Overcoming the course of dimensionality with DNNs: Theoretical approximation results for PDEs

Philippe von Wurstemberger (ETH Zurich, Switzerland)
Joint works with
Arnulf Jentzen (ETH Zurich, Switzerland), Fabian Hornung (ETH Zurich, Switzerland \& Karlsruhe Institute of Technology, Germany), Philipp Grohs (University of Vienna, Austria), Martin Hutzenthaler (University of Duisburg-Essen, Germany)

Thomas Kruse (University of Duisburg-Essen, Germany) Tuan Anh Nguyen (University of Duisburg-Essen, Germany)

SMAI 2019, Guidel Plages

13 May 2019

Goal: Approximate solutions of PDEs numerically, e.g., Black-Scholes PDE:

$$
\begin{gathered}
\left(\frac{\partial u}{\partial t}\right)(t, x)+\sum_{i=1}^{d} \frac{\left.\left|\beta_{i}\right|^{2} x_{i}\right|^{2}}{2}\left(\frac{\partial^{2} u}{\partial\left(x_{i}\right)^{2}}\right)(t, x)+\alpha_{i} x_{i}\left(\frac{\partial u}{\partial x_{i}}\right)(t, x)=0, \\
u(T, x)=g(x),
\end{gathered}
$$

where $u:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}, g: \mathbb{R}^{d} \rightarrow \mathbb{R},\left(\alpha_{i}\right)_{i \in\{1, \ldots, d\}},\left(\beta_{i}\right)_{i \in\{1, \ldots, d\}} \subseteq \mathbb{R}$, $T>0, t \in[0, T]$, and $x \in \mathbb{R}^{d}$. Dimension $d \in \mathbb{N}$ corresponds to \# assets in model.

$$
\text { Major issue for } d \gg 1 \text { : }
$$

Classical approximations methods such as finite differences, finite element methods, sparse grids suffer under the curse of dimensionality.

Monte Carlo methods based on Feynman-Kac formula : approximations at a fixed point without curse of dimensionality.

Methods based on Deep learning:

- E, Han, \& Jentzen, Solving high-dimensional partial differential equations using deep learning. arXiv 2017. Proc. Natl. Acad. Sci. U.S.A. 2018
- E, Han, \& Jentzen, Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. arXiv 2017. Comm. Math. Stat. 2017.
- many more: Beck, Becker, Grohs, Jaafari, Jentzen 2018; Fujii, Takahashi, Takahashi 2017; E, Yu 2017; Sirignano, Spiliopoulos 2017; Berg, Nyström 2017; Henry-Labordere 2017; Raissi 2018; Chan-Wai-Nam, Mikael, Warin 2018; Farahmand, Nabi, Nikovski 2017; Goudenege, Molent, Zanette 2019; Huré, Pham, Warin 2019; . . .

Empirical observation:

DNNs seem to be able to overcome the curse of dimensionality
\Rightarrow Theoretical evidence for this observation?

Definition (Artificial neural networks (ANNs), Parameters, Realizations of ANNs)

For all $d \in \mathbb{N}, x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$ let $\mathbf{A}_{d} \in C\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ satisfy $\mathbf{A}_{d}(x)=\left(\max \left\{x_{1}, 0\right\}, \ldots, \max \left\{x_{d}, 0\right\}\right)$. We denote by \mathcal{N} the set given by

$$
\mathcal{N}=\cup_{L \in\{2,3, \ldots\}} \cup_{\left(I_{0}, l_{1}, \ldots, l_{L}\right) \in \mathbb{N}^{L+1}}\left(\times_{k=1}^{L}\left(\mathbb{R}^{l_{k} \times I_{k-1}} \times \mathbb{R}^{l_{k}}\right)\right)
$$

and we denote by $\mathcal{P}: \mathcal{N} \rightarrow \mathbb{N}$ and $\mathcal{R}: \mathcal{N} \rightarrow \cup_{k, l=1}^{\infty} C\left(\mathbb{R}^{k}, \mathbb{R}^{\prime}\right)$ the functions satisfying $\forall L \in\{2,3, \ldots\},\left(I_{0}, I_{1}, \ldots, I_{L}\right) \in \mathbb{N}^{L+1}, \Phi=\left(\left(W_{1}, B_{1}\right), \ldots,\left(W_{L}, B_{L}\right)\right)$ $\in\left(\times_{k=1}^{L}\left(\mathbb{R}^{/_{k} \times /_{k-1}} \times \mathbb{R}^{/_{k}}\right)\right), x \in \mathbb{R}^{/_{0}}$ that

$$
\begin{gathered}
\mathcal{P}(\Phi)=\sum_{k=1}^{L} I_{k}\left(I_{k-1}+1\right), \quad \mathcal{R}(\Phi) \in C\left(\mathbb{R}^{\prime 0}, \mathbb{R}^{\prime}\right), \\
(\mathcal{R}(\Phi))(x)=W_{L}\left(\mathbf{A}_{L-1}\left(W_{L-1}\left(\ldots \mathbf{A}_{11}\left(W_{1} x+B_{1}\right) \ldots\right)+B_{L-1}\right)\right)+B_{L} .
\end{gathered}
$$

ANN have capacity to overcome curse of dim. for Black-Scholes PDEs

Theorem (Grohs, Hornung, Jentzen, vW 2018)

Let $T, \kappa>0,\left(\alpha_{d, i}\right)_{i \in\{1, \ldots, d\}, d \in \mathbb{N}},\left(\beta_{d, i}\right)_{i \in\{1, \ldots, d\}, d \in \mathbb{N}} \subseteq \mathbb{R}$ satisfy that $\sup _{i \in\{1, \ldots, d\}, d \in \mathbb{N}}\left(\left|\alpha_{d, i}\right|+\left|\beta_{d, i}\right|\right)<\infty, \forall d \in \mathbb{N}$ let $g_{d} \in C\left(\mathbb{R}^{d}, \mathbb{R}\right)$ and let $u_{d} \in C^{1,2}\left([0, T] \times \mathbb{R}^{d}, \mathbb{R}\right)$ be an at most poly. growing solution of

$$
\begin{gathered}
\left(\frac{\partial u_{d}}{\partial t}\right)(t, x)+\sum_{i=1}^{d} \frac{\left|\beta_{d, i}\right|^{2}\left|x_{i}\right|^{2}}{2}\left(\frac{\partial^{2} u_{d}}{\partial\left(x_{i}\right)^{2}}\right)(t, x)+\alpha_{d, i} x_{i}\left(\frac{\partial u_{d}}{\partial x_{i}}\right)(t, x)=0, \\
u_{d}(T, x)=g_{d}(x),
\end{gathered}
$$

for $(t, x) \in(0, T) \times \mathbb{R}^{d}$, and let $\left(\phi_{d, \delta}\right)_{d \in \mathbb{N}, \delta \in(0,1]} \subseteq \mathcal{N}$ satisfy $\forall d \in \mathbb{N}, \delta \in(0,1]$, $x \in \mathbb{R}^{d}$ that $\mathcal{R}\left(\phi_{d, \delta}\right) \in C\left(\mathbb{R}^{d}, \mathbb{R}\right),\left|\left(\mathcal{R}\left(\phi_{d, \delta}\right)\right)(x)\right| \leq \kappa d^{\kappa}\left(1+\|x\|_{\mathbb{R}^{d}}^{\kappa}\right)$, $\mathcal{P}\left(\phi_{d, \delta}\right) \leq \kappa d^{\kappa} \delta^{-\kappa}$, and $\left|g_{d}(x)-\left(\mathcal{R}\left(\phi_{d, \delta}\right)\right)(x)\right| \leq \kappa d^{\kappa} \delta\left(1+\|x\|_{\mathbb{R}^{d}}^{\kappa}\right)$. Then $\exists c>0,\left(\psi_{d, \varepsilon}\right)_{d \in \mathbb{N}, \varepsilon \in(0,1]} \subseteq \mathcal{N}$ such that $\forall d \in \mathbb{N}, \varepsilon \in(0,1]$: $\mathcal{R}\left(\psi_{d, \varepsilon}\right) \in \mathcal{C}\left(\mathbb{R}^{d}, \mathbb{R}\right), \mathcal{P}\left(\psi_{d, \varepsilon}\right) \leq c d^{c} \varepsilon^{-c}$, and

$$
\left[\int_{[0,1]^{d}}\left|u_{d}(0, x)-\left(\mathcal{R}\left(\psi_{d, \varepsilon}\right)\right)(x)\right|^{2} d x\right]^{1 / 2} \leq \varepsilon
$$

Example: $g_{d}\left(x_{1}, \ldots, x_{d}\right)=\max \left\{\frac{x_{1}+\ldots+x_{d}}{d}-K, 0\right\}$ for some $K>0$.

Main idea and comments about the proof

- Statement purely deterministic. Proof based on probabilistic arguments.
- Fix $d \in \mathbb{N}, \varepsilon \in(0,1]$. Goal: find $\psi \in \mathcal{N}$ such that $\mathcal{P}(\psi) \leq c d^{c} \varepsilon^{-c}$ and $\left[\int_{[0,1]^{d}}\left|u_{d}(0, x)-(\mathcal{R}(\psi))(x)\right|^{2} d x\right]^{1 / 2} \leq \varepsilon$.
- Main steps:
- Construct random field $\mathcal{X}: \Omega \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ with $\forall x \in \mathbb{R}^{d}: \mathcal{X}(x): \Omega \rightarrow \mathbb{R} \sim$ Monte Carlo type approx of $u_{d}(0, x)$.
- $\forall \omega \in \Omega: \mathcal{X}(\omega, \cdot)=\mathcal{R}\left(\Psi_{\omega}\right)$ is realization of $\operatorname{ANN} \Psi_{\omega} \in \mathcal{N}$.
- \mathcal{X} is close to $u_{d}(0, \cdot): \mathbb{E}\left[\left[\int_{[0,1]^{d}}\left|u_{d}(0, x)-\mathcal{X}(x)\right|^{2} d x\right]^{1 / 2}\right] \leq \varepsilon$.
- $\Rightarrow \exists \boldsymbol{\omega} \in \Omega:[\int_{[0,1]^{d}}|u_{d}(0, x)-\underbrace{\mathcal{X}(\omega, x)}_{\left(\mathcal{R}\left(\Psi_{\omega}\right)\right)(x)}|^{2} d x]^{1 / 2} \leq \varepsilon$.
- count parameters $\mathcal{P}\left(\Psi_{\omega}\right) \leq c d^{c} \varepsilon^{-c}$.
- define $\psi=\Psi_{\omega}$.

Nonlinear equations?

Let $T>0, \alpha, \beta \in \mathbb{R}, f: \mathbb{R} \rightarrow \mathbb{R}$ Lip. cont., $\forall d \in \mathbb{N}$ let $g_{d} \in C\left(\mathbb{R}^{d}, \mathbb{R}\right)$ and let $u_{d} \in C\left([0, T] \times \mathbb{R}^{d}, \mathbb{R}\right)$ an at most poly. growing visc. solution of

$$
\begin{gathered}
\frac{\partial u_{d}}{\partial t}+\left[\sum_{i=1}^{d} \frac{|\beta|^{2}\left|x_{i}\right|^{2}}{2}\left(\frac{\partial^{2} u_{d}}{\partial\left(x_{i}\right)^{2}}\right)+\alpha x_{i}\left(\frac{\partial u_{d}}{\partial x_{i}}\right)\right]+f\left(u_{d}\right)=0, \\
u_{d}(T, x)=g_{d}(x),
\end{gathered}
$$

for $(t, x) \in(0, T) \times \mathbb{R}^{d}$.

Application: e.g. pricing models with default risk (cf., e.g., Henry-Labordere 2012)

Full-history Recursive Multilevel Picard Algorithm (MLP)

 (Hutzenthaler, Jentzen, Kruse, Nguyen, vW 2018)Let $\kappa>0, \Theta=\cup_{n=1}^{\infty} \mathbb{Z}^{n}, \forall d \in \mathbb{N}, x \in \mathbb{R}^{d}$ assume $\left|g_{d}(x)\right| \leq \kappa d^{\kappa}\left(1+\|x\|_{\mathbb{R}^{d}}^{\kappa}\right)$, let $(\Omega, \mathcal{F}, \mathbb{P})$ prob. space, let $W^{d, \theta}:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}, \theta \in \Theta, d \in \mathbb{N}$, be i.i.d. Brownian motion, let $R^{\theta}:[0, T] \times \Omega \rightarrow[0, T], \theta \in \Theta$, be i.i.d. cont. satisfying $\forall t \in[0, T], \theta \in \Theta: R_{t}^{\theta}$ is $\mathcal{U}_{[t, T]}$-distributed, assume $\left(W^{d, \theta}\right)_{d \in \mathbb{N}, \theta \in \Theta}$ and $\left(R^{\theta}\right)_{\theta \in \Theta}$ are indep., $\forall d \in \mathbb{N}, \theta \in \Theta, t \in[0, T], s \in[t, T], x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$ let $x_{t, s}^{d, \theta, x}: \Omega \rightarrow \mathbb{R}^{d}$ satisfy

$$
X_{t, s}^{d, \theta, x}=\left[x_{i} \exp \left(\left(\alpha-\frac{\beta^{2}}{2}\right)(s-t)+\beta\left(W_{s}^{d, \theta, i}-W_{t}^{d, \theta, i}\right)\right)\right]_{i \in\{1, \ldots, d\}},
$$

and let $V_{M, n}^{d, \theta}:[0, T] \times \mathbb{R}^{d} \times \Omega \rightarrow \mathbb{R}, M, n \in \mathbb{N}_{0}, \theta \in \Theta, d \in \mathbb{N}$, satisfy $\forall d, M, n \in \mathbb{N}, \theta \in \Theta, t \in[0, T], x \in \mathbb{R}^{d}$ that $V_{M, 0}^{d, \theta}(t, x)=0$ and

$$
\begin{aligned}
& V_{M, n}^{d, \theta}(t, x)=\sum_{k=0}^{n-1} \frac{(T-t)}{M^{n-k}}\left[\sum_{m=1}^{M^{n-k}} f\left(V_{M, k}^{d,(\theta, k, m)}\left(R_{t}^{(\theta, k, m)}, X_{t, R_{t}^{d,(\theta, m)}}^{d,(\theta, k, m), x}\right)\right)\right. \\
& \left.\quad-\mathbb{1}_{\mathbb{N}}(k) f\left(V_{M, k-1}^{d,(\theta, k,-m)}\left(R_{t}^{(\theta, k, m)}, X_{t, R_{t}^{(\theta, k, m)}}^{d,(\theta, k, m), x}\right)\right)\right]+\left[\sum_{m=1}^{M^{n}} \frac{g_{d}\left(X_{t, T}^{d,(\theta, n,-m), x}\right.}{M^{n}}\right] .
\end{aligned}
$$

Then $\exists c>0, N=\left(N_{d, \varepsilon}\right)_{d \in \mathbb{N}, \varepsilon \in(0,1]}: \mathbb{N} \times(0,1] \rightarrow \mathbb{N}$ such that $\forall d \in \mathbb{N}$, $\varepsilon \in(0,1], x \in[0,1]^{d}:$

$$
\left(\mathbb{E}\left[\left|u_{d}(0, x)-v_{N_{d, \varepsilon}, N_{d, \varepsilon}}^{d, 0}(0, x)\right|^{2}\right]\right)^{1 / 2} \leq \varepsilon
$$

and

$$
\operatorname{Cost}\left(V_{N_{d, \varepsilon}, N_{d, \varepsilon}}^{d, 0}(0, x)\right) \leq c d^{c} \varepsilon^{-c} .
$$

Corresponding approximation result for DNNs and semilinear PDEs:

- Hutzenthaler, Jentzen, Kruse, Nguyen, A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations. arXiv 2019.

DNNs for Kolmogorov PDEs with nonlinear drift: Jentzen, Salimova, Welti 2018.

Recap

- Deep learning methods for high-dim. PDEs seem to overcome curse of dim.
- A theoretical explanation: ANNs have capacity to overcome curse of dim.
- Proof method: Stochastic algorithm overcoming curse of dim. \Rightarrow ANN result
- Recent breakthrough: MLP algorithm for semilinear PDEs

Thank you!

Appendix

- Construction of random ANN for proof of approximation result
- Approximation result for nonlinear PDEs
- Motivation for the multilevel Picard algorithm
- Precise complexity for the multilevel Picard algorithm
- DNN Approximation result for nonlinear drift coefficient

Appendix: Construction of random ANN for proof of approximation result

Let $W^{k}:[0, T] \times \Omega \rightarrow \mathbb{R}^{d}, k \in \mathbb{N}$, be independent Brownian motions, let $x^{k}: \mathbb{R}^{d} \times \Omega \rightarrow \mathbb{R}^{d}, k \in \mathbb{N}$, be the random fields which satisfy $\forall x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}:$

$$
x^{k}(x)=\left[x_{i} \exp \left(\left(\alpha_{d, i}-\frac{\left|\beta_{d, i}\right|^{2}}{2}\right) T+\beta_{d, i} W_{T}^{d, \theta, i}\right)\right]_{i \in\{1, \ldots, d\}} .
$$

Observe that $\forall x \in \mathbb{R}^{d}: u_{d}(0, x)=\mathbb{E}\left[g_{d}\left(x^{1}(x)\right)\right]$.
We define $\mathcal{X}: \mathbb{R}^{d} \times \Omega \rightarrow \mathbb{R}$ by

$$
\forall x \in \mathbb{R}^{d}: \quad \mathcal{X}(x)=\frac{1}{M} \sum_{k=1}^{M}\left(\mathcal{R}\left(\phi_{d, \delta}\right)\right)\left(x^{k}(x)\right)
$$

for suitable $M \in \mathbb{N}, \delta \in(0,1]$.

Appendix: Approximation result for nonlinear PDEs

Theorem (Hutzenthaler, Jentzen, Kruse, Nguyen)

Let $T, \kappa>0, f: \mathbb{R} \rightarrow \mathbb{R}$ Lip. cont., $\forall d \in \mathbb{N}$ let $g_{d} \in C\left(\mathbb{R}^{d}, \mathbb{R}\right)$ and let $u_{d}:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ be an at most poly. grow. solution of

$$
\frac{\partial u_{d}}{\partial t}+\Delta_{x} u_{d}+f\left(u_{d}\right)=0 \quad \text { with } \quad u_{d}(T, \cdot)=g_{d}
$$

and let $\left(\phi_{d, \varepsilon}\right)_{d \in \mathbb{N}, \varepsilon \in(0,1]} \subseteq \mathcal{N}$ satisfy $\forall d \in \mathbb{N}, \varepsilon \in(0,1], x \in \mathbb{R}^{d}$: $\mathcal{R}\left(\phi_{d, \varepsilon}\right) \in C\left(\mathbb{R}^{d}, \mathbb{R}\right), \mathcal{P}\left(\phi_{d, \varepsilon}\right) \leq \kappa d^{\kappa} \varepsilon^{-\kappa},\left|\left(\mathcal{R}\left(\phi_{d, \varepsilon}\right)\right)(x)\right| \leq \kappa d^{\kappa}\left(1+\|x\|^{\kappa}\right)$, and

$$
\left|g_{d}(x)-\left(\mathcal{R}\left(\phi_{d, \varepsilon}\right)\right)(x)\right| \leq \varepsilon \kappa d^{\kappa}\left(1+\|x\|_{\mathbb{R}^{d}}^{\kappa}\right)
$$

Then $\exists c \in(0, \infty),\left(\psi_{d, \varepsilon}\right)_{d \in \mathbb{N}, \varepsilon \in(0,1]} \subseteq \mathcal{N}$ such that $\forall d \in \mathbb{N}, \varepsilon \in(0,1]$: $\mathcal{R}\left(\psi_{d, \varepsilon}\right) \in C\left(\mathbb{R}^{d}, \mathbb{R}\right), \mathcal{P}\left(\psi_{d, \varepsilon}\right) \leq c d^{c} \varepsilon^{-c}$, and

$$
\left[\int_{[0,1]^{d}}\left|u_{d}(0, x)-\left(\mathcal{R}\left(\psi_{d, \varepsilon}\right)\right)(x)\right|^{p} d x\right]^{1 / p} \leq \varepsilon
$$

Appendix: Motivation for the multilevel Picard algorithm

The Feynman-Kac formula ensures that $u_{d} \in C\left([0, T] \times \mathbb{R}^{d}, \mathbb{R}\right)$ satisfies the fixed point equation $\forall t \in[0, T], x \in \mathbb{R}^{d}$:

$$
\begin{align*}
u_{d}(t, x) & =\mathbb{E}\left[g_{d}\left(X_{t, T}^{d, 0, x}\right)+\int_{t}^{T} f\left(u_{d}\left(r, X_{t, r}^{d, 0, x}\right)\right) d r\right] \\
& =\mathbb{E}\left[g_{d}\left(X_{t, T}^{d, 0, x}\right)+(T-t) f\left(u_{d}\left(R_{t}^{0}, X_{t, R_{t}^{0}}^{d, 0, x}\right)\right)\right] \tag{1}
\end{align*}
$$

Note that $\forall d, M, n \in \mathbb{N}, \theta \in \Theta, t \in[0, T], x \in \mathbb{R}^{d}$:

$$
\begin{align*}
\mathbb{E}\left[V_{M, n}^{d, \theta}(t, x)\right]= & \sum_{k=0}^{n-1}(T-t) \mathbb{E}\left[f\left(V_{M, k}^{d,(\theta, 1)}\left(R_{t}^{(\theta, 1)}, x_{t, R_{t}^{d,(\theta, 1)}}^{d,(\theta, 1), x}\right)\right)\right. \\
& \left.-\mathbb{1}_{\mathbb{N}}(k) f\left(V_{M, k-1}^{d,(\theta,-1)}\left(R_{t}^{(\theta, 1)}, X_{t, R_{t}^{d, 1)}}^{d,(\theta, 1), x}\right)\right)\right]+\mathbb{E}\left[g_{d}\left(X_{t, T}^{d, \theta, x}\right)\right] \tag{2}\\
= & \mathbb{E}\left[g_{d}\left(X_{t, T}^{d, \theta, x}\right)+(T-t) f\left(V_{M, n-1}^{d, \theta}\left(R_{t}^{\theta}, x_{t, R_{t}^{\theta}}^{d, \theta, x}\right)\right)\right] .
\end{align*}
$$

- Hence $V_{M, n}^{d, \theta}: \Omega \times[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}, n \in \mathbb{N}_{0}$, behave, in expectation, like Picard iterations for (1).
- Expectation in (2) is approximated with multilevel Monte Carlo over full history of previous approximations.

Appendix: Precise complexity for the multilevel Picard algorithm

Assume the setting of the MLP statement, let $p, \mathfrak{P}, q \in[0, \infty)$, recall that $g_{d} \in C\left(\mathbb{R}^{d}, \mathbb{R}\right), d \in \mathbb{N}$, are the terminal conditions of the considered PDEs, let $\xi_{d} \in \mathbb{R}^{d}, d \in \mathbb{N}$, and assume that $\sup _{d \in \mathbb{N}, x \in \mathbb{R}^{d}}\left(\frac{\left|g_{d}(x)\right|}{d^{\mathfrak{F}}\left(1+\|x\|_{\mathbb{R}^{d}}^{p}\right)}+\frac{\left\|\xi_{d}\right\|_{\mathbb{R}^{d}}}{d^{q}}\right)<\infty$. Then $\forall \delta>0$ there exist $c>0$ and $N: \mathbb{N} \times(0,1] \rightarrow \mathbb{N}$ such that $\forall d \in \mathbb{N}$, $\varepsilon \in(0,1]$ it holds that

$$
\left(\mathbb{E}\left[\left|u_{d}\left(0, \xi_{d}\right)-v_{N_{d, \varepsilon}, N_{d, \varepsilon}}^{d, 0}\left(0, \xi_{d}\right)\right|^{2}\right]\right)^{1 / 2} \leq \varepsilon
$$

and

$$
\operatorname{Cost}_{d, N_{d, \varepsilon}} \leq c d^{1+(\mathfrak{P}+q p)(2+\delta)} \varepsilon^{-(2+\delta)} .
$$

Appendix: DNN Approximation result for nonlinear drift coefficient

Theorem (Jentzen, Salimova, \& Welti 2018)

Let $T, \kappa, p>0$, let $\left(a_{d, i, j}\right)_{(i, j) \in\{1, \ldots, d\}^{2}} \in \mathbb{R}^{d \times d}, d \in \mathbb{N}$, be sym. positive semi-def., let $g_{d}: \mathbb{R}^{d} \rightarrow \mathbb{R}, d \in \mathbb{N}$, and $f_{d}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, d \in \mathbb{N}$, be functions, $\forall d \in \mathbb{N}$ let $u_{d}:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ be at most poly. growing visc. solution of

$$
\left(\frac{\partial}{\partial t} u_{d}\right)(t, x)=\left(\frac{\partial}{\partial x} u_{d}\right)(t, x) f_{d}(x)+\sum_{i, j=1}^{d} a_{d, i, j}\left(\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} u_{d}\right)(t, x), u_{d}(0, x)=g_{d}(x)
$$

for $(t, x) \in(0, T) \times \mathbb{R}^{d}$, and let $\left(\phi_{\varepsilon}^{m, d}\right)_{m \in\{0,1\}, d \in \mathbb{N}, \varepsilon \in(0,1]} \subseteq \mathcal{N}$ satisfy $\forall d \in \mathbb{N}, x, y \in \mathbb{R}^{d}: \mathcal{R}\left(\phi_{\varepsilon}^{0, d}\right) \in C\left(\mathbb{R}^{d}, \mathbb{R}\right), \mathcal{R}\left(\phi_{\varepsilon}^{1, d}\right) \in C\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$,

$$
\left|g_{d}(x)\right|+\sum_{i, j=1}^{d}\left|a_{d, i, j}\right| \leq \kappa d^{\kappa}\left(1+\|x\|_{\mathbb{R}^{d}}^{\kappa}\right),
$$

$$
\left\|f_{d}(x)-f_{d}(y)\right\|_{\mathbb{R}^{d}} \leq \kappa\|x-y\|_{\mathbb{R}^{d}}, \quad\left\|\left(\mathcal{R} \phi_{\varepsilon}^{1, d}\right)(x)\right\|_{\mathbb{R}^{d}} \leq \kappa\left(d^{\kappa}+\|x\|_{\mathbb{R}^{d}}\right),
$$

$$
\left|\left(\mathcal{R} \phi_{\varepsilon}^{0, d}\right)(x)-\left(\mathcal{R} \phi_{\varepsilon}^{0, d}\right)(y)\right| \leq \kappa d^{\kappa}\left(1+\|x\|_{\mathbb{R}^{d}}^{\kappa}+\|y\|_{\mathbb{R}^{d}}^{\kappa}\right)\|x-y\|_{\mathbb{R}^{d}},
$$

$$
\left|g_{d}(x)-\left(\mathcal{R} \phi_{\varepsilon}^{0, d}\right)(x)\right|+\left\|f_{d}(x)-\left(\mathcal{R} \phi_{\varepsilon}^{1, d}\right)(x)\right\|_{\mathbb{R}^{d}} \leq \varepsilon \kappa d^{\kappa}\left(1+\|x\|_{\mathbb{R}^{d}}^{\kappa}\right),
$$

and $\sum_{m=0}^{1} \mathcal{P}\left(\phi_{\varepsilon}^{m, d}\right) \leq \kappa d^{\kappa} \varepsilon^{-\kappa}$. Then $\exists c \in(0, \infty),\left(\psi_{d, \varepsilon}\right)_{d \in \mathbb{N}, \varepsilon \in(0,1]} \subseteq \mathcal{N}$ such that $\forall d \in \mathbb{N}, \varepsilon \in(0,1]: \mathcal{R}\left(\psi_{d, \varepsilon}\right) \in C\left(\mathbb{R}^{d}, \mathbb{R}\right), \mathcal{P}\left(\psi_{d, \varepsilon}\right) \leq c d^{c} \varepsilon^{-c}$, and

$$
\left[\int_{[0,1]^{d}}\left|u_{d}(0, x)-\left(\mathcal{R}\left(\psi_{d, \varepsilon}\right)\right)(x)\right|^{p} d y\right]^{1 / p} \leq \varepsilon
$$

