Philippe von Wurstemberger's photo
Philippe von Wurstemberger
ETH Zurich and CUHK-SZ

email: philippe.vonwurstemberger (at) math.ethz.ch and philippevw (at) cuhk.edu.cn
Links: [Profile on GoogleScholar] [Profile on ResearchGate]


I'm a PhD candidate in Mathematics at ETH Zurich's RiskLab and a visiting researcher at the Chinese University of Hong Kong, Shenzhen.
My work lies at the intersection of mathematics and deep learning, with a dual focus: firstly, to deepen the theoretical understanding of deep learning through mathematical theory, and secondly, to innovate new deep learning methods for tackling numerical mathematics problems.

Short CV

2021 - Visiting researcher at the Chinese University of Hong Kong, Shenzhen in the research group of Prof. Arnulf Jentzen
2019 - PhD student in Mathematics at ETH Zurich under the supervision of Prof. Patrick Cheridito and Prof. Arnulf Jentzen
2018 - 2019 PhD student in Mathematics at ETH Zurich under the supervision of Prof. Arnulf Jentzen
2016 - 2018 Master of Science in Mathematics, ETH Zurich, Switzerland
Overall Grade Point Average: 5.96 (out of 6)
mit Auszeichnung / summa cum laude
2012 - 2015 Bachelor of Science in Mathematics, ETH Zurich, Switzerland
Overall Grade Point Average: 5.88 (out of 6)
mit Auszeichnung / summa cum laude

Awards

Invited talks

05/2018 Stochastic optimization seminar at ETH Zurich.
Error analysis and lower error bounds for SGD.
05/2019 SMAI, Guidel Plages.
Overcoming the course of dimensionality with DNNs: Theoretical approximation results for PDEs. [Slides]
07/2019 International Conference on Computational Finance, A Coruna.
Overcoming the course of dimensionality with Deep Learning: Methods and theoretical results for PDEs. [Slides]
06/2022 11th World Congress of Bachelier Finance Society, Hong Kong.
Overcoming the curse of dimensionality in the approximation of semilinear Black-Scholes PDEs [Slides]
06/2023 Foundations of Computational Mathematics, Paris.
Learning the random variables: Combining Monte Carlo simulations with machine learning. [Slides]

Publications and Accepted Preprints

  • Becker, S., Jentzen, A., Müller, M. S., & von Wurstemberger, P., Learning the random variables in Monte Carlo simulations with stochastic gradient descent: Machine learning for parametric PDEs and financial derivative pricing. Math. Financ. 00 (2023). [arXiv].
  • Becker, S., Braunwarth, R., Hutzenthaler, M., Jentzen, A., von Wurstemberger, P., Numerical simulations for full history recursive multilevel Picard approximations for systems of high-dimensional partial differential equations. Commun. Comput. Phys. 28 (2020). [arXiv].
  • Hutzenthaler, M., Jentzen, A., von Wurstemberger, P., Overcoming the curse of dimensionality in the approximative pricing of financial derivatives with default risks. Electron. J. Probab. 25 (2020). [arXiv].
  • Grohs, P., Hornung, F., Jentzen, A., von Wurstemberger, P., A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations. Mem. Amer. Math. Soc. 248 (2023). [arXiv].
  • Hutzenthaler, M., Jentzen, A., Kruse, T., Nguyen, T. A., von Wurstemberger, P., Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations. Proc. R. Soc. A 476 (2020). [arXiv].
  • Jentzen, A., von Wurstemberger, P., Lower error bounds for the stochastic gradient descent optimization algorithm: Sharp convergence rates for slowly and fast decaying learning rates. J. Complexity 57 (2020). [arXiv].
  • Jentzen, A., Kuckuck, B., Neufeld, A., von Wurstemberger, P., Strong error analysis for stochastic gradient descent optimization algorithms. IMA J. Numer. Anal. (2020). [arXiv].

Preprints

  • Jentzen, A., Riekert, A., von Wurstemberger, P., Algorithmically Designed Artificial Neural Networks (ADANNs): Higher order deep operator learning for parametric partial differential equations. [arXiv] (2023), 22 pages.
  • Beneventano, P., Cheridito, P., Jentzen, A., von Wurstemberger, P., High-dimensional approximation spaces of artificial neural networks and applications to partial differential equations. [arXiv] (2020), 32 pages.


Last update of this homepage: August 15th, 2023