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Abstract

In order to describe the motion of two weakly interacting satellites of a
central body we suggest to use orbital elements based on the the linear theory
of Kepler motion in Levi-Civita’s regularizing coordinates. The basic model
is the planar three-body problem with two small masses, a model in which
both regular (e.g. quasi-periodic) as well as chaotic motion can occur.

This paper discusses the basics of this approach and illustrates it with a
typical example. First, we will revisit Levi-Civita’s regularization of the two-
dimensional Kepler motion and introduce sets of orbital elements based on
the differential equations of the harmonic oscillator. Then, the corresponding
theory for the three-dimensional motion will be developed using a quaternion
representation of Kustaanheimo-Stiefel (KS) regularization; we present it by
means of an elegant new notation.



1. Introduction

We begin by summarizing the equations of motion of the three-body
problem with two small masses in the form of two weakly coupled Kepler
motions, valid in two or three dimensions.

Let my, zx, (k = 0,1,2) be the masses and positions of the three bodies,
where we assume z; € R? or z;; € C in the planar case and z;, € R? in
the spatial case. We assume the center of mass to be at rest at the origin,
S ey = 0, and the masses satisfy the hierarchy m; < mq, (j = 1,2).
The Newtonian equations of motion in inertial coordinates are
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where dots denote differentiation with respect to time t.
We introduce relative coordinates r; = x; — x9, j = 1,2, from which the
inertial coordinates may be recovered via

2

E m;r;, M:m0+m1+m2 .
i=1

1
.’L’OZ—M

Subtracting the first equation of (1) from the second and third equation
yields the equivalent system
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which describes a system of two perturbed Kepler motions with weak cou-
pling if the masses satisty the above hierarchy and none of the distances
lr1ll s |lr2ll, [|72 — 71]| is small.



2. Levi-Civita Regularization of Perturbed Kepler Mo-
tion

We first restrict ourselves to the two-dimensional case and take advan-
tage of the fact that Levi-Civita’s regularizing transformation [11] has the
agreeable property of transforming perturbed Kepler problems into perturbed
harmonic oscillators, i.e. into perturbed linear problems. For a recent ac-
count of regularization theory see the article [2] and other contributions in
the same volume.

We will use both vector notation x = (z1,72)T € R? and complex notation
X = x1 + 129 € C for convenience. Consider now the perturbed Kepler

problem
x
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where dots denote derivarives with respect to time ¢, and f(z,t) is a small

perturbation. The corresponding energy equation is obtained by integrating
the dot product (z, (3)) with respect to :
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where r := ||z|| is the distance of the moving particle from the origin and h
is the energy satisfying the differential equation and initial condition
dh ) u 1. 2

The first step of Levi-Civita’s regularization consists of introducing the
fictitious time 7 by the differential relation dt = r - dr (differentiation with
respect to 7 will be denoted by primes). In view of the step to follow we write
the result of transforming Equ. (3) in complex form, where f = (fi, fo)%,
f=fi+ife

rx"—r'x +pux=r*f €C. (6)

The second step of Levi-Civita’s regularization consists of representing
the complex physical coordinate x as the square u? of a compex variable
u=u; + iUQ € (C,

x = u?, (7)



i.e. the mapping from the parametric plane to the physical plane is chosen
as a conformal squaring. This implies

= ug, (8)
and differentiation of the last two equations yields
x'=2uu’, x"=2(uu"+u'?)eC, r=dua+ud. (9
By substituting this into (6) we obtain
2ruu” + u? (u—2\u’|2> =rf, (10)

where the two terms 2ru’? = 2u’ iuu’ have cancelled out.

Remark. Obtaining initial values u(0) = 1/x(0) requires the computation
of a complex square root. This can conveniently be accomplished by means

of the formula
X + [x|

V2 (%[ + Rx) ’

which reflects the observation that the complex vector y/x has the direc-
tion of the bisector between x and the real vector |x|; it holds in the range
—m < arg(x) < m. The alternate formula

VX = (11)

x — |x|

(x| = Rx)

X =
VX 14/2
holds in 0 < arg(x) < 27 and agrees with (11) in the upper half plane.

The third step of Levi-Civita’s regularization process produces linear
differential equations for the unperturbed problem f = 0 by combining Equ.
(10) with the energy relation. By using % = X -2uu’ Equ. (4) becomes

p—=2u? = rh; (12)
therefore the perturbed Kepler problem (3) is equivalent with
2u” + h-u = raf where x=u? €C

hl = _<xlaf>a

(13)



as is seen by substituting (12) into (10) and dividing by r u, using (8). Also,
Equ. (5) for h has been added in order to obtain a complete system of dif-
ferential equations for the dependent variables u € C, h € R.

The following cases are of particular interest:

1. f=0= h = h(0) = const. Equ. (13) describes a harmonic (linear)
oscillator in two dimensions.

2. f has a potential V, f = —gradV = h(z) = h(0) + V(z) — V(0).
Equ. (13) describes a perturbed harmonic oscillator with varying fre-
quency.

3. f =0(), e >0 = h(z) = h(0) + O(e). Equ. (13) describes a
perturbed harmonic oscillator with slowly varying frequency.

3. Regular Elements

We will now take advantage of the linear structure of the unperturbed
version f = 0 of Equs. (13). Consider, as a model problem, the perturbed
harmonic oscillator

LA 14
F +wiu = y ( )
where F'is small, and w is slowly varying. First, we transform the perturbed
oscillator (14) to constant frequency by introducing the new independent
variable E according to the differential relation
d d d? d? d
dE = wdr | %:wd—E’ ﬁ:wgﬁ_ﬂuld_E’ (15)
where primes — in this section — denote derivatives with respect to E (2F
is the eccentric anomaly of the osculating Kepler motion). Equ. (14) now
becomes » . ' du/dE
T Fu=G  with G:ww—2u/ .
We now discuss two ways of introducing regular elements to Equ. (16):

(16)



3.1. Variation of the constant.

With the notation v := du/dE Equ. (16) may be written as the vector
differential equation

(2)=a(2) + (&) wo a=(53).

Departing from the matrix solution

[ uwE)\ [ cosE sinFE
U(R) = ( v(E) ) N ( —sinE cosE ) (18)
satisfying the unperturbed equation U" = AU, the method of varying the
constant consists of seeking a solution of (17) of the form

u(E) ) ( a(E) )
=U(E , 19
(v ) =v® (5 1
where a(FE), B(E) are the (orbital) elements. Substituting this into (17) and
solving for the derivatives of the elements yields

da -

— = —G-sink
dg -

— = . E .
o G - cos

Here we have used vector symbols in order to indicate that Equs. (20) not
only hold for scalars o, 3, G € R, but also for vectors @, 3,G € R".

3.2. Singular-value decomposition.

This set of elements is based on the original perturbation problem (14),
now written for vectors u, F' € R", here with n = 2,
d*d

As it is often done, we define the osculating orbit at the fixed value 7 = 7
as the orbit determined by Equ. (21) for 7 > 74 if w and F' are fixed at the
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Figure 1: The harmonic elements o1, 09, ¢, 1. The axes are vy, vy

values wy = w(m), F,=F (10) for all 7 > 75. It is convenient to shift the
origin by introducing the new coordinate ¥ according to @ = 7 + Fy/wg; v
satisfies P2
/l) 2 —_
ﬁ -+ C{JO v=20 (22)
for 7 > 79. Any four quantities uniquely charactrizing the solution of (22)
may be used as orbital elements, e.g. the initial values @iy = (), ¥ = 7'(70)

at 7 = 7. With these initial values, the solution of (22) is
— — ~ 1 —/ . ~ ~
U(1) = Uy cos(woT) + — Uy sin(we7), T=7—10, (23)
Wo

or, by representing #(7) = (v1(7), v2(7))" in components and using matrix

notation:
o) = () v = (o ) e

with vy, v99, vy, V4, being the components of @y and 7', respectively.



The osculating orbit (24) is an ellipse centered at 7 = 0, or @ = Fy/wg. A
more natural choice of orbital elements than %, ', are four geometric param-
eters of the ellipse (24). We suggest to use the singular-value decomposition
(SVD)

M=USVT (25)

of the matrix M in (24), where U,V are orthogonal and S is diagonal,

U= ( cos ¢ —singp)’ V:(cgsw —sin¢), S:(Ol 0 >,
singp cosg siny  cos 0 oy

(26)
with nonnegative singular values o7 > 09 > 0. The two quantities 01, 02 (the
semi-axes of the osculating ellipse) and the two angles ¢, v will be referred
to as the harmonic elements of the perturbed oscillator (21). The geometric
meaning of the angles ¢, is shown in Figure 1: ¢ is the angle of rotation of
the axes of the ellipse with respect to fixed axes, 9 is related to the position
of the moving point on the ellipse corresponding to 7 = 7.

4. Weakly Coupled Harmonic Oscillators

In order to apply one of the proposed sets of elements for describing
coorbital motion we formulate the equations of motion (2) of the weakly
coupled Kepler motions in terms of the Levi-Civita coordinates of Section
2. In this way the unperturbed problem will be defined by linear differential
equations. Using the symbols p; = my +m;, j = 1,2 as well as complex
notation ry, ry € C and the abbreviations f;, f; € C for the right-hand sides,
Equ. (2) reads as

. r
ry+ —13 = f
|1 (27)
. Iy
o+ fo —5 = f; .
T2

For j = 1,2 we will introduce the individual fictitious times 7; and Levi-
Civita’s complex coordinates u; as well as the derivatives v; = 2du;/dr;
(the factor 2 is for convenience), and the energies h;. According to (13), (8)



we obtain for j =1, 2

duj _ v

dr; 2
% = —hju;+ [wl* @, f

] (28)
dh;
dry
dt

dr;

= —R(U,;v, f)

= ||’

= i

The inconvenience of two individual fictitious times 7y, 75 is easily cir-

cumvented by going back to physical time ¢ as independent variable in both
oscillators j = 1,2 (by using the last equations of (28)):

du; _ v

dt 2 [u; |

dv; h; .

d—tj = —E’j+ujf], j=1,2 (29)
d h; v,

1 = —R(-ZL ).

dt <Uj J)

In the near-circular case we have |u;| ~ const, and the osculating elements
of Section 3.2 can be used.

Consider, as an example, the planar motion of two small satellites my, ms
under the influence of the large central body my. We assume the satellites
to be initially on nearly identical circular osculating orbits of radii p; =~ p,
with velocities s; = \/M/pj, j = 1,2, where M = mg+ my +ms is the total
mass of the system. Assuming opposite initial postions of the satellites with
respect to the central body yields the position and velocity vectors

r = (,Ol,O)T, To = (—pQ,O)T, 7"1 = (0, Sl)T, 7:'2 = (0, —SQ)T,

to be used as initial conditions for the equations of motion (2). The choice
mo =777, my =1, my = 2, pp = 1.01, po = 1.00, which is the basis of the
orbits shown in Figure 2, causes the considered system to display the typical
behaviour of coorbital motion. The mass ratios and geometry are such that
a few close encounters of the satellites with the well known orbit exchanges
occur before the system suddenly breaks up.



Figure 2: A few revolutions of the satellites m; = 1 (diamonds, dashdotted)
and my = 2 (circles, solid line) about the central body mg = 777, shown
in heliocentric coordinates. Initial distances p; = 1.01, po = 1.00, opposite
starting points, circular initial velocities

Whereas Figure 2 hardly shows any structure, the behaviour of the har-
monic elements clearly reflects the dynamics of the orbits of the two satel-
lites. In Figure 3 the semi-axes 01,09 of the ellipses (24) associated with
the two satellites are plotted versus time, the thin lines corresponding to the
smaller satellite, m;. The wiggles correspond to the near-Keplerian revolu-
tions around the central body when the satellites are far appart; the motion
is quite orderly. If the satellites have a close encounter the harmonic elements
change dramatically, corresponding to the transition into new near-Keplerian
orbits. This process repeats in a more or less regular way, with an increasing
tendency towards chaos, however. When deviations from this pattern have
sufficiently accumulated — here after 5 close encounters of the satellites — the
orderly motion ceases: Order and chaos in satellite encounters. The reader
is referred to the wide literature on this topic, beginning with [8] and [4]; a
more extended list of references may be found in [18].

The derivation of the perturbation equations for the harmonic elements
and the development of a perturbation theory based on these elements will
not be discussed here.
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Figure 3: The harmonic elements o, 0, of the orbits of Figure 2. The fat
lines refer to the larger satellite mo = 2



5. Quaternion Algebra

In the remaining sections we indicate how the ideas discussed above may
be generalized to three-dimensional motion. The essential step is to replace
Levi-Civita’s regularization with the Kustaanheimo-Stiefel (KS) regulariza-
tion, described in the original papers [7] and [6], and extensively discussed in
the comprehensive text [10]. The relevant mapping from the 3-sphere onto
the 2-sphere was discovered already in 1931 by Heinz Hopf [5] and is referred
to in topology as the Hopf mapping.

Both the Levi-Civita and the Kustaanheimo-Stiefel regularization share
the property of “linearizing” the equations of motion of the two-body prob-
lem. Quaternion algebra, introduced by W. R. Hamilton in 1856 [3], was
originally rejected [10, p. 286] as a tool for regularizing the three-dimensional
Kepler motion. Here we will present a new elegant way of extending the Levi-
Civita regularization to three dimensions by means of quaternions. Similar
techniques were used earlier by M. D. Vivarelli [12] and J. Vrbik [13, 14, 15].

5.1. Basics.

Quaternion algebra is a generalization of the algebra of complex numbers
obtained by using three independent “imaginary” units 7,7, k. As for the
single imaginary unit ¢ in the algebra of complex numbers, the rules

2=2=k=_1
are postulated, together with the non-commutative multiplication rules
1j=—ji=k, jk=—-kj=1i, ki=—1k=7j.
Given real numbers v; € R, [ = 0,1, 2, 3, the object
u=u+itu +jus +kus (30)

is called a quaternion u € U, where U denotes the set of all quaternions (in the
remaining sections bold-face characters denote quaternions). The sum iu; +
Jjug + kus is called the quaternion part of u, whereas ug is naturally referred



to as its real part. The above multiplication rules and vector space addition
define the quaternion algebra. Multiplication is generally non-commutative;
however, any quaternion commutes with a real:

cu=uc, ceR, uel, (31)
and for any three quaternions u, v, w € U the associative law holds:
(uv)w=u(vw). (32)

The quaternion u may naturally be associated with the corresponding
vector u = (ug, U1, ug, ug) € R*. For later reference we introduce notation
for 3-vectors in two important particular cases: @ = (uy,uy,u3) € R for
the vector associated with the pure quaternion u = 1uy + jus + kus, and
u = (ug, u1, ug) for the vector associated with the quaternion with a vanishing
fourth component, u = ug + 7 u; + J us.

For convenience we also introduce the vector 7= (i, j, k) ; the quaternion
u may then formally be written as u = ug + (7, @). For the two quaternion
products of u with v = vy + (7, ¥) we then obtain the concise expressions

uv = ugvy — (4 0) + (7, ug ¥+ v & + & X ¥) (33)
vu = ugvg — (U, V) + (7, ug T+ vg i — 4 X Ty,

where X denotes the vector product. Note that the non-commutativity shows
only in the sign of the term with the vector product.
The conjugate u of the quaternion u is defined as

O=uy—iu; —Jjus — kus; (34)
then the modulus |u| of u is obtained from

3
u’ =uda=tu=>) u. (35)
=0

As transposition of a product of matrices, conjugation of a quaternion prod-
uct reverses the order of its factors:

uv=va. (36)



5.2. Rotations in Three Dimensions.

This is a short digression in order to demonstrate the elegance of quater-
nion representations in three-dimensional geometry. Let & be a vector of
the Euclidean 3-space R3, and consider the right-handed rotation about the
unit vector @ = (a1, as,a3), |@ = 1 through the angle w. One way of
representing the mapping

FER »j=T% (37)

is to use Cayley’s parametrization

T

I-cos¥ + S(@)-sin%
= AR (38)
I-cosg —S(a)-sing
of the orthogonal matrix 7. Here [ is the unit matrix, and matrix “division”
may be interpreted as multiplication with the inverse of the denominator (if
it exists) from the left or from the right. The skew symmetric matrix

0 —as a9
S(C_L‘) = as 0 —aq
—a9 aq 0

is the wvector product matriz associated with d, i.e. for every column vector
7€ R3 we have S(d@)T¥=a x 7.

A proof of (38) may be obtained by considering the relation

cos%-(gj’—f):sing-&’x(gq—f), (39)
which is equivalent with (37), (38) and may be obtained by multiplying (37)
from the left by the denominator of (38). Equ. (39), in turn, exactly reflects
the geometry of the rotation under consideration, as is easily deduced from
Figure 4, in particular from the triangle CMB.
The mapping (37) with 7" from (38) will now be written as a relation
between the pure quaternions x = (7, %), y = (7, ).
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Figure 4: Geometric proof of Equ. (39) for the rotation about the axis
d, |@ = 1 through the angle w. Equ. (39) follows from the geometry of the
triangle CMB



Theorem 1. Let @ € R? be a unit vector and define the unit quaternion
r :=cos — + (7,d) sin —.
2 ’ 2

Furthermore, let ¥ € R?® be an arbitrary vector and x = (7, Z) the associated
pure quaternion. Then the map

X—=Yy= rxr '
describes the right-handed rotation of & about the axis @ through the angle
w. a
Remark. Since r is a unit quaternion we have r~! =r.

Proof. Show the equivalent statement y r = r x by means of the multiplica-
tion rules (33) and Equ. (39). O

6. The KS Transformation in Quaternions

In this section we will revisit KS regularization and present a new, elegant
derivation of it, using quaternion algebra and an unconventional “conjugate”
u* referred to as the star conjugate of the of the quaternion u = ug + 1 uq +
Jjus + kus:

*

uti=ug+iur +Jjug — kus. (40)

The star conjugate of u may be expressed in terms the conventional conjugate
u as

uw=kiuk™' = —kuk;
however, it turns out that the definition (40) leads to a particularly elegant
treatment of KS regularization. The following elementary properties are
easily verified:

(u)* = u.
[w* = [uf’ (41)
(uv)* = vu*

Consider now the mapping

uelU — x=uu". (42)



Star conjugation immediately yields x* = (u*)* u* = x; hence x is a quater-
nion of the form x = xy 41727 + j 2 which may be associated with the vector
x = (z0,21,Z2) € R From u = ug +1u; + jus + kus we obtain

Ty = u%—u%—u%-ﬁ-ug
r = 2(’LLO U1 — U9 ’LL3) (43)
Lo = 2(’[1,0 Uz + Uy ’U,3) R

which is exactly the KS transformation in its classical form or — up to a
permutation of the indices — the Hopf map. Therefore we have

Theorem 2: The KS transformation which maps u = (ug, uy, U, u3) € R?
to z = (z9, 1, 72) € R? is given by the quaternion relation

X =uu",
where u = ug +iuy + jus +kuz, X =229 +171 + J To. O
Corollary: The norms of the vectors u and z satisfy ||z|| = ||u|”. O

Proof: By appropriately combining the two conjugations and using the
rules (31), (32), (35), (36), (41) we obtain

¥ .

lzl* =xx=u( @) a=juf [ul’ =|ul = ul*,

from where the statement follows. O

As a side step, we will briefly discuss two topics not directly related to
our primary objective, perturbation theory. Both the inverse map and the
Birkhoff transformation in three dimensions allow for an elegant treatment
in terms of quaternions.

6.1. The Inverse Map.

Being given a quaternion x = xy + ¢ 1 + j £o with vanishing fourth com-
ponent, z3 = 0, we want to find all quaternions u such that uu* = x. We
propose the following solution in two steps:



First step: Find a particular solution u = v = v* = vy + tv; + jvo

which has also a vanishing fourth component. Since vv* = v? we may use
Equ. (11), which was developed for the complex square root, also for the
square root of a quaternion:

_ x4 [x
2 (Ix] + o)

Clearly, v has a vanishing fourth component.

Second step: The entire family of solutions (geometrically a circle in R*),
parametrized by the angle ¢, is given by

u=v-e"?=v(cosp+ksiny).

Proof. uu*=vertve*¢v  =vv* =x. 0

6.2. The Birkhoff Transformation.

This regularizing transformation was proposed in 1915 by George David
Birkhoff [1] in order to regularize all singularities of the planar restricted
three-body problem with a single transformation. In 1965 E. Stiefel and this
author [9] published a generalization of Birkhoff’s transformation to three
dimensions, using the KS transformation. Later these ideas resulted in the
publications [16] and [17].

Here we will first revisit the classical Birkhoff transformation (the same
conformal map is known in aerodynamics as the Joukowsky transformation)
and represent it as the composition of three conformal mappings; this will
then readily generalize to the spatial situation by means of quaternions.

Consider a rotating physical plane parametrized by the complex vari-
able y € C; for convenience we assume the fixed primaries of the restricted
three-body problem to be situated at the points A, C given by the complex
posititons y = —1 and y = 1, respectively (see Figure 5). The complex vari-
able of the parametric plane will be denoted by v and will be normalized in
such a way that the primaries are mapped to v = —1 or v = 1, respectively.



Parametric Plane Auxiliary Plane Auxiliary Plane Physical Plane

C=o9
B 1 D 1 1
D B
A = 0 a (=" | o le——"
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v+1 9 x+1
Vi—u= u—rXxX=1u XH—=y=
v—1 x—1

Figure 5: The sequence of conformal maps generating the Birkhoff
transformation

The key observation is that Levi-Civita’s conformal map (7), u — x = u?,
not only regularizes collisions at x = 0 but also analogous singularities at
x = oo. This is seen by closing the complex planes to become Riemann
spheres (by adding the point at infinity) and using inversions x = 1/%,
u=1/a.

Taking advantage of this fact, we first map the v-sphere to an auxiliary
u-sphere by the Mo6bius transformation

v+1 2
=14+ — 44
v—1 +v—1’ (44)

VvV u=

which takes the primaries A, C to the points u = 0, u = oo, respectively.
The Levi-Civita map (7) will leave these points invariant while regularizing
collisions at A or C. Finally, the Mobius transformation
ox+1 2

=1
x—1 +X—1

(45)

XYy

maps A, Ctoy = —1 and y = 1, respectively. The composition of the maps
(44), (7), (45) yields

y: or y:

v+1)?
E;i;fﬁ lres)w
v—1




the well known map used by Birkhoff.
In the spatial case we choose v,u,x,y € U to be quaternions, x = x*,
y = y* being quaternions with vanishing fourth components, associated with
3-vectors z, y. Then the mappings (44), (45), being shifted inversions in 4
or 3 dimensions, are both conformal maps, in fact the only conformal maps
existing in those dimensions, except for the translations, magnifications, and
rotations. Composing these with the KS or Hopf map (42), u — x = uu*,
yields
y=1+ (v"=1) (v+v) " (v=1) (47)

after a few lines of careful noncommutative algebra. This is easily split up into
components by means of the inversion formula 1/v = v/|v|% it agrees with
the results given in [9] up to the sign of v3. Both transformations regularize;
the discrepancy is due to the different definition of the orientation in the
inversions.

7. Perturbation Theory in Three Dimensions

In order to regularize the perturbed three-dimensional Kepler motion by
means of the KS transformation it is necessary to look at the properties of
the map (42) under differentiation.

7.1. Differentiation.

The transformation (42) is a mapping from R* to R3; it therefore leaves
one degree of freedom in the parametric space undetermined. In KS theory
[7], [10], this freedom is taken advantage of by trying to inherit as much
as possible of the conformality properties of the Levi-Civita map, but other
approaches exist [15]. By imposing the “bilinear relation”

us dU() — U2 dU1 “+ U dUQ — Ug d’LL3 =0 (48)

between the vector u = (ug, u1,us2,u3) and its differential du on orbits the
tangential map of (42) becomes a linear map with an orthogonal (but non-
normalized) matrix.

This property has a simple consequence on the differentiation of the
quaternion representation (42) of the KS transformation. Considering the



noncommutative multiplication of quaternions, the differential of Equ. (42)
becomes

dx=du-u*+u-du”, (49)
whereas (48) takes the form of a commutator relation,
1 * *
5(—du-u +u-du*)=0. (50)

Combining (49) with the relation (50) yields the elegant result
dx=2u-du”, (51)

i.e. the bilinear relation (48) of KS theory is eqivalent with the requirement
that the tangential map of u — uu* behaves like in a commutative algebra.

7.2. KS Regularization.

The procedure of Section 2 for regularizing the planar case now carries
over almost identically to the spatial case; care must be taken to preserve
the order of the factors in quaternion products. Changing the order is only
permitted if one of the factors is real. Let x = zy +ix1 + j 22 € U be the
quaternion associated with the vector z = (zg,z1,2); then the perturbed
Kepler problem (3) is given by

5&+,u%:f(x,t)eU, r= x|, (52)

where f(x,t) = fo(x,t) + i fi(x,t) + j fo(x,t) = £*(x,t) is the quaternion
associated with the perturbation f(z,t) € R®. The energy equation (4)
becomes

1L .o p
— ——=-h 23
s == h, (53)

whereas the result of the first step, i.e. introducing 7 by dt = r - d7 exactly
agrees with Equ. (6),

rx" —r'xX +pux=r*f €U. (54)
The relations (7), (8), (9) needed in the second step read as

X =uu*, r=uu (55)



and

' " ’ o -
x' =2uu*, x"=2uu" +2duv", =du+ud. (56)

The energy equation (53) needed in the third step becomes

1 12 % . 4 *x! %!y = %3 o
2—7“2|X| —;_—h or 2—72u(u u )u—;——h
which results in the relation
p—2|? = rh, (57)

in complete agreement with (12) found for the planar case.
Substitution of (55) and (56) into (54) yields the lengthy formula

(ui) Quu*’ +2uv'uv*’) — (Wa+uw) - 2uu + puu = *f, (58)

which is considerably simplified by observing that the second and third term
— after applying the distributive law — compensate:

! !

2(un)u’'u* — 2u'(auw)u* = 0.

Furthermore, the fourth term of (58) reduces to

—2ud-uu = —2u@u)u = —2u|ufPu = (rh-puu

by using (57). Therefore, (58) becomes

n —
2ruu* + rhuu* = ruaf,

and, finally, left-division by r u and star-conjugation yields
2u” + hu = rfur, (59)

a differential equation in perfect agreement with (13) for the planar case;
however, it takes more than an educated guess to get the correct right-hand
side.



7.3. Osculating Elements.

The considerations of Section 3.2., i.e. the introducing osculating har-
monic elements by means of the singular-value decomposition, readily car-
ries over to the spatial case. Consider, as in Equ. (22), the vector-valued
harmonic oscillator

— +wi =0, (60)

with initial values ¥(7y) = ¥y, ¥'(79) = ¥}, at some time 7 = 75, now with
7 € R*. Asin Equ. (24), we write the solution in matrix form as

vo(T) Voo Vgo/Wo
vi(r) | _ cos(wo(T — 7o) _ | v vig/wo
U2ET§ =M (sin(wo(T — ’7'0))) M= V20 véofwo (61)

with vgo, V10, V20, V30, Vg, Vigs Voo, Use Deing the components of vy and ¢y, re-
spectively. The SVD of M becomes

M=USV” (62)

with an orthogonal matrix U € R*** having 5 essential degrees of freedom
and matrices

g1 0
_ 0 o9 [ costyp —siny
5= 0o 0 |’ V_<sinw Cosw>
0 0

with 3 more degrees of freedom, totally 8, as expected.

In the preceding text we have presented a unified theory of regularization
of the perturbed Kepler motion. Quaternion algebra allows for an elegant
treatment of the spatial case in a way completely analogous to the way the
planar case is traditionally handeled by means of complex numbers. As a
consequence of the linearity of the regularized equations of the perturbed
Kepler motion, the problem of satellite encounters reduces to a linear per-
turbation problem, the problem of coupled harmonic oscillators. Orbital
elements based on the oscillators may lead to a simpified discussion of or-
dered and chaotic behaviour in repeated satellite encounters. This has been
demonstrated by means of an instructive example.
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