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... this talk is about theory for machine learning algorithms ...



... this talk is about theory for machine learning algorithms ...
... for high-dimensional data



. it is about prediction performance of algorithms

it is

not about
the
scripts
used

trained on random data ...

procedure Transpose (a)Order:(n) ; value n j
array & ; integer n ;
begin real v 5 integer i, k ;
for i 1= 1 step 1 until n do
for k i= 14 step 1 1_1}_11_,11_ ndo
begin v := n[i .ﬁ
aft k] :=al k Al

1 k,:l =W

end
end Transpose
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xeX



Problem:

Let
f: X =R, X CR"
Find
min f(x)

Severe Problem:
The function f is unknown!



What we do know:

f(x) = / ((x.y)dP(y) = folx)

where
o {(x,y) is a given “loss”" function:

(: X xY—=R

o P is an unknown probability measure on the space )



Example

o X := the persons you consider marrying

o Y := possible states of the world

o {(x,y) := the loss when marrying x in world y

o P := the distribution of possible states of the world

o f(x) = [(x,y)dP(y) the “risk” of marrying x



Let @ be a given probability measure on )
We replace P by Q:

folx) = / ((x.y)dQ(y)

and estimate
xP := arg min fp(x)
xeX

by
Q ._ ;
X" = arg min fo(x)

Question:
How “good” is this estimate?



excess risk




Question:

Is
x9 close to xP

f(x9Q) close to f(x")



in our setup ...

we have to regularize: accept some bias to reduce variance



Our setup:

Q := corresponds to a sample Yi,...,Y, from P
n := sample size
Thus
R 1 —
fOx):=f(x) ==Y {x,Y)), X CR™
()= Fl) == 3 V), xe X

i=1

(a random function)



number of parameters

number of observations

high-dimensional statistics:

m>>n






In our setup with m > n we need to regularize

That is: accept some bias to be able to reduce the variance.



Regularized empirical risk minimization

Target:
xP:=x%=arg min fp(x)
xeXCR™
unobservable risk

Estimator based on sample:

Q=% = i f
x¥ =X argxerylcan{ olx) + pen(x)

empirical risk  regularization penalty



Example:

Let Z € R"*™ be a given design matrix
and b° € R" unobserved vector

Let [|v]3 == Y0, v2 and
fp(x)
0 0 2
X~ € arg min ||b” — Zx
g min 6° — x|
Sample
Y = b° + ¢, € € R” noise
“Lasso” with “tuning parameter” \ > 0:

fo(x) =20 Il
f_/\‘

~ =
X = arg m|n{||Y Zx|13 21 |Ix]l1

n := number of observations, m := number of parameters.

High-dimensional: m > n



Definition
We call j an active parameter if (roughly speaking) xj0 #0
We say x° is sparse if the number of active parameters is small

We write the active set of x° as

So:={j: x’ #0}

We call sy := |So| the sparsity of x°



Goal:

o derive oracle inequalities
for norm-penalized empirical risk minimizers
oracle: an estimator that knows the “true” sparsity
oracle inequalities:

Adaptation

to unknown sparsity



Benchmark
Low-dimensional

Then typically

. m number of parameters
fp(X) — fp(XO) ~ — =

n number of observations

High-dimensional

xeEXCRM

t—arg_min {70+ pent) |

Aim is Adaptation

R S number of active parameters
fo(R) — fo(x°) ~ =2 =

n number of observations
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Exact recovery

Let Z € R™™ be given and b° € R" be given
with m>n

Consider the system
Zx° = p°

of n equations with m unknowns
Basis pursuit:

x* = argxrg@{Hle D Ix = bo}



Notation

Active set:
So=1{j: x) #0}
Sparsity:

S0 = |50|

Effective sparsity:

F% = AS—O = max{w . HX—SOH]- < HXSrJ”l}
52(50) |2xIB/n "~ < -

Vv
“cone condition”

Compatibility constant: ¢2(S)



The compatibility constant is canonical correlation ...
. in the ¢;-world

The effective sparsity 7 is ~ the sparsity s, but taking into
account the correlation between variables.



Compatibility constant: (in R?)

Z,,....7m

o(1,{1})

Z

H(S) = ¢(1,S) for the case S = {1}



Basis Pursuit

Z given n X m matrix with m > n.

Let x° be the sparsest solution of Zx = b°.
Basis Pursuit [Chen, Donoho and Saunders (1998) |:

x* = min{||x||1 D Ix = bo}

Exact recovery

[(So) < 00 = x* = x°
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General norms

Let ©Q be a norm on R™

The
Q—world




Norm-regularized empirical risk minimization

x? =% :=arg min fo(x) + AQ(x)
xeXCRM ——
empirical risk  regularization penalty
where
o Q is a given norm on RP,

o A > 0 is a tuning parameter



Examples of norms

Q) = [lxlh == T by



Examples of norms

Q) = [lxlh == T by

given \ > 0
p ~
Qx) =Y (AG -1 +1D)Ixlg  where |x|g) > - = |x|)
j=1

[Bondell and Reich 2008]



Examples of norms

Q(x) = Ixll = 3774 ]
given \ > 0

p

Qx) =Y (AG -1 +1D)Ixlg  where |x|g) > - = |x|)
j=1

[Bondell and Reich 2008]

’sorted {1-norm: ‘ given Ay > --- > )\, >0,

p
Q(x) == Z)\j]x\(j) where |x|q) > -+ > |x|(p)
j=1

[Bogdan et al. 2013]



‘ norms generated from cones: ‘

Q(X)—mmaeAzZ [ +aj},ACRm

[Micchelli et al. 2010] [Jenatton et al. 2011] [Bach et al.
2012]

2 D S S S A S

unit ball for wedge norm
A={a: a1 >a> -}

unit ball for group Lasso norm



’nuclear norm for matrices: \ X € Rmxmz

Q(X) = || X|lnuctear := trace(v XTX)




’nuclear norm for matrices: \ X € Rmxmz

Q(X) = || X|lnuctear := trace(v XTX)

’nuclear norm for tensors: \ X € Rmxmxms

Q(X) := dual norm of Q.
where

Q. (W) = max trace(W T u;®@p®@us), W € R™>*mxms

[lurll2=]|w2]l2=(lus|l2=1

[Yuan and Zhang 2014]



Some concepts

Let fp(x) = 2 fp(x)

The Bregman divergence
is
D(x[1%)

= fp(x)— (%)~ fp(%) T (x—

Definition (Property of fp) We have margin curvature G if

D(x*[[%) = G(7(x" — %))



Definition (Property of Q) The triangle property holds at x* if
3 semi-norms Q* and Q~ such that
Q(x*) — Q(x) < QT (x — x*) — Q (x)

<O,

)
5%
S
S
&

Definition The effective sparsity at x* is

(L) = max{ (Q+(X)>2 L Q(x) < LQ*(X)}

7(x) g

-
“cone condition”

L > 1 is a stretching factor.
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Norm-regularized empirical risk minimization

x? =% :=arg min fo(x) + AQ(x)
xeXCRM ——
empirical risk  regularization penalty
where
o Q is a given norm on RP,

o A > 0 is a tuning parameter



A sharp oracle inequality

Theorem [vdG, 2016] Let
this measures how close Q is to P

1
A> A > Q. ((fQ _ fP)()?)) (i.e. remove most

of the variance

1
. dual norm
Define _
< A
A=A-Ag A=A L=
H:: 'con\gex
Then (recall X = x9, x° = xP) of ¢

fp()?)—fp(xo) S minx*ex{fp(x*)
I

. Adaptation

—fp(x°2+ f/(Xr*(L)Z }

pinch of “variance”



Example: Lasso
Y eR", Z € R™™
Model: Y = b° + ¢

fo(x) = ||b” — Zx|l3/n

X = arg m|n{||Y Zx||2/(2n) +A ||x||1}
~——
fo(X) Q(x)

Margin curvature: G(u) = v?/2 = H(v) = v?/2

Effective sparsity at x%: [2(L) = sp/$%(L, So)




From the theorem:
with high probability

effective sparsity

fp()?) — fp(XO) < Cx

1

S0
$*(L,%)

1
= % logm

Adaptation



Simulation: Lasso and sorted ¢;-norm

Table
theoretical A cross-validated A\
[x° =%l Qx°=%) [Z(*=Rlle, | IX° =Rl Q2x° = %) [Z(x° = )le,
srSLOPE 4.50 0.49 7.74 7.87 1.09 7.68
srLASSO 8.48 0.89 29.47 7.81 0.85 9.19




Simulation: Lasso and sorted ¢;-norm

Table
theoretical A cross-validated A\
[x° =Rl Qx°—=2) [ZGC =Ko | X =KL Q2 —%) [Z(x° =),
srSLOPE 4.50 0.49 7.74 7.87 1.09 7.68
srLASSO 8.48 0.89 29.47 7.81 0.85 9.19

=EF




Example: Matrix completion in logistic regression
[Lafond, 2015]
Let Z; be a mask with a “1" at a random entry.

0 --- 0 --- 0
Z=|o ... 1 ...0
0 --- 0 --- 0

LetY,-E{.6 ; }

Model:
log-odds(Y;) = x? = trace(Z;:X°)

ol X) = —% 3 Vitwace(ZX) + 3 d.4)/ (mima)

oilven



Let Q2 := || : ||nuc1ear-
Dual norm: operator norm

Margin semi-norm: 72(X) = || X||3/(m1my)

Margin curvature:
G(u) = v?/(2cmims)
= H(v) = cmymyv?/2

Effective sparsity: [5(L) = 3s,




From the theorem:

for my > mo
and A\ = Co—2—(/log m; + log(1/c’)/my,

nmy

with probability at least 1 — «

Som Iog(m1)> '

fo(X) — fp(X0) < C ( -

Adaptation



Example: Sparse PCA

- Y1,..., Y, sample from distribution P on R™ with
covariance matrix X p

-Yo:=YTY/n

- Fo(x) = 1Zp — 3T, falx) = £ — x|
Q= -

From the theorem:

Assume ...

Then with A = Cy+/log m/n, w.h.p.!

o) — Fo(x) < C, 218

n

Adaptation

Lthis means: with high probability
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Conclusion

0,

)
S
§ 7%

& 2

norms with the triangle property

Adaptation

lead to

for general loss and assuming margin curvature






See:

Estimation
and Testing
Under Sparsity

ﬁ @ springer

and its references
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