Some bias and a pinch of variance Sara van de Geer November 2, 2016 Joint work with: Andreas Elsener, Alan Muro, Jana Janková, Benjamin Stucky \dots this talk is about theory for machine learning algorithms \dots ... this talk is about theory for machine learning algorithms for high-dimensional data ... # ... it is about <u>prediction</u> performance of algorithms trained on random data ... ``` it is not about the scripts used ``` ``` procedure Transpose (a)Order:(n); value n; array a; integer n; begin real w; integer i, k; for i := 1 step 1 until n do for k := 1+1 step 1 until n do begin w := a[i,k]; a[i,k] := a[k,1]; a[k,i] := w end end Transpose ``` ## Concepts: Sparsity Effective sparsity Margin Curvature Triangle property #### Concepts: **Sparsity** Effective sparsity Margin Curvature Triangle property #### Problem: Let $$f: \mathcal{X} \to \mathbb{R}, \ \mathcal{X} \subset \mathbb{R}^m$$ Find $$\min_{x \in \mathcal{X}} f(x)$$ #### Problem: Let $$f: \mathcal{X} \to \mathbb{R}, \ \mathcal{X} \subset \mathbb{R}^m$$ Find $$\min_{x \in \mathcal{X}} f(x)$$ #### Severe Problem: The function *f* is unknown! #### What we do know: $$f(x) = \int \ell(x, y) dP(y) =: f_P(x)$$ #### where $\circ \ell(x,y)$ is a given "loss" function: $$\ell: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$$ \circ *P* is an unknown probability measure on the space ${\cal Y}$ #### Example - $\circ \mathcal{X} := \mathsf{the} \; \mathsf{persons} \; \mathsf{you} \; \mathsf{consider} \; \mathsf{marrying}$ - $\circ \mathcal{Y} := \mathsf{possible}$ states of the world - $\circ \ell(x,y) :=$ the loss when marrying x in world y - $\circ P :=$ the distribution of possible states of the world - $\circ f(x) = \int \ell(x, y) dP(y)$ the "risk" of marrying x Let Q be a $\operatorname{\underline{given}}$ probability measure on $\mathcal Y$ We replace P by Q: $$f_Q(x) := \int \ell(x,y) dQ(y)$$ and estimate $$x^P := \arg\min_{x \in \mathcal{X}} f_P(x)$$ by $$x^Q := \arg\min_{x \in \mathcal{X}} f_Q(x)$$ #### Question: How "good" is this estimate? #### Question: Is $$x^Q$$ close to x^P ? $f(x^Q)$ close to $f(x^P)$... in our setup ... we have to regularize: accept some bias to reduce variance #### Our setup: Q:= corresponds to a sample Y_1,\ldots,Y_n from P n:= sample size Thus $$f^{Q}(x) := \hat{f}_{n}(x) = \frac{1}{n} \sum_{i=1}^{n} \ell(x, Y_{i}), \ x \in \mathcal{X} \subset \mathbb{R}^{m}$$ (a random function) ## number of parameters m number of observations n high-dimensional statistics: $m \gg n$ ## DATA $$Y_1, \ldots, Y_n$$ $$\downarrow$$ $$\hat{x} \in \mathbb{R}^m$$ In our setup with $m \gg n$ we need to regularize That is: accept some bias to be able to reduce the variance. # Regularized empirical risk minimization Target: $$x^P := x^0 = \arg\min_{x \in \mathcal{X} \subset \mathbb{R}^m} \underbrace{f_P(x)}_{\text{unobservable risk}}$$ #### Estimator based on sample: $$x^Q := \hat{x} := \arg\min_{x \in \mathcal{X} \subset \mathbb{R}^m} \left\{ \underbrace{f_Q(x)}_{\text{empirical risk}} + \underbrace{\text{pen}(x)}_{\text{regularization penalty}} \right\}$$ # Example: Let $Z \in \mathbb{R}^{n \times m}$ be a given design matrix and $b^0 \in \mathbb{R}^n$ unobserved vector Let $$\|v\|_2^2 := \sum_{i=1}^n v_i^2$$ and $$x^0 \in \arg\min_{x \in \mathbb{R}^m} \underbrace{\|b^0 - Zx\|_2^2}^{f_P(x)}$$ Sample $$Y = b^0 + \epsilon, \ \epsilon \in \mathbb{R}^n$$ noise "Lasso" with "tuning parameter" $\lambda \geq 0$: $$\hat{x} := \arg\min_{x \in \mathbb{R}^p} \left\{ \underbrace{\|Y - Zx\|_2^2}_{=\sum_{j=1}^m |x_j|} + 2\lambda \underbrace{\|x\|_1}_{=\sum_{j=1}^m |x_j|} \right\}$$ n := number of observations, m := number of parameters. #### Definition We call j an active parameter if (roughly speaking) $x_j^0 \neq 0$ We say x^0 is sparse if the number of active parameters is small We write the active set of x^0 as $$S_0 := \{j: x_j^0 \neq 0\}$$ We call $s_0 := |S_0|$ the sparsity of x^0 ## Goal: derive <u>oracle</u> inequalities for norm-penalized empirical risk minimizers <u>oracle</u>: an estimator that knows the "true" sparsity <u>oracle</u> inequalities: Adaptation to unknown sparsity ## **Benchmark** Low-dimensional $$\hat{x} = \arg\min_{x \in \mathcal{X} \subset \mathbb{R}^m} \hat{f}_n(x)$$ Then typically $$f_P(\hat{x}) - f_P(x^0) \sim \frac{m}{n} = \frac{\text{number of parameters}}{\text{number of observations}}$$ High-dimensional $$\hat{x} = rg\min_{x \in \mathcal{X} \subset \mathbb{R}^m} \left\{ \hat{f}_{n}(x) + \mathrm{pen}(x) ight\}$$ Aim is Adaptation $$f_P(\hat{x}) - f_P(x^0) \sim \frac{s_0}{n} = \frac{\text{number of active parameters}}{\text{number of observations}}$$ #### Concepts: Sparsity Effective sparsity Margin curvature Triangle property # Exact recovery Let $Z \in \mathbb{R}^{n \times m}$ be given and $b^0 \in \mathbb{R}^n$ be given with $m \gg n$ Consider the system $$Zx^0=b^0$$ of *n* equations with *m* unknowns Basis pursuit: $$x^* := \arg\min_{x \in \mathbb{R}^m} \left\{ \|x\|_1 : \ Zx = b^0 \right\}$$ ## **Notation** #### Active set: $$S_0 := \{j: x_i^0 \neq 0\}$$ ## Sparsity: $$s_0 := |S_0|$$ Effective sparsity: $$\Gamma_0^2 := \frac{s_0}{\hat{\phi}^2(S_0)} = \max \left\{ \frac{\|x_{S_0}\|_1^2}{\|Zx\|_2^2/n} : \underbrace{\|x_{-S_0}\|_1 \le \|x_{S_0}\|_1}_{\text{"cone condition"}} \right\}$$ Compatibility constant: $\hat{\phi}^2(S_0)$ # The compatibility constant is canonical correlation ... in the ℓ_1 -world The effective sparsity Γ_0^2 is \approx the sparsity s_0 but taking into account the correlation between variables. ## Compatibility constant: (in \mathbb{R}^2) $$\hat{\phi}(\mathcal{S}) = \hat{\phi}(1,\mathcal{S})$$ for the case $\mathcal{S} = \{1\}$ ## Basis Pursuit Z given $n \times m$ matrix with $m \gg n$. Let x^0 be the sparsest solution of $Zx = b^0$. Basis Pursuit [Chen, Donoho and Saunders (1998)]: $$x^* := \min \left\{ \|x\|_1 : Zx = b^0 \right\}$$ #### Exact recovery $$\Gamma(S_0) < \infty \Rightarrow x^* = x^0$$ ## Concepts: Sparsity Effective sparsity Margin curvature Triangle property ## General norms Let Ω be a norm on \mathbb{R}^m $_{\Omega\mathrm{-world}}^{\mathrm{The}}$ # Norm-regularized empirical risk minimization $$x^Q := \hat{x} := \arg\min_{x \in \mathcal{X} \subset \mathbb{R}^m} \left\{ \underbrace{f_Q(x)}_{\text{empirical risk}} + \underbrace{\lambda \Omega(x)}_{\text{regularization penalty}} \right\}$$ #### where - $\circ \Omega$ is a given norm on \mathbb{R}^p , - $\circ \lambda > 0$ is a tuning parameter # Examples of norms $$\ell_1$$ -norm: $\Omega(x) = ||x||_1 =: \sum_{j=1}^m |x_j|$ # Examples of norms $$\ell_1$$ -norm: $\Omega(x) = ||x||_1 =: \sum_{j=1}^m |x_j|$ Oscar: given $\tilde{\lambda} > 0$ $$\Omega(x) := \sum_{j=1}^{p} (\tilde{\lambda}(j-1)+1)|x|_{(j)} \quad \text{where } |x|_{(1)} \ge \dots \ge |x|_{(p)}$$ [Bondell and Reich 2008] # Examples of norms $$\ell_1$$ -norm: $\Omega(x) = ||x||_1 =: \sum_{j=1}^m |x_j|$ Oscar: given $\tilde{\lambda} > 0$ $$\Omega(x) := \sum_{j=1}^{p} (\tilde{\lambda}(j-1)+1)|x|_{(j)} \quad \text{where } |x|_{(1)} \ge \dots \ge |x|_{(p)}$$ [Bondell and Reich 2008] sorted ℓ_1 -norm: given $\lambda_1 \ge \cdots \ge \lambda_p > 0$, $$\Omega(x) := \sum_{i=1}^{p} \lambda_j |x|_{(j)} \qquad \text{where } |x|_{(1)} \ge \dots \ge |x|_{(p)}$$ [Bogdan et al. 2013] #### norms generated from cones: $$\Omega(x) := \min_{a \in \mathcal{A}} rac{1}{2} \sum_{j=1}^m \left[rac{x_j^2}{a_j} + a_j ight]$$, $\mathcal{A} \subset \mathbb{R}_+^m$ [Micchelli et al. 2010] [Jenatton et al. 2011] [Bach et al. 2012] $\,$ unit ball for group Lasso norm unit ball for wedge norm $\mathcal{A} = \{a: a_1 \geq a_2 \geq \cdots \}$ nuclear norm for matrices: $X \in \mathbb{R}^{m_1 \times m_2}$, $$\Omega(X) := \|X\|_{\text{nuclear}} := \text{trace}(\sqrt{X^T X})$$ nuclear norm for matrices: $X \in \mathbb{R}^{m_1 \times m_2}$, $$\Omega(X) := \|X\|_{\text{nuclear}} := \text{trace}(\sqrt{X^T X})$$ nuclear norm for tensors: $X \in \mathbb{R}^{m_1 \times m_2 \times m_3}$, $\Omega(X) := \mathsf{dual} \ \mathsf{norm} \ \mathsf{of} \ \Omega_*$ where $$\Omega_*(W) := \max_{\|u_1\|_2 = \|u_2\|_2 = \|u_3\|_2 = 1} \operatorname{trace}(W^T u_1 \otimes u_2 \otimes u_3), \ W \in \mathbb{R}^{m_1 \times m_2 \times m_3}$$ [Yuan and Zhang 2014] ## Some concepts Let $$\dot{f}_P(x) := \frac{\partial}{\partial x} f_P(x)$$ The Bregman divergence is $$D(x || \hat{x})$$ $$= f_P(x) - f_P(\hat{x}) - \dot{f}_P(\hat{x})^T (x - \hat{x})$$ $$D(x || \hat{x})$$ $$D(x || \hat{x})$$ **Definition** (Property of f_P) We have margin curvature G if $$D(x^*||\hat{x}) \geq G(\tau(x^* - \hat{x}))$$ **Definition** (Property of Ω) The triangle property holds at x^* if \exists semi-norms Ω^+ and Ω^- such that $$\left| \Omega(x^*) - \Omega(x) \leq \Omega^+(x - x^*) - \Omega^-(x) \right|$$ **Definition** The effective sparsity at x^* is $$\Gamma^2_*(L) := \max \left\{ \left(\frac{\Omega^+(x)}{\tau(x)} \right)^2 : \underbrace{\Omega^-(x) \leq L\Omega^+(x)}_{\text{"cone condition"}} \right\}$$ $L \ge 1$ is a stretching factor. ## Concepts: Sparsity Effective sparsity Margin curvature Triangle property # Norm-regularized empirical risk minimization $$x^Q := \hat{x} := \arg\min_{x \in \mathcal{X} \subset \mathbb{R}^m} \left\{ \underbrace{f_Q(x)}_{\text{empirical risk}} + \underbrace{\lambda \Omega(x)}_{\text{regularization penalty}} \right\}$$ ### where - $\circ \Omega$ is a given norm on \mathbb{R}^p , - $\circ \lambda > 0$ is a tuning parameter # A sharp oracle inequality Theorem [vdG, 2016] Let this measures how close $$Q$$ is to P $$\lambda > \lambda_{\epsilon} \geq \underline{\Omega}_{*} \left((\dot{f}_{Q} - \dot{f}_{P})(\hat{x}) \right) \stackrel{\text{i.e. remove most}}{\text{of the variance}})$$ $$\frac{1}{2} \text{dual norm}$$ Define $$\underline{\lambda} := \lambda - \lambda_{\epsilon}, \ \bar{\lambda} := \lambda + \lambda_{\epsilon}, \ L = \frac{\bar{\lambda}}{\underline{\lambda}}.$$ Then $(\text{recall } \hat{x} = x^{Q}, \ x^{0} = x^{P})$ $$f_{P}(\hat{x}) - f_{P}(x^{0}) \leq \min_{x^{*} \in \mathcal{X}} \left\{ \underbrace{f_{P}(x^{*}) - f_{P}(x^{0})}_{\text{"bias"}} + \underbrace{H(\bar{\lambda}\Gamma_{*}(L))}_{\text{pinch of "variance"}} \right\}.$$ # that is: Adaptation ### Example: Lasso $$Y \in \mathbb{R}^n$$, $Z \in \mathbb{R}^{n \times m}$ Model: $Y = b^0 + \epsilon$ $$f_P(x) := \|b^0 - Zx\|_2^2/n$$ $$\hat{x} := \arg\min_{x \in \mathbb{R}^p} \left\{ \underbrace{\|Y - Zx\|_2^2/(2n)}_{f_Q(x)} + \lambda \underbrace{\|x\|_1}_{\Omega(x)} \right\}$$ Margin curvature: $G(u) = u^2/2 \Rightarrow H(v) = v^2/2$ Effective sparsity at x^0 : $\Gamma_0^2(L) = s_0/\hat{\phi}^2(L, S_0)$ ### From the theorem: with high probability effective sparsity $$f_P(\hat{x}) - f_P(x^0) \leq C imes rac{\downarrow}{\hat{\phi}^2(L,S_0)} rac{1}{n} imes \log m$$ Adaptation # Simulation: Lasso and sorted ℓ_1 -norm #### **Table** | | | theoretical | λ | cross-validated λ | | | |---------|-----------------------|-------------------------|---------------------------------|---------------------------|-------------------------|---------------------------------| | | $ x^0 - \hat{x} _1$ | $\Omega(x^0 - \hat{x})$ | $ Z(x^0 - \hat{x}) _{\ell_2}$ | $ x^0 - \hat{x} _1$ | $\Omega(x^0 - \hat{x})$ | $ Z(x^0 - \hat{x}) _{\ell_2}$ | | srSLOPE | 4.50 | 0.49 | 7.74 | 7.87 | 1.09 | 7.68 | | srLASSO | 8.48 | 0.89 | 29.47 | 7.81 | 0.85 | 9.19 | # Simulation: Lasso and sorted ℓ_1 -norm ### **Table** | | theoretical λ | | | cross-validated λ | | | |---------|-----------------------|-------------------------|---------------------------------|---------------------------|-------------------------|---------------------------------| | | $ x^0 - \hat{x} _1$ | $\Omega(x^0 - \hat{x})$ | $ Z(x^0 - \hat{x}) _{\ell_2}$ | $ x^0 - \hat{x} _1$ | $\Omega(x^0 - \hat{x})$ | $ Z(x^0 - \hat{x}) _{\ell_2}$ | | srSLOPE | 4.50 | 0.49 | 7.74 | 7.87 | 1.09 | 7.68 | | srLASSO | 8.48 | 0.89 | 29.47 | 7.81 | 0.85 | 9.19 | ### Example: Matrix completion in logistic regression [Lafond, 2015] Let Z_i be a mask with a "1" at a random entry. $$Z_i := egin{pmatrix} 0 & \cdots & 0 & \cdots & 0 \ dots & \ddots & dots & \ddots & dots \ 0 & \cdots & 1 & \cdots & 0 \ dots & \ddots & dots & \ddots & dots \ 0 & \cdots & 0 & \cdots & 0 \end{pmatrix}$$ Model: $log-odds(Y_i) = x_i^0 = trace(Z_iX^0)$ $$f_Q(X) := - rac{1}{n} \sum_{i=1}^n Y_i \operatorname{trace}(Z_i X) + \sum_{j,k} d(X_{j,k})/(m_1 m_2),$$ Let $\Omega := \| \cdot \|_{\text{nuclear}}$. **Dual norm:** operator norm Margin semi-norm: $\tau^2(X) = ||X||_2^2/(m_1m_2)$ Margin curvature: $$\overline{G(u)} = u^2/(2cm_1m_2)$$ $$\Rightarrow H(v) = cm_1m_2v^2/2$$ Effective sparsity: $\Gamma_0^2(L) = 3s_0$ #### From the theorem: for $$m_1 \geq m_2$$ and $\lambda = C_0 \frac{1}{\sqrt{nm_2}} (\sqrt{\log m_1 + \log(1/\alpha)/m_1},$ with probability at least $1 - \alpha$ $$f_P(\hat{X}) - f_P(X^0) \leq C \times \left(\frac{s_0 m_1 \log(m_1)}{n}\right).$$ Adaptation ### Example: Sparse PCA - Y_1, \ldots, Y_n sample from distribution P on \mathbb{R}^m with covariance matrix Σ_P - $\Sigma_{\mathcal{O}} := Y^T Y / n$ $$-f_P(x) := \|\Sigma_P - xx^T\|_2^2, f_Q(x) := \|\Sigma_Q - xx^T\|_2^2$$ - $$\Omega := \|\cdot\|_1$$ #### From the theorem: Assume ... Then with $\lambda = C_0 \sqrt{\log m/n}$, w.h.p.¹ $$f_P(\hat{x}) - f_P(x^0) \le C_1 \frac{s_0 \log m}{n}$$ Adaptation ¹this means: with high probability ### Concepts: Sparsity Effective sparsity Margin curvature Triangle property ## Conclusion norms with the triangle property lead to Adaptation for general loss and assuming margin curvature ### See: and its references