1.25 ([Par12, Proposition 18]). An element ϕ ∈ Hom(Γ,PSL2(R))
is reductive if and only if the infimum of the displacement function is achieved.
That is, there exists x0 ∈ H2 so that

max
γ∈F

distH2 (x0, ϕ(γ)x0) ≤ max
γ∈F

distH2 (x, ϕ(γ)x) ∀x ∈ H2.

Notation 5.1.26. Let u be a non-principal ultrafilter on N, (ϕk) a sequence
in Homred(Γ,PSL2(R)) such that lg(ϕk) → ∞, ∗k ∈ H2 an element achieving
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the infimum of the displacement function of ϕk for every k ∈ N, and T :=
Coneu (H2, (lg(ϕk)) , (∗k)). The sequence (ϕk) ⊂ Hom(Γ,PSL2(R)) induces a Γ-
action by isometries on T via

ϕu(γ)([zk]) = [ϕk(γ)zk] ∀γ ∈ Γ, and ∀[zk] ∈ T.

We call ϕu = limu ϕk the ultralimit representation, see Subsection 2.1 and [Pau09,
Page 434].

Proposition 5.1.27 ([Pau09, Page 434]). Let u be a non-principal ultrafilter on
N, [ϕk,H2] a sequence in Ξ(Γ,PSL2(R)) such that lg(ϕk) → ∞, and ϕu = limu ϕk.
If ∗k ∈ H2 is an element in H2 achieving the infimum of the displacement function
of ϕk for every k ∈ N and T u := Coneu (H2, (lg(ϕk)) , (∗k)), then

lim
u

(
ϕk,H2

)
= (ϕu, T u)

in the Gromov–Hausdorff equivariant topology. That is, for every ε > 0, Q a
finite subset of Γ with e ∈ Q, and K = ([x1k], . . . , [x

p
k]) ⊂ T u a finite sequence, for

u-almost every k ∈ N, the sequence

K ′ =
(
x1k, . . . , x

p
k

)
⊂ H2

is a Q-equivariant ε-approximation of K.

Remark 5.1.28 ([Pau09, Page 437]). If a sequence of Γ-actions by isometries
on H2 converges, in the Gromov–Hausdorff equivariant topology, to an R-tree
equipped with a Γ-action without a global fixed point, then it also converges in
the Gromov–Hausdorff equivariant topology to every invariant subtree, and in
particular to its unique minimal invariant subtree.

We now specialize this convergence to account for an orientation.

Remark 5.1.29. Let X be H2 or an R-tree and [σ] a germ of oriented segments
at P ∈ X. Consider σ ∈ [σ] with endpoints P and x. The oriented segment P -x
defines the same germ of oriented segment [σ] = [P -x]. So, every germ of oriented
segments is represented by an element x ∈ X. It does not depend on the choice of
the representative σ or x ∈ Im(σ). Indeed, for two oriented segments σ, σ′ ∈ [σ],
by definition of the equivalence class of a germ, there exists

x ∈ (Im(σ) ∩ Im(σ′)) \{P }.

Then [P -x] = [σ] = [σ′] in GX(P ).
In the following definition of oru([Pk]), for convenience, we denote by x ∈ GX(P )

the germ of oriented segments [P -x], and we use the notation [P -x]G to avoid
confusion when necessary.
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Theorem 5.1.30. Let u be a non-principal ultrafilter on N, (λk) ⊂ R a sequence
such that λk → ∞, (∗k) ⊂ H2 a sequence, and T u := Coneu (H2, (λk) , (∗k)).
Consider [Pk]

u ∈ T u and GT u([Pk]
u) the set of germs of oriented segments at [Pk]

u.
The map oru([Pk]

u):

(GT u([Pk]
u))3 −→ {−1, 0, 1 };

([xk]
u, [yk]

u, [zk]
u) 7−→

{
0 if Card{ [xk]u, [yk]u, [zk]u } ≤ 2,

limu or(Pk)(xk, yk, zk) otherwise,

is a cyclic order on GT u([Pk]
u), where or(Pk) is the cyclic order on GH2(Pk) given

by the standard orientation on H2. Hence oru defines an orientation on T u.

Proof. We first show that oru([Pk]
u) is well defined and independent of the choice

of representatives, which is the main part of the proof. Any segment in T u is the
ultralimit of a sequence of segments in H2 by [DK18, Corollary 11.38]. Suppose the
germ of oriented segments [[Pk]

u-[xk]
u]G is represented by two sequences ([Pk-xk]G)

and ([P ′
k-x

′
k]G). As in Remark 5.1.29, we may assume

[xk]
u = [x′k]

u ∈ T u and [Pk]
u = [P ′

k]
u ∈ T u.

If Card{ [[Pk]u-[xk]u]G, [[Pk]u-[yk]u]G, [[Pk]u-[zk]u]G } ≤ 2, then at least two of the
germs of oriented segments are equal. Without loss of generality, suppose

[[Pk]
u-[xk]

u]G = [[Pk]
u-[yk]

u]G.

As in Remark 5.1.29, there exists

[wk]
u ∈ Im([Pk]

u-[xk]
u) ∩ Im([Pk]

u-[yk]
u)\{ [Pk]u }.

Since [xk]
u = [x′k]

u and [Pk]
u = [P ′

k]
u

[[P ′
k]

u-[yk]
u]G = [[Pk]

u-[wk]
u]G = [[Pk]

u-[xk]
u]G = [[P ′

k]
u-[x′k]

u]G.

Hence Card{ [[P ′
k]

u-[x′k]
u]G, [[P ′

k]-[yk]
u]G, [[P ′

k]-[zk]
u]G } ≤ 2 so that

oru([Pk]
u) ([xk]

u, [yk]
u, [zk]

u) = 0 = oru([P ′
k]

u) ([x′k]
u, [yk]

u, [zk]
u) .

Suppose all three germs are distinct. On the one hand, suppose that

lim
u
or(Pk)(xk, yk, zk) = 1 and lim

u
or(P ′

k)(x
′
k, yk, zk) = 0.

Since {−1, 0, 1 } is discrete, the second limit implies or(P ′
k)(x

′
k, yk, zk) = 0 for

u-almost every k ∈ N. Since or(Pk) is a cyclic order, without loss of generality

[P ′
k-x

′
k]G = [P ′

k-yk]G
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for u-almost every k ∈ N. Since H2 is uniquely geodesic, assume without loss
of generality that Im(P ′

k-x
′
k) ⊂ Im(P ′

k-yk) for u-almost every k ∈ N. Since T u is
uniquely geodesic

Im([P ′
k]

u-[x′k]
u) ⊂ Im([P ′

k]
u-[yk]

u)

so that [[P ′
k]

u-[x′k]
u]G = [[P ′

k]
u-[yk]

u]G. This is a contradiction with the three germs
of oriented segments being distinct.

On the other hand, suppose:

lim
u
or(Pk)(xk, yk, zk) = 1 and lim

u
or(P ′

k)(x
′
k, yk, zk) = −1.

By the independence of the choice of base point for the orientation on H2 (Remark
5.1.14), this is equivalent to

lim
u
or(Pk)(xk, yk, zk) = 1 and lim

u
or(Pk)(x

′
k, yk, zk) = −1.

Consider the rays ak, a
′
k, bk, ck passing through Pk and xk, x

′
k, yk, zk respectively.

By Lemma 5.1.13, the above conditions translate to

oR(ak, bk, ck) = 1 and oR(a
′
k, bk, ck) = −1

for u-almost every k ∈ N. Thus bk ∈ arc(ak, a
′
k) and ck ∈ arc(a′k, ak), where

arc(a′k, ak) is the oriented segment of S1 going in the counterclockwise direction.
Without loss of generality, the length of arc(ak, a

′
k) is smaller or equal to the length

of arc(a′k, ak). Then, every neighborhood of ak containing a
′
k in the shadow topology

on H2 ∪ ∂∞H2 also contains bk [DK18, Subsection 11.11]. That is, there exists
b∗k ∈ Im(bk) such that

distH2 (b∗k, xk) ≤ distH2 (xk, x
′
k)

for u-almost every k ∈ N. Since [xk]
u = [x′k]

u, it holds [xk]
u = [b∗k]

u. Thus
[b∗k]

u ∈ (Im([Pk]
u-[xk]

u) ∩ Im([Pk]
u-[yk]

u))\{ [Pk]u } so that

[[Pk]
u-[xk]

u]G = [[Pk]
u-[yk]

u]G.

This is a contradiction with the three germs of oriented segments being distinct so
that

lim
u
or(Pk)(xk, yk, zk) = lim

u
or(P ′

k)(x
′
k, yk, zk).

A similar argument proves that oru([Pk]
u) does not depend on the choice of [yk]

u, [zk]
u

such that oru([Pk]
u) does not depend on the choice of representatives.

We show that oru([Pk]
u) defines a cyclic order. If Card{ [xk]u, [yk]u, [zk]u } ≤ 2,

then by definition oru([Pk]
u)([xk]

u, [yk]
u, [zk]

u) = 0. Suppose [xk]
u, [yk]

u, [zk]
u are

distinct germs of oriented segments in GT u([Pk]
u) and verify

oru([Pk]
u)([xk]

u, [yk]
u, [zk]

u) = 0.
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Since {−1, 0, 1 } is discrete, or(Pk)(xk, yk, zk) = 0 for u-almost every k ∈ N. Since
or(Pk) is a cyclic order, without loss of generality

[Pk-xk]G = [Pk-yk]G

for u-almost every k ∈ N. Since H2 is uniquely geodesic, assume without loss
of generality that Im(Pk-xk) ⊂ Im(Pk-yk) for u-almost every k ∈ N. Since T u is
uniquely geodesic

Im([Pk]
u-[xk]

u) ⊂ Im([Pk]
u-[yk]

u)

so that [[Pk]
u-[xk]

u]G = [[Pk]
u-[yk]

u]G. This is a contradiction with the three germs
of oriented segments being distinct. Hence

Card{ [xk]u, [yk]u, [zk]u } ≤ 2

so that oru([Pk]) satisfies the first item of Definition 5.1.1. Similarly, if [xk]
u, [yk]

u,
and [zk]

u are germs of oriented segments in GT u([Pk]
u), then for u-almost every k

or(Pk)(xk, yk, zk) = or(Pk)(yk, zk, xk) = −or(Pk)(xk, zk, yk).

Thus, by definition of the ultralimit

oru([Pk]
u)([xk]

u, [yk]
u, [zk]

u) = oru([Pk]
u)([yk]

u, [zk]
u, [xk]

u)

= −oru([Pk]u)([xk]u, [zk]u, [yk]u).

so that oru([Pk]
u) verifies the second item of Definition 5.1.1. The third axiom

follows from the same reasoning. Therefore, oru([Pk]
u) defines a cyclic order, and

hence oru defines an orientation on T u.

Theorem 5.1.31. Let u be a non-principal ultrafilter on N, [ϕk,H2, or] a sequence
in Ξ(Γ,PSL2(R)) such that lg(ϕk) → ∞, ∗k an element in H2 achieving the infimum
of the displacement function of ϕk for every k ∈ N, and ϕu = limu ϕk. If T u

ϕu is the
ϕu-invariant minimal subtree inside the asymptotic cone Coneu (H2, (lg(ϕk)) , (∗k)),
then

lim
u
[ϕk,H2, or] = [ϕu, T u

ϕu , or
u] ∈ ∂Ξ(Γ,PSL2(R))O,

where oru is the restriction to T u
ϕu of the ultralimit orientation defined in Theorem

5.1.30.

Proof. Let (UKn,εn,Qn(ϕ
u, T u

ϕu , or
u))n∈N be a countable basis of open neighborhoods

in the oriented Gromov equivariant topology around (ϕu, T u
ϕu , or

u). Consider as in
Notation 5.1.17 the functions

oru : V (0) −→ {−1, 1 };
(x, y, z) 7−→ oru(P )(x, y, z)

and
or : V (6δ(H2)) −→ {−1, 1 };

(x, y, z) 7−→ or(P )(x, y, z),
,
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where P is the center of the tripod Trip(x, y, z) as defined in Proposition 5.1.15.
For m ∈ N, suppose Km := ([x1,mk ]k, . . . , [x

ℓm,m
k ]k) ⊂ T u

ϕu . By Proposition 5.1.27,
for every g, h ∈ Qm and every i, j ∈ { 1, . . . , ℓm }
∣∣∣∣∣
distH2

(
ϕk(g)x

i,m
k , ϕk(h)x

j,m
k

)

lg(ϕk)
− distT u

ϕu

(
ϕu(g)

[
xi,mk

]u
, ϕu(h)

[
xj,mk

]u)
∣∣∣∣∣ ≤ εm,

for u-almost every k. Moreover, by definition of the ultralimit, for u-almost
every k and every triple of elements ([xi,mk ]u, [xj,mk ]u, [xp,mk ]u) ∈ Km which satisfies
([xi,mk ]u, [xj,mk ]u, [xp,mk ]u) ∈ V (9εm)

oru
([
xi,mk

]u
,
[
xj,mk

]u
, [xp,mk ]u

)
= or

(
xi,mk , xj,mk , xp,mk

)
.

Thus, u-almost every [ϕk,H2,o] is in the open set UKn,εn,Qn(ϕ
u, T u

ϕu ,o
u). Hence

[ϕk,H2,o] converges to [ϕu, T u
ϕu ,o

u] along the ultrafilter u.

We recalled the construction of the oriented Gromov equivariant compactifi-
cation of Ξ(Γ,PSL2(R)) and characterized the boundary elements as Γ-actions
by orientation preserving isometries on asymptotic cones equipped with a limit
orientation. In the next section, we associate to every element of ∂Ξ(Γ,PSL2(R))RSp

cl

a Γ-action on an oriented R-tree by orientation preserving isometries. Our goal is
to use the theory developed in this section to compare the two compactifications in
the final section.

5.2 Oriented R-trees associated to elements of

∂Ξ(Γ,PSL2(R))RSpcl

We associate to each element of ∂Ξ(Γ,PSL2(R))RSp
cl a Γ-action by isometries on an

R-tree, following [Bru88a]. In the first subsection, we endow this R-tree with an
orientation using the order structure of real closed fields. In the second subsection,
we show that this orientation is well described as an ultralimit of orientations,
similarly to Subsection 5.1.3.

5.2.1 Description via the non standard hyperbolic plane

This section associates to each element (ρ,Fρ) ∈ Ξ(Γ,PSL2(R))RSp
cl a Γ-action on

an oriented R-tree. Following the approach in [Bru88a], one constructs a Γ-action
on an R-tree T , and use [Bru88c] to describe the set of germs of oriented segments
at any point P ∈ T . This allows us to define an orientation on T and so, a Γ-action
by isometries preserving the orientation on T .
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Definition 5.2.1. Given a representation ϕ : Γ → PSL2(F), the real closed field F
is ϕ-minimal if ϕ can not be PSL2(F)-conjugated into a representation ϕ′ : Γ →
PSL2(L), where L ⊂ F is a proper real closed subfield.

If ϕ : Γ → PSL2(F) is reductive, denoted (ϕ,F), and if F is real closed, a minimal
real closed field Fϕ ⊂ F always exists and is unique [BIPP23, Corollary 7.9]. If
F1 and F2 are two real closed fields, we say that two representations (ϕ1,F1) and
(ϕ2,F2) are equivalent if there exists a real closed field morphism ψ : F1 → F2 such
that

ψ ◦ ϕ1 = gϕ2g
−1 for some g ∈ PSL2(F2).

Theorem 5.2.2 ([BIPP23, Theorem 1.1 and Corollary 7.9]). Elements in the
boundary of Ξ(Γ,PSL2(R))RSp

cl are in bijective correspondence with equivalence
classes of pairs [ϕ,F], where

ϕ : Γ → PSL2(F),

is reductive and F is real closed, non-Archimedean and ϕ-minimal. Moreover F is
of finite transcendence degree over Qr

.

An element in the equivalence class is a representative of [ϕ,F]. Because of
the finite transcendence degree condition over Qr

, not all real closed fields in
Ξ(Γ,PSL2(R))RSp

cl occur. Recall from Definition 3.4.1, that a real closed field K has
a big element b if for every h ∈ K

∃k ∈ N such that h < bk.

For every [ϕ,F] ∈ ∂Ξ(Γ,PSL2(R))RSp
cl , the ϕ-minimal real closed field F is of finite

transcendence degree over Qr
. In particular, F has a big element b [Bru88a, Section

5]. So, as in Section 4.2, define for every h ∈ F the two subsets of Q
{m
n

∣∣∣ bm ≤ hn, n ∈ N≥0,m ∈ Z
}

and

{
m′

n′

∣∣∣∣ bm
′ ≥ hn

′
, n′ ∈ N≥0,m

′ ∈ Z
}

define a Dedekind cut of Q. Hence the two subsets above define a real number
denoted logb(h). The function − logb : F → R is a non-trivial order compatible
valuation on F [Bru88a, Section 5]. Denote by Λ := logb(F) the valuation group of
F, which is an Abelian divisible subgroup of R [Bru88a, Section 8]. Denote by F̂
the valuation completion of F, which is also real closed [Bru88c, Page 91].

Remark 5.2.3. The Robinson field Ru
µ, where u is any non-principal ultrafilter

and µ any infinite element or Ru (Example 2.2.3), is a real closed field with big
element µ. Moreover, the valuation group of Ru

µ associated to logµ is R.
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To associate to [ϕ,F] an R-tree, we first need to recall some definitions of
Λ-metric spaces, see [Chi01]. A set X together with a function distX : X ×X → Λ
is a Λ-metric space if distX is positive definite, symmetric and satisfies the triangle
inequality. A Λ-segment σ is the image of a Λ-isometric embedding η : {t ∈ Λ: r ≤
t ≤ s} → X for some r ≤ s ∈ Λ. The set of endpoints of σ is {η(r), η(s)}. A
germ of oriented Λ-segments at P in X is an equivalence class of nondegenerate
oriented Λ-segments based at P for the following equivalence relation: two oriented
Λ-segments σ, σ′ are equivalent if and only if

∃ε > 0 such that σ|[0,ε) = σ′|[0,ε).

Definition 5.2.4. A Λ-tree is a Λ-metric space X satisfying:

• For all x, y ∈ X there is a Λ-segment σ with endpoints x, y.

• For all Λ-segments σ, σ′ whose intersection σ ∩ σ′ = {x} consists of one
common endpoint x of both Λ-segments, the union σ ∪ σ′ is a Λ-segment.

• For all Λ-segments σ, σ′ with a common endpoint x, the intersection σ ∩ σ′ is
a Λ-segment with x as one of its endpoints.

By [Chi01, Chapter 2, Lemma 1.1], Λ-segments in a Λ-tree are unique and we write
(x-y)Λ the unique Λ-segment with endpoints x, y ∈ X.

Following the construction in [Bru88c], given [ϕ,F] ∈ ∂Ξ(Γ,PSL2(R))RSp
cl , define

the non-Archimedean hyperbolic plane over the ϕ-minimal real closed field Fϕ as
the set

H2(F) := {x+ iy ∈ F[i] |x2 + y2 < 1 } ⊂ F[i],

where i is such that i2 = −1. As in the real case, H2(F) admits a pseudo-distance
[Bru88c, Page 92]

distH2(F) : (H2(F))2 −→ Λ;

(z, z′) 7−→ logβ

(
∥1−(zz′)∥2

(1−∥z∥2)(1−∥z′∥2)

)
,

where z is the complex conjugation of z ∈ F[i], and for any z = x+ iy ∈ F[i]:

∥z∥ :=
√
x2 + y2 ∈ F.

Consider the equivalence relation on H2(F) which identifies z with z′ if and only if
distH2(F) (z, z

′) = 0 and denote the projection map

π : H2(F) → TF := H2(F)/
{
distH2(F) = 0

}
.
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Proposition 5.2.5 ([Bru88c, Theorem 28]). The Λ-metric space TF is a Λ-tree.

Moreover, if we consider the action of PSL2(F) by Möbius transformation on
H2(F), then it passes to an action by isometries on TF.

Proposition 5.2.6 ([BIPP23, Theorem 7.15]). Let (ϕ,F) be a representative of a
point in ∂Ξ(Γ,PSL2(R))RSp

cl such that F is ϕ-minimal. Then, ϕ induces a Γ-action
by isometries on TF, which does not have a global fixed point.

Since the valuation group Λ is a divisible subgroup of R, it is dense inside R.
So, as a special case of the base-change functor defined in [Chi01, Theorem 4.7],
define the R-tree

TFsc :=
⋃

σ Λ-segment in TF

σ,

where σ is the unique metric completion of the Λ-segment σ in TF. The R-tree
TFsc is unique up to isometry and TF embeds isometrically in TFsc.

Proposition 5.2.7 ([Chi01, Theorem 4.7 and Corollary 4.9]). Every (ϕ,F) repre-
senting an element in ∂Ξ(Γ,PSL2(R))RSp

cl induces a Γ-action by isometries on the
segment completion TFsc of the Λ-tree TF. Moreover, TFsc is an R-tree and the
Γ-action is without fixed point.

Denote by
Tϕ ⊂ TFsc

the unique, up to isometry, ϕ-invariant minimal subtree [Pau89, Proposition 2.4].
Then, as in Remark 5.1.12, Tϕ has extendible segments. To endow Tϕ with an
orientation in the sense of Definition 5.1.4, we describe the germs of oriented
Λ-segments in TF as described in [Bru88c]. Denote by

O := {h ∈ F | logb(|h|) ≤ 0 } ,

the valuation ring of F, where |h| = max{h,−h }, and its maximal ideal

J := {h ∈ F | logb(|h|) < 0 }.

The quotient field FO := O/J inherits an order such that O → FO is order
preserving [Bru88c, Page 90] and FO is real closed [BP17, Example 5.2]. As the
segments in TFsc are in one to one correspondence with the Λ-segments in TF by
construction, the following result holds.

Proposition 5.2.8 ([Bru88c, Corollary 40]). Let p ∈ TFsc. The germs of oriented
segments at p in TFsc correspond bijectively with points on the circle

S1(FO) :=
{
x+ iy ∈ FO[i]

∣∣x2 + y2 = 1
}
.
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Remark 5.2.9. If p ∈ TFsc\TF, then by construction, GTFsc(p) consists of two
elements. Thus, a cyclic order on GTFsc(p) is trivial. Therefore, in the rest of this
text, whenever we refer to a cyclic order on GTFsc(p), we assume that p ∈ TF ⊂ TFsc.

The following remark summarizes the construction of the correspondence from
Proposition 5.2.8. We will use it later to show that certain isometries are orientation
preserving.

Remark 5.2.10 ([Bru88c, Page 102]). Let F̂ denote the valuation completion of F.
The field inclusion F → F̂ induces an isometry T F̂ → TF [Bru88c, Corollary 26],
which we use to define the projection

π : H2
(
F̂
)
→ TF.

Given p ∈ TF, choose an element P ∈ π−1(p). Any [p-y] ∈ GTF(p) is represented
by a segment (p-y)Λ, which is the image under π of some segment (P -Y )F ⊂ H2(F̂).
Thus the transitive SO(2, F̂)-action on the set of oriented F-segments at P passes
via π to a transitive SO(2, F̂)-action on the set of oriented Λ-segments at p. The
stabilizer of the germ of oriented segments [p-y] is the kernel of

SO
(
2, F̂
)
→ SO(2,FÔ) = SO(2,FO).

Brumfiel shows using this construction that the germs of oriented Λ-segments at p
in TF is in bijection with SO(2,FO), which is also in bijection with S1(FO).

Corollary 5.2.11. The FO-extension of the cyclic order oR (from Lemma 5.1.13)
defines a cyclic order on GTF(p) ∼= S1(FO) for every p ∈ TFsc. Thus an orientation
on TFsc denoted orO.

Remark 5.2.12. Consider p ∈ TF, [p-y1], [p-y2], [p-y3] ∈ GTF(p) distinct, πO : Ô →
FÔ = FO the reduction morphism, and

π′
O : S1

(
F̂
)
→ S1(FO)

the induced map, using that SO(2, F̂) = SO(2, Ô) and SO(2,FÔ) = SO(2,FO)
[Bru88c, Page 102]. By Proposition 5.2.8, [p-y1], [p-y2], [p-y3] correspond bijectively
to elements of S1(FO) which we denote by yc1, y

c
2, y

c
3. For P ∈ π−1(p), one can

consider three germs of oriented segments [P -Y1], [P -Y2], [P -Y3] ∈ GH2(F̂)(P ) with

corresponding elements of S1(F̂) denoted by Y c
1 , Y

c
2 , Y

c
3 such that

π′
O(Y

c
i ) = yci ∀i ∈ { 1, 2, 3 }.
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By the identification from Remark 5.2.10, and because the morphism πO : Ô → FO
is order preserving, it holds

oFO(π
′
O(Y

c
1 ), π

′
O(Y

c
2 ), π

′
O(Y

c
3 )) = sgnFOdet(π

′
O(Y

c
2 )− π′

O(Y
c
1 ), π

′
O(Y

c
3 )− π′

O(Y
c
2 ))

= sgnFOdet(πO(Y
c
2 − Y c

1 ), πO(Y
c
3 − Y c

2 ))

= sgnF̂det(Y
c
2 − Y c

1 , Y
c
3 − Y c

2 )

= oF̂(Y
c
1 , Y

c
2 , Y

c
3 ).

Notation 5.2.13. Since Tϕ is an R-subtree of TFsc, the orientation orO on TFsc

restricts to an orientation on Tϕ. For every p ∈ Tϕ, denote by

orϕ(p)

the cyclic order on the germs of oriented segments at p in Tϕ and by orϕ the induced
orientation.

It remains to show that the oriented R-tree (Tϕ, orϕ) associated with [ϕ,F] does
not depend of the choice of representatives, for the equivalence class defined in
Theorem 5.2.2. To this end, we will use the following theorem. The isometry it
involves is known from [BIPP23, Proof of Corollary 5.19]; our contribution is to
show that this isometry preserves the orientation.

Theorem 5.2.14. Let ψ : F1 → F2 be an ordered field morphism between two real
closed fields and

ϕ1 : Γ → PSL2(F1) and ϕ2 : Γ → PSL2(F2)

two representations such that

ψϕ ◦ ϕ1 = gϕ2g
−1 for some g ∈ PSL2(F2),

where ψϕ is the natural inclusion of PSL2(F1) in PSL2(F2) given by ψ. Let b be
a big element of F1 and suppose that ψ(b) is a big element of F2. Then there
exists a Γ-equivariant isometry (ϕ1, Tϕ1 , orϕ1) → (ϕ2, Tϕ2 , orϕ2) which preserves the
orientation.

Proof. As defined above, consider the pseudo-distance distH2(F1) and distH2(F2)

induced by the big elements b and ψ(b) respectively. By definition of the pseudo-
distances, the field morphism ψ induces ψB : H2(F1) → H2(F2) that sends x+ iy ∈
H2(F1) to ψ(x) + iψ(y) ∈ H2(F2), which is pseudo-distance preserving. Denote by

ψT : TF1 −→ TF2;
[x+ iy] 7−→ [ψ(x) + iψ(y)]
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the induced isometric embedding between the associated Λ-trees (as done in
[BIPP23, Corollary 5.19]). Denote still by ψT : TFsc

1 → TFsc
2 the unique continuous

extension of ψT . Since ψ is a morphism and PSL2(F1), PSL2(F2) act by Möbius
transformations on TF1, TF2 respectively, then for every γ ∈ Γ

ψT (ϕ1(γ)z) = ψϕ(ϕ1)(γ)ψT (z) ∀z ∈ TFsc
1 .

We show that g−1ψT induces a Γ-equivariant isometry between Tϕ1 and Tϕ2 . Denote
by Aϕ1(γ) the translation axis of ϕ1(γ). Since ψT is an isometric embedding, by
[Pau89, Theorem 1.2], we obtain

ψT
(
Aϕ1(γ)

)
= {ψT (z) ∈ TF2 | distTF1 (z, ϕ1(γ)z) = lg(ϕ1(γ)) }
= {ψT (z) ∈ TF2 | distTF2 (ψT (z), ψϕ(ϕ1)(γ)ψT (z)) = lg(ψϕ(ϕ1)(γ) } .

Hence ψT (Aϕ1(γ)) ⊂ Aψϕ(ϕ1)(γ). By [Pau89, Proposition 2.4]

g−1ψT (Tϕ1) =
⋃

γ∈Γ
g−1ψT (Aϕ1(γ)) ⊂

⋃

γ∈Γ
g−1Aψϕ(ϕ1)(γ).

Finally, using [Pau89, Remark 1.4]

⋃

γ∈Γ
g−1Aψϕ(ϕ1)(γ) =

⋃

γ∈Γ
Agψϕ(ϕ1)(γ)g−1 =

⋃

γ∈Γ
Aϕ2(γ) = Tϕ2 .

Since PSL2(F2) acts by isometries on Tϕ2 , we obtain that

g−1ψT : Tϕ1 → Tϕ2

is an isometric embedding. In addition, for any z ∈ Tϕ1 and any γ ∈ Γ

g−1ψT (ϕ1(γ)z) = g−1ψϕ(ϕ1)(γ)ψT (z)

= g−1ψϕ(ϕ1)(γ)gg
−1ψT (z)

= ϕ2(γ)g
−1ψT (z),

so that g−1ψT is Γ-equivariant. In particular, g−1ψT (Tϕ1) is a Γ-invariant R-subtree
of Tϕ2 . By uniqueness of the minimal Γ-invariant R-subtree, up to isometry, g−1ψT
is a Γ-equivariant isometry.

We show that g−1ψT is orientation preserving. As in Remark 5.2.12, consider
p ∈ TF1 and y

c
1, y

c
2, y

c
3 ∈ GTF1(p)

∼= S1(FO1) distinct, P ∈ π−1(p) and three elements
Y c
1 , Y

c
2 , Y

c
3 ∈ GH2(F1)(P ) such that π′

O1
(Y c

i ) = yci for every i ∈ { 1, 2, 3 }. Since
PSL2(F2) preserves the cyclic orders orF2(ψB(P )) and orO2(ψT (p)), it is enough to
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prove that ψT preserves the orientation. Since ψB is distance preserving there exist
group morphisms ψcB, ψ

c
T induced by ψ such that the following diagram commutes:

SO(2,F1) SO(2,F2)

SO(2,FO1) SO(2,FO2).

ψc
B

π′
O1

π′
O2

ψc
T

Using the identification SO(2,F∗) ∼= S1(F∗) for ∗ ∈ { 1, 2,O1,O2 }, it holds

orO2(ψT (p))(ψ
c
T (y

c
1), ψ

c
T (y

c
2), ψ

c
T (y

c
3)) = oF2(ψ

c
B(Y

c
1 ), ψ

c
B(Y

c
2 ), ψ

c
B(Y

c
3 ))

= sgnF2
detF2(ψ(Y

c
2 − Y c

1 ), ψ(Y
c
3 − Y c

2 ))

= sgnF2
ψ (detF1(Y

c
2 − Y c

1 , Y
c
3 − Y c

2 ))

= sgnF1
(detF1(Y

c
2 − Y c

1 , Y
c
3 − Y c

2 ))

= orO1(p)(y
c
1, y

c
2, y

c
3),

where the first equality holds because the above diagram is commutative, the
second because ψcB is induced by ψ, the third because ψ is a homomorphism, and
the fourth because ψ preserves the order. Thus, g−1ψT is an orientation preserving
Γ-equivariant isometry.

For two representatives (ϕ1,F1), (ϕ2,F2) of [ϕ,F] ∈ ∂Ξ(Γ,PSL2(R))RSp
cl , there

exists a real closed field morphism ψ : F1 → F2 and g ∈ PSL2(F2) such that

ψϕ ◦ ϕ1 = gϕ2g
−1.

By Theorem 5.2.14, there exists an orientation preserving Γ-equivariant isometry
between Tϕ1 and Tϕ2 equipped with their orientations orϕ1 and orϕ2 respectively.

Thus the associated oriented R-tree to an element of ∂Ξ(Γ,PSL2(R))RSp
cl is canonical.

Lemma 5.2.15. Each element [ϕ,F] ∈ ∂Ξ(Γ,PSL2(R))RSp
cl defines a canonical

Γ-action by orientation preserving isometries on a ϕ-minimal oriented R-tree
(ϕ, Tϕ, orϕ).

5.2.2 Description via asymptotic cones

This subsection describes the Γ-action on an oriented R-tree induced by an element
[ϕ,F] ∈ ∂Ξ(Γ,PSL2(R))RSp

cl as an ultralimit of Γ-actions on H2, using asymptotic
cones and the ultralimit orientation. To do so, we first recall, as in [BIPP23, Section
7], that [ϕ,F] is represented by a representation of Γ in PSL2(Ru

µ), where Ru
µ is a

Robinson field as described in Example 2.2.3.
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Definition 5.2.16. Given u a non-principal ultrafilter, the sequence of scales (µk)
is well adapted to a sequence of representations ϕk : Γ → PSL2(R) if there exists
c1, c2 ∈ R>0 such that in the ultraproduct Ru

c1(µk) ≤
∑

γ∈F

(
tr
(
ϕk(γ)ϕk(γ)

T
))

≤ c2(µk).

If only the second inequality holds, then the sequence (µk) is adapted.

Let u be a non-principal ultrafilter and (µk) a sequence of scalars adapted to
the sequence of representations ϕk : Γ → PSL2(R). Denote by ϕu

µ : Γ → PSL2(Ru
µ)

the (u, µ)-limit representation

ϕu
µ(γ) :=

(
(ϕk(γ)

1,1)k (ϕk(γ)
1,2)k

(ϕk(γ)
2,1)k (ϕk(γ)

2,2)k

)
∈ PSL2

(
Ru
µ

)
.

Theorem 5.2.17 ([BIPP23, Theorem 7.16]). Let u be a non-principal ultrafilter
on N, (ϕk,R)k ∈ MΓ(R) and (ϕu

µ,Ru
µ) its (u, µ)-limit representation for an adapted

sequence of scales µ := (µk). Then:

• ϕu
µ is reductive, and

• if µ is well adapted, infinite, and Fϕuµ denotes the ϕu
µ-minimal field, then

(ϕu
µ,Ru

µ) is SO2(Ru
µ)-conjugate to a representation (ϕ,Fϕuµ) that represents an

element in ∂Ξ(Γ,PSL2(R))RSp
cl .

Conversely, any (ϕ,F) representing an element in ∂Ξ(Γ,PSL2(R))RSp
cl arises in

this way. More precisely, for any non-principal ultrafilter u and any sequence of
scales µ giving an infinite element, there exist an order preserving field morphism
ψ : F → Ru

µ and a sequence of homomorphisms (ϕk,R)k ∈ MΓ(R) for which µ is
well adapted and such that ψ ◦ ϕ and ϕu

µ are PSL2(Ru
µ)-conjugate.

To keep the notation from [BIPP23], we use the alternative model of H2 defined
in Section 2.4:

P1(2,R) := {A ∈M2×2(R) | det(A) = 1, A is symmetric and positive definite }.

Endow P1(2,R) with its semialgebraic multiplicative Cartan distance dδ (Proposi-
tion 2.4.4) and its associated distance distP1(2,R) = log dδ. The Ru

µ-extension of dδ
induces a pseudo-distance distP1(2,Ru

µ)
= logµ(dδ)Ru

µ
on P1(2,Ru

µ) using the transfer

principle (Theorem 2.2.2). The group PSL2(R) acts by congruence on P1(2,R):

g.x = gxgT ∀x ∈ P1(2,R), ∀g ∈ PSL2(R)
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and preserves the distance. Similarly, PSL2(Ru
µ) acts by congruence on P1(2,Ru

µ)
and preserves the pseudo-distance [BIPP23, Subsection 5.1].

Let u be a non-principal ultrafilter on N, (λk) ⊂ R a sequence such that λk → ∞,
µk = eλk for every k ∈ N, µ = (µk)k∈N, Ru

µ the Robinson field associated to u, and
denote by

P1(2,R)u := P1(2,R)N/ ∼,

P1(2,R)uλ :=
{
[xk] ∈ P1(2,R)u

∣∣∣∣
distP1(2,R) (xk, Id)

λk
is u-bounded

}
,

where (xk) ∼ (yk) if the two sequences coincide u-almost surely. Note that if we
endow P1(2,R)uλ with the pseudo-distance

distu : P1(2,R)uλ × P1(2.R)uλ −→ R;
([xk], [yk]) 7−→ limu

distP1(2,R)(xk,yk)

λk

,

then P1(2,R)uλ/{ distu = 0 } = Coneu (P1(2,R), (λk) , (Id)), see Subsection 2.1.

Theorem 5.2.18 ([BIPP23, Theorem 5.10 and Lemma 5.12]). With the above
notation, the map

ΨP1 : P1(2,R)uλ −→ P1 (2,Ru) ;({
xi,j
}i,j
k

)
k

7−→
{ (

xi,jk
)
k

}i,j

induces an isometry between TP1Ru
µ := P1(2,Ru

µ)/{ distP1(2,Ru
µ)

= 0 } and the asymp-

totic cone T u
P1 := Coneu (P1(2,R), (λk) , (Id)).

Remark 5.2.19. The induced isometry is obtained using the commutative diagram:

P1(2,R)uλ P1(2,Ru) ∩ (Oµ)
3

P1
(
2,Ru

µ

)

T u
P1 TP1Ru

µ,

πµ

η

where P1(2,Ru) is a semialgebraic subset of (Ru)3 and πµ is induced by the quotient
map Oµ → Ru

µ, see Example 2.2.3.

The group SL2(R) acts on P1(2,R) by isometries and the stabilizer of Id ∈
P1(2,R) is the subgroup SO(2). Thus both H2 and P1(2,R) are models for the
symmetric space of SL2(R). Hence up to rescaling the distance on H2, there exists
a SL2(R)-equivariant isometry H2 → P1(2,R) which is algebraic [Ebe85, Page 134].
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Remark 5.2.20. In Section 5.1 and 5.2, H2 is endowed with a metric proportional
to its standard one. In particular, we endow H2 with a metric such that it is
isometric to P1(2,R) endowed with distP1(2,R), see [BIPP23, Subsection 5.2].

As in Subsection 2.1, the isometry H2 → P1(2,R) leads, on the one hand, to a
SL2(R)-equivariant isometry (H2)uλ → P1(2,R)uλ and, on the other hand, since it is
semialgebraic, to a SL2(R)-equivariant isometry P1(2,Ru)∩(Oµ)

3 → H2(Ru)∩(Oµ)
3

to give:

Corollary 5.2.21. With the above notation, the map

Ψ: (H2)uλ −→ H2 (Ru) ;
(x+ iy)k 7−→ (xk) + i(yk)

induces an isometry between the asymptotic cone T u := Coneu (H2, (λk) , (0)) and
H2(Ru

µ)/{ distH2(Ru
µ)

= 0 } =: TRu
µ. Moreover, with the notations from Theorem

5.2.17, the isometry is Γ-equivariant for the induced Γ-actions by ϕu = limu ϕk on
T u and by ϕu

µ on TRu
µ.

Proof. The first part of the corollary is a consequence of Theorem 5.2.18 and the
above mentioned isometries between the models of the hyperbolic plane [Ebe85,
Page 134]. It gives the commutative diagram:

(H2)
u
λ P1(2,R)uλ P1(2,Ru) ∩ (Oµ)

3 H2(Ru) ∩ (Oµ)
3

P1
(
2,Ru

µ

)

T u T u
P1 TP1Ru

µ TRu
µ.

η

The Γ-equivariance is a direct consequence of the SL2(R)-equivariance of the
isometry H2 → P1(2,R) and [BIPP23, Lemma 5.12].

With the notations from Theorem 5.2.18 and (Ru
µ)O := Oµ/Jµ, endow TRu

µ

with the orientation coming from the orientation on S1((Ru
µ)O), which we de-

note by or(Ru
µ)O , see Subsection 5.2.1 and Corollary 5.2.11. Endow also T u :=

Coneu (H2, (λk) , (0)) with the ultralimit orientation defined in Theorem 5.1.30.
That is, if GT u([Pk]

u) denotes the germs of oriented segments at [Pk]
u ∈ T u, then

the map oru([Pk]
u):

(GT u([Pk]
u))3 −→ {−1, 0, 1 };

([xk]
u, [yk]

u, [zk]
u) 7−→

{
0 if Card{ [xk]u, [yk]u, [zk]u } ≤ 2,

limu or(Pk)(xk, yk, zk) otherwise,
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which is a cyclic order on GT u([Pk]
u), where or(Pk) is the cyclic order at GH2(Pk)

given by the standard orientation on H2.

Theorem 5.2.22. With the above defined orientations on T u and TRu
µ, the Γ-

equivariant isometry Ψ: T u → TRu
µ from Corollary 5.2.21 is orientation preserving.

Proof. Let pu := [(p1+ip2)k]
u ∈ T u and consider three germs of oriented segments in

GT u(pu) represented by xu := [(x1+ix2)k], yu := [(y1+iy2)k]
u, zu := [(z1+iz2)k]

u ∈ T u

at the same distance to pu. For the projection map π : H2(Ru
µ) → TRu

µ, consider

(Xk) :=
[
X1
k

]u
+ i
[
X2
k

]u ∈ π−1
([
x1k
]u

+ i
[
x2k
]u)

= π−1 (Ψ (xu)) ,

(Yk) :=
[
Y 1
k

]u
+ i
[
Y 2
k

]u ∈ π−1
([
y1k
]u

+ i
[
y2k
]u)

= π−1 (Ψ (yu)) ,

(Zk) :=
[
Z1
k

]u
+ i
[
Z2
k

]u ∈ π−1
([
z1k
]u

+ i
[
z2k
]u)

= π−1 (Ψ (zu))

with the right distance to (Pk) := [P 1
k ]

u + i[P 2
k ]

u ∈ π−1([p1k]
u + i[p2k]

u) = π−1(Ψ(pu))
so that they correspond to elements of S1(Ru

µ), see Remark 5.2.12. Then

or(Ru
µ)O(Ψ(pu))(Ψ(xu),Ψ(yu),Ψ(zu)) = orRu

µ
((Pk))((Xk), (Yk), (Zk))

= sgnRu
µ
detRu

µ
((Yk)− (Xk), (Zk)− (Yk))

= sgnRu
µ
[det(Yk −Xk, Zk − Yk)]

u

= sgnRu
µ
[orR(Pk)(Xk, Yk, Zk)]

u

= lim
u
orR(Pk)(Xk, Yk, Zk),

where Xk = (X1 + iX2)k ∈ H2 for every k ∈ N and similarly for Yk and Zk. The
third equality holds because of the field operations of Ru

µ and the last one because of
the definition of the order on Ru

µ. Finally, since Ψ preserves the distance (Theorem
5.2.18), both [(X1 + iX2)k] = [(x1 + x2)k] ∈ T u so that

lim
u
orR(Pk)(Xk, Yk, Zk) = lim

u
orR(p)

((
x1 + ix2

)
k
,
(
y1 + iy2

)
k
,
(
z1 + iz2

)
k

)

and Ψ is orientation preserving.

We associated a Γ-action by isometries preserving the orientation on an oriented
R-tree to every element in ∂Ξ(Γ,PSL2(R))RSp

cl . Moreover, the constructed orienta-
tion is natural and described by ultralimits of orientation on H2. This is partly
due to the fact that the orientation on the circle is described by a semialgebraic
equation and the naturalness of the real spectrum compactification in terms of
asymptotic methods. In the next and final section, we use the results obtained so
far to construct a continuous surjection from the real spectrum compactification to
the oriented compactification of the character variety.
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5.3 A continuous surjection between both com-

pactifications

In this section we construct a continuous surjective map from Ξ(Γ,PSL2(R))RSp
cl

to Ξ(Γ,PSL2(R))O. By Theorem 5.2.2, every [ϕ,F] ∈ ∂Ξ(Γ,PSL2(R))RSp
cl is repre-

sented by a reductive representation

ϕ : Γ → PSL2(F),

where F is real closed, ϕ-minimal, non-Archimedean, and of finite transcendence
degree over Qr

. In Subsection 5.2.1, we constructed an oriented ϕ-minimal R-tree
(ϕ, Tϕ, orϕ) which does not depend on the choice of representative in the class [ϕ,F],
see Theorem 5.2.14 and Lemma 5.2.15.

Definition 5.3.1. This construction gives the following map:

ℶ : Ξ (Γ,PSL2(R))RSp
cl −→ Ξ (Γ,PSL2(R)) ∪ T ′;

[ϕ,F] 7−→ [ϕ,X, orϕ] =

{
[ϕ,H2, or] if F = R
[ϕ, Tϕ, orϕ] otherwise.

Lemma 5.3.2. The map ℶ defined in Definition 5.3.1 is sequentially continuous for
sequences in the interior of the character variety. That is, for every non-principal
ultrafilter u, and for every sequence [ϕk,R] ∈ Ξ(Γ,PSL2(R)) which converges to
[ϕ,F] ∈ Ξ(Γ,PSL2(R))RSp

cl in the real spectrum topology, then

ℶ[ϕ,F] = lim
u

ℶ[ϕk,R] = lim
u

[
ϕk,H2, or

]

in the oriented Gromov equivariant topology.

Proof. Since the real spectrum topology and the oriented Gromov equivariant
topology are equivalent on Ξ(Γ,PSL2(R)), it suffices to treat the case

[ϕ,F] ∈ ∂Ξ(Γ,PSL2(R))RSp
cl .

Let u be a non-principal ultrafilter and consider a sequence of representatives
(ϕk,R) ∈ MΓ(R) of [ϕk,R] such that 0 ∈ H2 minimizes the displacement function
of ϕk for every k ∈ N. Since MΓ(R)RSp

cl is compact, the sequence (ϕk,R) admits a
u-limit that we denote by (ϕ,F). By [BIPP23, Proposition 7.5], the projection map

p : MΓ(R) → Ξ(Γ,PSL2(R))

extends continuously to a map pRSp
cl : MΓ(R)RSp

cl → Ξ(Γ,PSL2(R))RSp
cl , and since

pRSp
cl (ϕk,R) converges to [ϕ,F], it holds

pRSp
cl (ϕ,F) = [ϕ,F].
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Because (ϕk,R) converges to a boundary element in ∂MΓ(R)RSp
cl , it holds lg(ϕk) →

∞. Denote by µ the sequence of scalars (elg ϕk)k, which is well adapted to (ϕk) by
[BIPP23, Lemma 5.13], and consider (ϕu

µ,Ru
µ).

Claim: The elements (ϕu
µ,Ru

µ) and (ϕ,F) are equivalent in MΓ(R)RSp
cl .

Proof: Suppose (ϕu
µ,Ru

µ) ̸= (ϕ,F) ∈ MΓ(R)RSp
cl . Since MΓ(R)RSp

cl is Hausdorff,
there exist two open sets U,U ′ with U ∩ U ′ = ∅ such that

(
ϕu
µ,Ru

µ

)
∈ U and (ϕ,F) ∈ U ′.

Since limu(ϕk,R) = (ϕ,F), it follows that (ϕk,R) ∈ U ′ u-almost surely. Let
f1, . . . , fm ∈ R[MΓ] such that U = Ũ(f1, . . . , fm). By the description of the
bijection in Theorem 5.2.2 (see [BIPP23, Proposition 6.3])

ϕu
µ(fi) = [fi(ϕk)]

u ∈ Ru
µ.

In particular, for every i ∈ { 1, . . . ,m }

ϕu
µ(fi) > 0 if and only if fi(ϕk) > 0 u-almost surely

if and only if ϕk ∈ Ũ(fi).

Thus ϕk ∈ U ∩ U ′ u-almost surely, which is a contradiction U ∩ U ′ = ∅ so that
(ϕu

µ,Ru
µ) = (ϕ,F) ∈ MΓ(R)RSp

cl

By Theorem 5.2.2, there exists an order preserving field morphism

ψ : F → Ru
µ

such that ψ ◦ ϕ and ϕu
µ are PSL2(Ru

µ)-conjugate. Thus, by Theorem 5.2.14, there
exists a Γ-equivariant isometry

ψF : (ϕ, Tϕ, orϕ) →
(
ϕu
µ, Tϕuµ , orϕuµ

)

which is orientation preserving. By Theorem 5.2.22, there exists

Ψ: TRu
µ → T u

a Γ-equivariant isometry (for the Γ actions induced by ϕu
µ and limu ϕk, see Corollary

5.2.21), which is orientation preserving for the orientations or(Ru
µ)O on TRu

µ and
oru on T u. Since Tϕuµ ⊂ TRu

µ, we obtain a Γ-equivariant orientation preserving
isometric embedding

ψu := Ψ ◦ ψF : (ϕ, Tϕ, orϕ) → (ϕu, T u, oru).

Since the ϕu-invariant minimal subtree of T u is unique, up to isometry [Pau89,
Proposition 2.4], it is contained in ψu(Tϕ), so that ψu induces a Γ-equivariant
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orientation preserving isometry (ϕ, Tϕ, orϕ) → (ϕu, (T u)ϕ, or
u), where (T u)ϕ is the ϕ

u-
minimal invariant subtree of T u. Hence, up to Γ-equivariant orientation preserving
isometry

ℶ[ϕ,F] = [ϕu, (T u)ϕ, or
u] ∈ ∂Ξ(Γ,PSL2(R))O.

Finally, by Theorem 5.1.31

lim
u
(ϕk,H2, or) = [ϕu, (T u)ϕ, or

u] ∈ ∂Ξ(Γ,PSL2(R))O.

Since u is arbitrary, the map ℶ defined in Definition 5.3.1 is sequentially continuous
for sequences in the interior of the character variety.

Lemma 5.3.3. The map ℶ from Definition 5.3.1 is continuous.

Proof. Let [ϕk,Fk] ∈ Ξ(Γ,PSL2(R))RSp
cl be a sequence that converges to [ϕ,F] ∈

Ξ(Γ,PSL2(R))RSp
cl . Since Ξ(Γ,PSL2(R))RSp

cl is metrizable by the first item of
[BIPP23, Proposition 2.33], consider a countable basis of open neighborhoods
(B([ϕ,F], 1/N))N ⊂ Ξ(Γ,PSL2(R))RSp

cl around [ϕ,F], where B([ϕ,F], 1/N) denotes
the open ball of radius 1/N centered at [ϕ,F] for a fixed metric defining the spec-
tral topology. Since ([ϕk,Fk])k converges to [ϕ,F], for every N ∈ N, there exists
n1(N) > N such that

∀m > n1(N) [ϕm,Fm] ∈ B

(
[ϕ,F] ,

1

N

)
.

Suppose, for contradiction, that (ℶ[ϕk,Fk])k does not converge to ℶ[ϕ,F]. That is,
there exists U ∈ Ξ(Γ,PSL2(R))O open such that ℶ[ϕ,F] ∈ U and

∀N ∈ N, ∃n(N) ≥ n1(N) with ℶ[ϕn(N),Fn(N)] ̸∈ U.

Thus the function n : N → N is strictly increasing and the sequence ([ϕn(N),Fn(N)])N
verifies:

[ϕn(N),Fn(N)] ∈ B

(
[ϕ,F],

1

N

)
and ℶ[ϕn(N),Fn(N)] ̸∈ U.

Since Ξ(Γ,PSL2(R))O is compact and Hausdorff, it is normal. In particular, with
Ξ(Γ,PSL2(R))O\U closed and ℶ[ϕ,F] ∈ U , there exist U1, U2 ⊂ Ξ(Γ,PSL2(R))O
open such that

Ξ(Γ,PSL2(R))O\U ⊂ U1, ℶ[ϕ,F] ∈ U2, and U1 ∩ U2 = ∅.

By the density of Ξ(Γ,PSL2(R)) in Ξ(Γ,PSL2(R))RSp
cl , for every N ∈ N, there exists

a sequence ([ϕmn(N),R])m ∈ Ξ(Γ,PSL2(R))RSp
cl such that

lim
m

[
ϕmn(N),R

]
= [ϕn(N),Fn(N)]
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in the spectral topology. By Lemma 5.3.2

lim
m

ℶ[ϕmn(N),R] = ℶ[ϕn(N),Fn(N)] ∈ U1.

Hence, there exists ℓ1(N) ∈ N with ℶ[ϕmn(N),R] ∈ U1 for all m ≥ ℓ1(N). Up to
considering a subsequence, we assume that ℓ1 is strictly increasing with N , and
define the sequence ([

ϕ
ℓ1(N)
n(N) ,R

])
N
∈ Ξ(Γ,PSL2(R)).

Since [ϕn(N),Fn(N)] ∈ B([ϕ,F], 1/N) is open, there exists ℓ(N) ≥ ℓ1(N) with

∀m ≥ ℓ(N)
[
ϕmn(N),R

]
∈ B

(
[ϕ,F],

1

N

)
.

Hence the sequence ([ϕ
ℓ(N)
n(N),R])N verifies

lim
N

[
ϕ
ℓ(N)
n(N),R

]
= [ϕ,F], and ℶ

[
ϕ
ℓ(N)
n(N),R

]
∈ U1

for every N ∈ N. This is a contradiction with Lemma 5.3.2. Thus

lim
u

ℶ[ϕk,Fk] = ℶ[ϕ,F]

so that ℶ is sequentially continuous. Finally, Ξ(Γ,PSL2(R))RSp
cl is metrizable by

the first item of [BIPP23, Proposition 2.33], so that sequential continuity implies
continuity. Hence ℶ is continuous.

Theorem 5.3.4. The map ℶ : Ξ(Γ,PSL2(R))RSp
cl → Ξ(Γ,PSL2(R))O from Defini-

tion 5.3.1 is a continuous surjection.

Proof. From Lemma 5.3.3, ℶ is continuous and is the identity on Ξ(Γ,PSL2(R)).
Therefore ℶ(Ξ(Γ,PSL2(R))RSp

cl ) is a compact set that contains Ξ(Γ,PSL2(R)).
Since the oriented Gromov equivariant topology is Hausdorff (Subsection 5.1.2),
ℶ(Ξ(Γ,PSL2(R))RSp

cl ) is in particular closed. Because the character variety is dense
within its oriented compactification, we have the inclusion

Ξ (Γ,PSL2(R))O ⊂ ℶ
(
Ξ (Γ,PSL2(R))RSp

cl

)
.

Moreover, by density of the character variety within its real spectrum compactifica-
tion and continuity of ℶ, the space Ξ(Γ,PSL2(R)) = ℶ(Ξ(Γ,PSL2(R))) is dense in
the image of ℶ. Hence

ℶ
(
Ξ (Γ,PSL2(R))RSp

cl

)
= Ξ (Γ,PSL2(R))O ,

so that ℶ is continuous and surjective.
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[Poi84] H. Poincaré. Sur les groupes des équations linéaires. Acta Math.,
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Chapter 6

Annexe: a homogeneous
incomplete real tree with complete
segments

This chapter is based on the article [ADRFJ24]. The text reproduced here is the
author’s manuscript version, which may differ from the final published version due
to editorial modifications.
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AN INCOMPLETE REAL TREE WITH

COMPLETE SEGMENTS

RAPHAEL APPENZELLER, LUCA DE ROSA, XENIA FLAMM, VICTOR JAECK

Abstract. Let F be the field of real Puiseux series and TF the PSL(2,F)–
homogeneous Q–tree defined by Brumfiel. We show that completing all
the segments of TF does not result in a complete metric space.

1. Introduction

Actions on real trees, or more generally on Λ–trees, appear in various
ways in the study of degenerations of isotopy classes of marked hyperbolic
structures on surfaces, see for example [Bru88a, MS84, MS91], and more
recently [BIPP21a, BIPP23]. If Λ is a dense subgroup of (R,+) and T is a
Λ–tree, we can define the real tree

T sc :=
⋃

s segment in T
s,

where s is the metric completion of the segment s in T . Then the Λ–tree
T isometrically embeds in T sc. The construction of T sc is a special case of
the base-change functor defined in [Chi01, Chapter 2, Section 4], which is
generalized in [SS12] to affine Λ–buildings.

In this article we give an example of a Q–tree T , as defined by Brumfiel
[Bru88b], for which T sc is not a complete metric space. For this let K be a
non-Archimedean valued real closed field with value group Λ < R, and TK
its associated Λ–tree as in [Bru88b], see Section 2 for the definition. We call
T sc
K the segment completion tree associated to K.

Theorem 1. Let F be the field of real Puiseux series with Q–valuation, and
TF its associated Q–tree. Then T sc

F is not metrically complete.

This gives an example of a Q–tree with a transitive PSL(2,F)–action by
isometries, whose segment completion is not complete. The action extends
to a continuous action on T sc

F by isometries.
The result as well as the main idea of the proof is perhaps well-known

to those working in the field, but the authors are not aware of an explicit
example in the literature. We give a geometric proof of Theorem 1 by
constructing a Cauchy sequence in TF that does not converge in T sc

F . This
sequence is contained in infinitely many different isometric copies of Q in
TF. Intuitively it can be thought of as a sequence with infinitely many
branching points, see Figure 3. A written note of Anne Parreau inspired the

Date: August 1, 2025.
2020 Mathematics Subject Classification. 51M10, 54E50, 20E08.
Key words and phrases. Λ–trees, completions, non-Archimedean ordered fields.
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explicit Cauchy sequence not converging in T sc
F . The authors expanded on

her example and proved that this sequence does not converge.
Actions on affine Λ–buildings appear in the study of degenerations of

(higher rank) Teichmüller representations [BIPP21a, BIPP21b, BIPP23,
Par00]. Their metric completions are CAT(0) for a suitable metric, see
[BIPP21b, Proposition 10]. A natural question is whether such completions
are obtained by completing every apartment. The example of Theorem 1
could answer this question in the negative.

We finish the introduction with two small remarks. First, the complete-
ness of general R–trees has been addressed in [CMSP08]. Second, [BT72,
Theorem 7.5.3] and [MSSS13] characterize the completeness of Bruhat–
Tits buildings, which are examples of R–trees and affine R–buildings. For
SL2(K), we expect the Bruhat–Tits building to be isomorphic to the seg-
ment completion tree associated to K; a question which will be addressed in
upcoming work. Theorem 1 would then follow from [BT72, Theorem 7.5.3],
since the field of real Puiseux series is not spherically complete. However
this isometry is in our knowledge not known.

After introducing the necessary background in Section 2, we prove Theo-
rem 1 in Section 3. We thank Anne Parreau for her support and for pointing
us to the right chapter in [BT72]. We are thankful to Marc Burger, Anne
Parreau and Beatrice Pozzetti for constructive discussions and feedback. We
appreciate the valuable feedback of an anonymous referee.

2. Preliminaries

An ordered field K is called real closed if every positive element is a square
and every polynomial of odd degree has a root. It is non-Archimedean if
there is an element that is larger than any n ∈ N ⊆ K. For an ordered abelian
group Λ, a Λ–valuation of K is a map v : K→ Λ∪{∞}, that satisfies v(a) =
∞ if and only if a = 0, v(ab) = v(a) + v(b) and v(a + b) ≥ min{v(a), v(b)}
with equality if v(a) 6= v(b), for all a, b ∈ K. It is order-compatible if for
0 ≤ a ≤ b one has ν(b) ≤ ν(a). For the remainder of this article we work
with the following valued real closed field F, where Λ = Q. The field of real
Puiseux series is the set

F :=

{
k0∑

k=−∞
ckX

k
m

∣∣∣∣∣ k0,m ∈ Z, m > 0, ck ∈ R, ck0 6= 0

}
,

with the order such that X is larger than any real number. For a ∈ F denote
by F>a and F≥a the elements of F that are larger and larger or equal to a
in this order respectively. The real Puiseux series form a non-Archimedean,
real closed extension of the ordered field of rational functions in one variable
R(X) with the compatible order [BCR98, Example 1.3.6.b)]. The logarithm

log : F>0 → Q,
k0∑

k=−∞
ckX

k
m 7→ k0

m

is order preserving, and − log | · | is an order-compatible Q–valuation of F by
setting log(0) := −∞, where |a| := max{a,−a} denotes the F–valued abso-
lute value on F. In particular we have for all a, b ∈ F>0, log(ab) = log(a) +
log(b) and log(a+ b) ≤ max{log(a), log(b)} with equality if log(a) 6= log(b).
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z

z
′

w w
′

Figure 1. Two points z and z′ in HF determine a quadruple
(w, z, z′, w′), to which a cross-ratio CR(w, z, z′, w′) ∈ F≥1 can
be associated.

Following the construction in [Bru88b], we define the non-Archimedean hy-
perbolic plane over F as the set

HF := {x+ iy | x, y ∈ F, y > 0} ⊆ F[i],

where i is such that i2 = −1. Mimicking the real case, there is a pseudo-
distance d defined on HF as follows. Given z = x+iy and z′ = x′+iy′ in HF,
consider the unique F–line passing through them, that is, either the vertical
ray going through these two points if x = x′, or the half-circle through z and
z′ whose center is on the “real axis” {y = 0}. Denote the endpoints of the
F–line by w and w′ such that w, z, z′, w′ appear in this order on the F–line,
see Figure 1. Since F is real closed, we can define the cross-ratio CR on HF
analogously as for the real hyperbolic plane by

CR(w, z, z′, w′) :=
‖z − w′‖F
‖z − w‖F

· ‖z
′ − w‖F

‖z′ − w′‖F
∈ F≥1,

where ‖u‖F :=
√
uū ∈ F≥0 for u = u1 + iu2 ∈ F[i] and ū = u1 − iu2. Note

that uū ≥ 0 and since F is real closed this element has a positive square root
in F. Brumfiel [Bru88b, Equation (18)] showed that

d(z, z′) := log CR(w, z, z′, w′) ∈ R≥0

is a pseudo-distance on HF. Note that two points can have distance zero
because log is not injective. By the properties of log, we obtain the following
description of the pseudo-distance, which we use from now on, see [Bru88b,
Equation (19)].

Remark 2.1. Let z = x + iy and z′ = x′ + iy′ be points in HF, then we
have

d(z, z′) = log

(
(x− x′)2 + y2 + y′2

yy′

)

= max

{
log

(
(x− x′)2

yy′

)
, log

(
y

y′

)
, log

(
y′

y

)}
.

Consider the equivalence relation on HF which identifies z with z′ if and
only if d(z, z′) = 0 and denote by π the projection

π : HF → HF
/
{d = 0} =: TF.

In [Bru88b, Theorem (28)], Brumfiel showed that TF is a Λ–tree, with Λ = Q.
We now define Λ–trees following [Chi01].
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Let Λ be an ordered abelian group. A set X together with a function
d : X ×X → Λ is a Λ–metric space if d is positive definite, symmetric and
satisfies the triangle inequality. The group Λ is itself a Λ–metric space by
defining d(a, b) := |b − a| := max{a − b, b − a}. A segment s is the image
of a Λ–isometric embedding ϕ : [a, b]Λ = {t ∈ Λ: a ≤ t ≤ b} → X for some
a ≤ b ∈ Λ, and the set of endpoints of s is {ϕ(a), ϕ(b)}. We call the image
of an isometric embedding of Λ a Λ–geodesic. A Λ–tree is a Λ–metric space
satisfying the following three properties:

(a) For all x, y ∈ X there is a segment s with endpoints x, y.
(b) For all segments s, s′ whose intersection s ∩ s′ = {x} consists of one

common endpoint x of both segments, the union s∪ s′ is a segment.
(c) For all segments s, s′ with a common endpoint x, the intersection

s ∩ s′ is a segment with x as one of its endpoints.

By [Chi01, Lemma II.1.1], segments in a Λ–tree are unique. We write [x, y]
for the unique segment with endpoints x, y ∈ X. We use the following
statement later.

Lemma 2.2. Let X be a Λ–tree and x, y, z ∈ X. Then [y, z] ⊆ [x, y]∪ [x, z].

Proof. By axiom (c) of Λ–trees there is a point r ∈ X with [x, r] = [x, y] ∩
[x, z]. Since then [r, y] ∩ [r, z] = {r}, we have by axiom (b) (and uniqueness
of segments) that [y, z] = [y, r] ∪ [r, z] ⊆ [x, y] ∪ [x, z]. �

3. Proof of Theorem 1

This section is concerned with the proof of Theorem 1, which states that
the segment completion tree T sc

F associated to the field of real Puiseux series
F, is not metrically complete. We construct an explicit Cauchy sequence
(π(pn))n∈N in TF, whose isometric embedding does not converge in T sc

F .
Let us first define a sequence of rational exponents tn to define points

pn := an + ibn ∈ HF whose projections π(pn) ∈ TF will form the Cauchy
sequence that does not converge. Let t0 := 0 ∈ Q, a0 := 0, b0 := 1 ∈ F and
for n ≥ 1 define

tn :=
n∑

k=1

− 1

2k
= −2n − 1

2n
= −1 +

1

2n
∈ Q,

an :=
n∑

k=1

Xtk = Xt1 +Xt2 + · · ·+Xtn ∈ F>0,

bn := Xtn ∈ F>0.

We note that tn is a monotonically decreasing sequence converging to −1,
an is monotonically increasing and bn is monotonically decreasing. Figure 2
contains a schematic picture of the sequence (pn = an + ibn)n∈N in HF.

Lemma 3.1. The sequence (pn)n∈N is a Cauchy sequence in HF.
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i

ib1

ib2

a1 a2 a3

ib3

p1

p2

p3

Figure 2. The sequence (pn)n∈N in the upper half plane HF.

Proof. Let n ≤ m. Then tm ≤ tn, and, using the distance formula from
Remark 2.1, we obtain

d(pn, pm) = log

(
(am − an)2 + b2n + b2m

bnbm

)

= log



(

m∑

k=n+1

Xtk

)2

+
(
Xtn

)2
+
(
Xtm

)2

− log

(
XtnXtm

)

= 2tn − (tn + tm) = tn − tm → 0 (as n,m→∞)

and thus (pn)n∈N is a Cauchy sequence. �
The following lemma is a general fact about the distance function in HF.

Lemma 3.2. For every x, x′ in F, there exists y ∈ F>0 such that

d
(
x+ iy, x′ + iy

)
= 0.

Furthermore, for all y ∈ F>0 with d(x + iy, x′ + iy) = 0 and all t ≥ 0, it
holds that d(x+ i(y + t), x′ + i(y + t)) = 0.

Proof. Define y := X log |x−x′| > 0 so that, using Remark 2.1, we obtain

d(x+ iy, x′ + iy) = max
{

log
((
x− x′

)2)− logX2 log |x−x′|, 0
}

= 0.

The second equality follows from log(y + t) ≥ log(y) and that hence the

expression log((x− x′)2)− log(X2 log |x−x′| + t) is negative. �
Intuitively Lemma 3.2 tells us that two vertical F–lines in HF are identified

from some point on in TF, forming an infinite tripod. In Lemma 3.3, we
refine this statement for the sequence of vertical F–lines `n := an + iF>0.
The situation is illustrated in Figure 3.

Lemma 3.3. Let n ∈ N, b ∈ F>0. Consider the vertical F–lines `n, `n+1.

(i) If log(b) ≥ log(bn+1) = tn+1, then d(an + ib, an+1 + ib) = 0.
(ii) If log(b) < log(bn+1) = tn+1, then all points in `n+1 have non-zero

distance to an + ib.

Proof.
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i

ib1

ib2

a1 a2 a3

ib3

p1

p2

p3

π(p1)

π(p2)
π

π(p3)

Figure 3. The points pn ∈ `n ⊆ HF correspond to branch-
ing points π(pn) of π(`n−1) and π(`n) in TF.

(i) If log(b) = log(bn+1), we use log(an+1 − an) = log(bn+1) to see that

d(an + ib, an+1 + ib) = max

{
log

(
(an+1 − an)2

b2n+1

)
, 0

}
= 0.

If log(b) > log(bn+1), then also b > bn+1 and the statement follows from
the second part of Lemma 3.2.

(ii) Let an+1 + ib′ be a point in `n+1 for some b′ ∈ F>0. First, assume
b′ < bn+1 = Xtn+1 , in which case log(bb′) < 2tn+1 holds. Then

d(an + ib, an+1 + ib′) = log

(
(an+1 − an)2 + b2 + b′2

bb′

)

= log
(
X2tn+1 + b2 + b′2

)
− log(bb′)

= log
(
X2tn+1

)
− log(bb′) > 0.

Second, assume b′ ≥ bn+1 = Xtn+1 . We use (i) to see that d(an + ib′,
an+1 + ib′) = 0. Then, using d(an + ib, an + ib′) = log(b′) − log(b) > 0,
we conclude

d
(
an + ib, an+1 + ib′

)
= d

(
an + ib, an+1 + ib′

)
+ d

(
an + ib′, an+1 + ib′

)

≥ d
(
an + ib, an + ib′

)
> 0.

�

Lemma 3.3 implies that for all n ∈ N the Q–geodesics π(`n) and π(`n+1)
in TF branch off at the point π(pn+1). By Lemma 3.1, (pn)n∈N and hence
also (π(pn))n∈N are Cauchy sequences. The next proposition shows that
(π(pn))n∈N does not converge in the R–tree T sc

F . Intuitively, the sequence
(π(pn))n∈N does not stay in π(`m) for any m ∈ N, and hence the limit point
is not contained in the completion of any of the Q–geodesics π(`m). In fact,
the following proposition shows that it is not contained in the completion of
any Q–geodesic in TF. The sequence (π(pn))n∈N ⊆ TF is a Cauchy sequence
by Lemma 3.1 and thus Theorem 1 follows from the following proposition.

Proposition 3.4. The sequence (π(pn))n∈N does not converge in T sc
F .
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an aN a

pn

p−1 q−1

p
′

n qn

pN qN

π(p−1) = π(q−1)

π(pn) = π(p′
n
) π(qn)

π(pN) π(qN)

p

π

Figure 4. The setup to prove π(pn) = π(qn) in Step 2. The
tripod on the right is the image under π of the two vertical
lines in bold on the left.

Proof. We assume by contradiction that π(pn) converges to some p ∈ T sc
F .

Since T sc
F is by definition the union of the completions of the segments of

TF, we can find a segment s in TF, such that p lies in its completion s.
Step 1. Our first goal is to show that we may assume that s is con-

tained in the image of a vertical F–line ` of HF. The segment s has two
endpoints in the tree TF. Choose preimages z1 = x1 + iy1 and z2 =
x2 + iy2 ∈ HF so that π(z1) and π(z2) are the endpoints of s. By Lemma
3.2, there is a large enough y ∈ F>0 with d (x1 + iy, x2 + iy) = 0, hence
π(x1 + iy) = π(x2 + iy) ∈ TF. Lemma 2.2 implies that s = [π(z1), π(z2)] ⊆
[π(x1 + iy), π(z1)] ∪ [π(x2 + iy), π(z2)]. We conclude that at least one of
the completions of the segments [π(z1), π(x1 + iy)] or [π(z2), π(x2 + iy)]
has to contain p. Without loss of generality p lies in the completion of
[π(z1), π(x1 + iy)]. Set a := x1 ∈ F so that the vertical F–line ` := a+ iF>0

is such that p lies in the completion of π(`).
Step 2. We define points qn = a + iXtn ∈ ` ⊆ HF and claim that

d(pn, qn) = 0 for all n ∈ N, see Figure 4. To show this, fix n and let N ∈ N be
large enough so that d(π(pN ), p) < d(π(pn), p). Consider the vertical F–line
`N = aN + iF>0 ⊆ HF that contains both pN and the point p′n = aN + iXtn .
By Lemma 3.3 (i), d(pn, p

′
n) = 0 and hence π(pn) = π(p′n) ∈ π(`N ). By

Lemma 3.2 we can find points p−1 = aN + ib ∈ `N and q−1 = a+ ib ∈ ` with
d(p−1, q−1) = 0. We distinguish two cases, and show that in fact the second
case cannot occur.

Case 1: π(pn) ∈ π(`). Then there exists y ∈ F>0 such that π(a + iy) =
π(pn) ∈ π(`). But this means nothing else than d(pn, a + iy) = 0. We use
pn = an + iXtn and Remark 2.1 to get

0 = d(pn, a+ iy) = max

{
log

(
(a− an)2

Xtny

)
, tn − log(y), log(y)− tn

}
.

Hence log y = tn so that we conclude

d(pn, qn) = max

{
log

(
(a− an)2

X2tn

)
, 0

}
= d(pn, a+ iy) = 0.

Case 2: π(pn) ∈ π(`N ) \ π(`). The goal is to show that in fact this
case cannot occur. Observe that π(pN ) ∈ π(`N ) \ π(`), since otherwise
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π(pN ) = π(qN ) as in Case 1, and the second part of Lemma 3.2 would then
imply that π(pn) = π(qn) ∈ π(`). By Lemma 2.2 we have for every r ∈ π(`),
[π(pN ), π(p−1)] ⊆ [r, π(pN )]∪[r, π(p−1)]. Since π(pn) ∈ [π(pN ), π(p−1)]\π(`)
and [r, π(p−1)] ⊆ π(`), we have π(pn) ∈ [π(pN ), r] and hence

d(π(pN ), π(pn)) + d(π(pn), r) = d(π(pN ), r).

By density of Q in R, choose r ∈ π(`) close to p in the sense that d(r, p) <
d(pn, pN ). Without loss of generality we may assume that d(π(pN ), r) <
d(π(pN ), p). We then have

d(π(pn), p) ≤ d(π(pn), r) + d(r, p) < d(π(pn), r) + d(π(pn), π(pN ))

= d(π(pN ), r) < d(π(pN ), p) < d(π(pn), p),

where the last inequality comes from the choice of N . This is a contradiction.
Step 3. Next we would like to get a bound on log |a− an|. We use

Remark 2.1 to obtain

0 = d(pn, qn) = max

{
log

(
(a− an)2

X2tn

)
, 0

}

= max {2 (log |a− an| − tn) , 0} ,

which implies log |a− an| ≤ tn.
Step 4. Recall that an =

∑n
j=1X

tj and tj = (1−2j)/2j is monotonically
decreasing in j. By definition of F, there exist m ∈ N, k0 ∈ Z and ck ∈ R
such that a ∈ F can be written as

a =

k0∑

k=−∞
ckX

k
m .

Let us also write for every n ∈ N

a− an =

k0,n∑

k=−∞
dk,nX

k
mn ,

for mn ∈ N, k0,n ∈ Z and dk,n ∈ R, such that k0,n := max{k ∈ Z : dk,n 6= 0}.
From Step 3 we obtain that

k0,n

mn
= log |a− an| ≤ tn.

Thus for every n ∈ N we have

a− an =

k0∑

k=−∞
ckX

k
m −

n∑

j=1

Xtj =

k0,n∑

k=−∞
dk,nX

k
mn ,

where k0,n/mn is less or equal than tn. Since the sequence (tn)n∈N is mono-
tonically decreasing, it means that the series expansion for a contains the
terms Xtj for all j ∈ {1, . . . , n−1} which cancel the terms Xtj in an. In other
words mtj ∈ Z, which is equivalent to m/2j ∈ Z for all j ∈ {1, . . . , n − 1}
by definition of tj . As this holds for every n ∈ N, we obtain a contradiction,
since there is no m ∈ Z such that m/2j ∈ Z for all j ∈ N. �
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Email address: xenia.flamm@math.ethz.ch

Department of Mathematics, ETH Zürich, Switzerland
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