I'm a PhD candidate in Mathematics at ETH Zurich's RiskLab and a visiting researcher at the Chinese
University
of Hong Kong, Shenzhen.
My work lies at the intersection of mathematics and deep learning, with a dual focus: firstly, to deepen the
theoretical understanding of deep learning through mathematical theory, and secondly, to innovate new deep
learning methods for tackling numerical mathematics problems.
Short CV
2021 -
Visiting researcher at the Chinese University of Hong Kong, Shenzhen
in the research group of Prof. Arnulf Jentzen
Becker, S., Jentzen, A., Müller, M. S., & von Wurstemberger, P.,
Learning the random variables in Monte Carlo simulations with stochastic gradient descent: Machine
learning for parametric PDEs and financial derivative pricing. Math. Financ.00 (2023).
[arXiv].
Becker, S., Braunwarth, R., Hutzenthaler, M., Jentzen, A., von Wurstemberger, P.,
Numerical simulations for full history recursive multilevel Picard approximations for systems of
high-dimensional partial differential equations. Commun. Comput. Phys.28
(2020).
[arXiv].
Hutzenthaler, M., Jentzen, A., von Wurstemberger, P.,
Overcoming the curse of dimensionality in the approximative pricing of financial derivatives with
default risks. Electron. J. Probab.25 (2020).
[arXiv].
Grohs, P., Hornung, F., Jentzen, A., von Wurstemberger, P.,
A proof that artificial neural networks overcome the curse of dimensionality in the numerical
approximation of Black-Scholes partial differential equations. Mem. Amer. Math. Soc.248 (2023).
[arXiv].
Hutzenthaler, M., Jentzen, A., Kruse, T., Nguyen, T. A., von Wurstemberger, P.,
Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic
partial
differential equations.
Proc. R. Soc. A476 (2020).
[arXiv].
Jentzen, A., von Wurstemberger, P.,
Lower error bounds for the stochastic gradient descent optimization algorithm: Sharp convergence
rates for slowly and fast decaying learning rates.J.
Complexity57 (2020).
[arXiv].
Jentzen, A., Kuckuck, B., Neufeld, A., von Wurstemberger, P.,
Strong error analysis for stochastic gradient descent optimization algorithms.IMA J. Numer. Anal. (2020).
[arXiv].
Preprints
Jentzen, A., Riekert, A., von Wurstemberger, P.,
Algorithmically Designed Artificial Neural Networks (ADANNs): Higher order deep operator learning for
parametric partial differential equations. [arXiv] (2023), 22 pages.
Beneventano, P., Cheridito, P., Jentzen, A., von Wurstemberger, P.,
High-dimensional approximation spaces of artificial neural networks and applications to partial
differential equations. [arXiv] (2020), 32 pages.