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Abstract. Quaternions have been found to be the ideal tool for de-
scribing and developing the theory of spatial regularization in celestial
mechanics. This article corroborates the above statement. Beginning
with a summary of quaternion algebra, we will describe the regular-
ization procedure and its consequences in an elegant way. Also, an
alternative derivation of the theory of Kepler motion based on regular-
ization will be given. Furthermore, we will consider the regularization of
the spatial restricted three-body problem, i.e. the spatial generalization
of the Birkhoff transformation. Finally, the perturbed Kepler motion
will be described in terms of regularized variables.
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1. Introduction

In 1844 the Irish mathematician William Rowan Hamilton (1805-1865)
published a paper entitled On quaternions, or a new systen of imagi-

naries in algebra (Hamilton 1844). Hamilton got inspiration from two
multiplicative operations involving vectors ∈ R

3 (the scalar product
and vector product) and managed to devise a non-commutative algebra
of 4-dimensional objects generalizing the algebra of complex numbers.
Quaternions soon became a standard topic in higher analysis, and
today, they are in use in computer graphics, control theory, signal
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processing, orbital mechanics, etc., mainly for representing rotations
and orientations in 3-space.

The use of quaternions for the purpose of regularization of the spatial
Kepler problem has been contemplated soon after the discovery of the
so-called KS transformation by Kustaanheimo and Stiefel (1965). The
fact that the KS transformation is based on a 4-dimensional parametric
space immediately called for bringing quaternions into play. However,
in their comprehensive text Stiefel and Scheifele (1971) clearly rejected
this idea (p. 286): “Any attempt to substitute the theory of the KS
matrix by the more popular theory of the quaternion matrices leads to
failure or at least to a very unwieldy formalism.” This statement was
first refuted by Yu. N. Chelnokov (1981) who presented a regularization
theory of the spatial Kepler problem using geometrical considerations
in a rotating coordinate system and quaternion matrices. In a se-
ries of papers, including Chelnokov (1992) and Chelnokov (1999), the
same author extended the theory of quaternion regularization and also
presented practical applications.

Later, but independently, Maria Dina Vivarelli (1983) and Jan Vrbik
(1994, 1995) demonstrated the usefulness of quaternions for regulariza-
tion in celestial mechanics. Recently, the Space Mechanics Group of the
University of Zaragoza (Spain) took advantage of the elegance of the
quaternion language in various applications in orbital and rigid-body
dynamics, see, e.g., Arribas, Elipe and Palacios (2006).

Here we will first summarize the theory of quaternions and then
give an overview of the new, elegant way of handling three-dimensional
regularization by means of an unconventional conjugation of quater-
nions, as suggested by Waldvogel (2006a, 2006b). As an application, the
well-known theory of Kepler motion will be rederived on the basis of
the regularized equations of motion. Furthermore, as a postscriptum to
the author’s early works (Stiefel and Waldvogel 1965, Waldvogel 1967a,
1967b), the spatial extention of the Birkhoff (1915) regularization of the
restricted three-body problem will be elegantly described in terms of
quaternions. Finally, we will state the regularized equations of motion
of the perturbed spatial Kepler problem.

It seems appropriate that this article appears in the Special Issue in
Honor of Claude Frœschlé. It was Claude, with his invitation extended
to the author for contributing to the Winter School Les Arcs 2000 on
singularities (Benest and Frœschlé, Eds., 2002), who initiated a process
of revisiting regularization theory in celestial mechanics.
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2. Quaternion Algebra

A quote from Wikipedia: Hamilton was looking for ways of extending
complex numbers (which can be viewed as points on a 2-dimensional
plane) to higher spatial dimensions. He could not do so for 3 dimensions,
and in fact it was later shown that it is impossible. Eventually Hamilton
tried 4 dimensions and created quaternions. According to Hamilton, on
October 16, 1843 he was out walking along the Royal Canal in Dublin
with his wife when the solution in the form of the equations

i2 = j2 = k2 = i j k = −1 (1)

suddenly occurred to him; Hamilton then promptly carved these equa-
tions into the side of the nearby Broom Bridge. [. . . ] Unfortunately, no
trace of the carving remains, though a stone plaque does commemorate
the discovery. 2

Hamilton’s basic relations (1) are inconsistent with commutative
multiplication rules between the three imaginary units i, j, k. However,
by postulating commutative multiplication with the real number −1 the
better known more explicit multiplication rules may easily be obtained
from (1). Right multiplication of the last equality of (1) by k yields
i j = k; left multiplication of this by i yields i k = −j. Furthermore,
left multiplication of the last relation of (1) by k and right division by k
yields k i j = −1. This implies that a cyclic permutation i → j → k → i
transforms a valid relation again into a valid relation. Hence we obtain
the well known non-commutative multiplication rules of the imaginary
units:

i j = −j i = k , j k = −k j = i , k i = −i k = j . (2)

Given the real numbers ul ∈ R , l = 0, 1, 2, 3, the object

u = u0 + i u1 + j u2 + k u3 (3)

is called a quaternion u ∈ U, where U denotes the set of all quaternions
(in the following bold-face characters denote quaternions). The sum
iu1+ju2+ku3 is called the quaternion part of u, whereas u0 is naturally
referred to as its real part. The above multiplication rules and vector
space addition define the quaternion algebra. Multiplication is generally
non-commutative; however, any quaternion commutes with a real,

cu = u c , c ∈ R , u ∈ U , (4)

and for any three quaternions u, v, w ∈ U the associative law holds:

(uv)w = u (vw) . (5)
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The quaternion u may naturally be associated with the correspond-
ing vector u = (u0, u1, u2, u3) ∈ R

4. For later reference we intro-
duce notation for 3-vectors in two important particular cases: ~u =
(u1, u2, u3) ∈ R

3 for the vector associated with the pure quaternion

u = i u1+j u2+k u3, and u = (u0, u1, u2) for the vector associated with
the quaternion having a vanishing k-component, u = u0 + i u1 + j u2.

The conjugate ū of the quaternion u is defined as

ū = u0 − i u1 − j u2 − k u3 ; (6)

then the modulus |u| of u is obtained from

|u|2 = u ū = ū u =
3∑

l=0

u2

l . (7)

As transposition of a product of matrices, conjugation of a quaternion
product reverses the order of its factors:

uv = v̄ ū . (8)

The two kinds of division by u 6= 0 are carried out by left- or right-
multiplication with the inverse u−1 = ū/(u ū).

A very useful application of quaternions is the possibility of elegantly
representing rotations in R

3. We only report the result; for a derivation
and proof see, e.g., Waldvogel (2006a).

Let ~a = (a1, a2, a3) ∈ R
3, |~a | = 1 be a unit vector defining an

oriented rotation axis, and let ω be a rotation angle. Define the unit
quaternion

r := cos
ω

2
+ (i a1 + j a2 + k a3) sin

ω

2
. (9)

Furthermore, let ~x ∈ R
3 be an arbitrary vector, and let x = i x1 +

j x2 + k x3 be the associated pure quaternion. Then the mapping

x 7→ y = r x r−1 (10)

describes the right-handed rotation of ~x about the axis ~a through the
angle ω (since r is a unit quaternion we have r−1 = r̄).

3. The KS Transformation

The essential ingredient of regularization in 3-space is the use of a
mapping from R

4 to R
3 that generalizes the conformal squaring used

by Levi-Civita (1920) for regularization in the plane. In fact, such a
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mapping – more precisely, a mapping from the 3-sphere onto the 2-
sphere – was discovered already by Heinz Hopf (1931) and is referred
to in topology as the Hopf mapping.

However, due to the fact that in 3-space only the trivial conformal
mappings (translations, rotations and inversions) exist, the possibilty
of spatial regularization had been missed for a long time. Only in
1964 the use of additional dimensions was considered and finally lead
to the now well-known Kustaanheimo-Stiefel or KS regularization. A
preliminary version of the KS transformation using spinor notation was
proposed by Kustaanheimo (1964); the full theory was developed in a
subsequent joint paper (Kustaanheimo and Stiefel, 1965); the entire
topic is extensively discussed in the comprehensive text by Stiefel and
Scheifele (1971).

3.1. Quaternion Representation

In this subsection we will revisit KS regularization using quaternion
notation. As observed by Waldvogel (2006a, 2006b), an elegant and
concise representation of the formal computations may be achieved by
introducing an unconventional “conjugate”, u?, referred to as the star

conjugate of the quaternion u = u0 + i u1 + j u2 + k u3:

u? := u0 + i u1 + j u2 − k u3 . (11)

The star conjugate of u may be expressed in terms of the conventional
conjugate ū as

u? = k ū k−1 = −k ū k ;

however, it turns out that the definition (11) leads to a particularly
elegant treatment of KS regularization. The following elementary prop-
erties are easily verified:

(u?)? = u , |u?|2 = |u|2 , (uv)? = v? u? . (12)

Consider now the mapping

u ∈ U 7−→ x = u u? . (13)

Star conjugation immediately yields x? = (u?)? u? = x; hence x is a
quaternion of the form x = x0 + i x1 + j x2 which may be associated
with the vector x = (x0, x1, x2) ∈ R

3. From u = u0 + i u1 + j u2 + k u3

we obtain

x0 = u2

0 − u2

1 − u2

2 + u2

3

x1 = 2(u0 u1 − u2 u3) (14)

x2 = 2(u0 u2 + u1 u3) ,
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which is exactly the KS transformation in its classical form or – up to
a permutation of the indices – the Hopf mapping. Therefore we have

Theorem 1: The KS transformation u = (u0, u1, u2, u3) ∈ R
4 7−→

x = (x0, x1, x2) ∈ R
3 is given by the quaternion relation

x = u u? ,

where u = u0 + i u1 +j u2 +k u3 , x = x0 + i x1 +j x2 , and u? is defined
in (11). 2

Corollary 1: The norms of the vectors x and u satisfy

r := ‖x‖ = ‖u‖2 = u ū . (15)

Proof: By appropriately combining the two conjugations and using the
rules (13), (5), (7), (8), (12) we obtain

‖x‖2 = x x̄ = u (u? ū?) ū = |u?|2 |u |2 = |u |4 = ‖u‖4 ,

from where the statement follows. 2

3.2. Differentiation

In order to regularize the perturbed three-dimensional Kepler motion
by means of the KS transformation it is necessary to look at the
properties of the mapping (13) under differentiation.

The transformation (13) or (14), being a mapping from R
4 to R

3,
leaves one degree of freedom in the parametric space undetermined.
In KS theory (Kustaanheimo and Stiefel, 1965; Stiefel and Scheifele,
1971), this freedom is taken advantage of by trying to inherit as much
as possible of the conformality properties of the Levi-Civita mapping,
x = u2, x ∈ C,u ∈ C, but other approaches exist (e.g., Vrbik 1995).
By imposing the “bilinear relation”

2 (u3 du0 − u2 du1 + u1 du2 − u0 du3) = 0 (16)

between the vector u = (u0, u1, u2, u3) and its differential du on or-
bits the tangential mapping of (14) becomes a linear mapping with an
orthogonal (but non-normalized) matrix.

This property has a simple consequence on the differentiation of the
quaternion representation (13) of the KS transformation. Considering
the noncommutativity of the quaternion product, the differential of the
mapping (13) becomes

dx = du · u? + u · du? , (17)
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whereas (16) takes the form of a commutator relation,

u · du? − du · u? = 0 . (18)

Combining (17) with the relation (18) yields the elegant result

dx = 2 u · du? , (19)

i.e. the bilinear relation (16) of KS theory is equivalent with the re-
quirement that the tangential mapping of u 7→ uu? behaves as in a
commutative algebra.

3.3. The Inverse Mapping

Since the mapping (14) does not preserve the dimension its inverse
in the usual sence does not exist. However, the present quaternion
formalism yields an elegant way of finding the corresponding fibration

of the original space R
4. Being given a quaternion x = x0 + i x1 + j x2

with a vanishing k-component, x = x?, we want to find all quaternions
u such that uu? = x. We propose the following solution in two steps:

First step: Find a particular solution u := v = v? = v0 + i v1 + j v2

which has a vanishing k-component as well. Since v v? = v2 we may
obtain v as one of the quaternion square roots of x, e.g. as

v =
x + |x|

√

2 (x0 + |x|) ,

a well-known formula for the square root of the complex number
x = x0 + i x1 ∈ C.

Second step: The entire family of solutions (the fibre corresponding
to x, geometrically a circle in R

4 parametrized by the angle ϕ), is given
by

u = v · e k ϕ = v (cos ϕ + k sinϕ) .

Proof: uu? = v e k ϕ e−k ϕ v? = vv? = x . 2

4. Regularization

In this section we describe the formal procedure for KS-regularizing
the equations of motion of the spatial two-body problem by using the
four parameters (u0, u1, u2, u3) =: u ∈ R

4 and quaternion notation,
u = u0 + i u1 + j u2 + k u3. The planar case, Levi-Civita (1920), is the
particular case u2 = u3 = 0, i.e. u = u0 + i u1 ∈ C.
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We begin with the differential equations governing the Keplerian
motion of a particle about a central body with gravitational parameter
µ, written in quaternion notation as

ẍ + µ
x

r3
= 0 ∈ U , r = |x| , ˙( ) =

d

dt
. (20)

Here t is time, x = (x0, x1, x2) ∈ R
3 is the position of the moving

particle, and x = x0 + i x1 + j x2 ∈ U is the corresponding quaternion.
In addition, it is necessary to consider the energy integral of (20),

1

2
| ẋ |2 − µ

r
= −h = const , (21)

where the right-hand side −h has been chosen such that h > 0 corre-
sponds to an elliptic orbit.

KS regularization of the spatial Kepler problem may be achieved
by the three steps 4.1, 4.2, 4.3 described below. In order to stress the
simplicity of this approach we present all the details of the formal
computations. Care must be taken to preserve the order of the factors
in quaternion products. Exchanging two factors is permitted if one of
the factors is real or if the factors are mutually conjugate. An impor-
tant tool for simplifying expressions is regrouping factors of multiple
products according to the associative law (5).

4.1. First step: Slow-motion movie

This regularization step calls for introducing a new independent vari-
able τ , called fictitious time, according to the Sundman (1907) trans-
formation

dt = r · dτ ,
d

dτ
( ) = ( )′ . (22)

Therefore, the ratio dt/dτ of the two infinitesimal increments is made
proportional to the distance r; the movie is run in slow-motion when-
ever r is small. Equs. (20), (21) are transformed into

r x′′ − r′ x′ + µ x = 0 ,
1

2 r2
|x′|2 − µ

r
= −h . (23)

4.2. Second step: Conformal squaring with quaternions

The next step of the regularization procedure consists of introducing
new coordinates u ∈ U according to the KS or Hopf mapping (13),
(14), as a generalization of Levi-Civita’s conformal squaring:

x = uu? , r := |x| = |u|2 = u ū . (24)
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Differentiation by means of (19) yields

x′ = 2uu? ′

, x′′ = 2uu? ′′

+ 2u′ u? ′

, r′ = u′ ū + u ū′ . (25)

Substitution of (24) and (25) into (231) results in the lengthy equation

(u ū) (2uu? ′′

+ 2u′ u? ′

) − (u′ ū + u ū′) 2uu? ′

+ µuu? = 0 , (26)

which is considerably simplified by observing that the second and third
term – after applying the distributive law – compensate:

2 (u ū)u′ u? ′ − 2u′ (ū u)u? ′

= 0 .

Furthermore, by means of (5), (4) and (18) the fourth term of (26) may
be simplified as follows:

−2 (u ū′) (uu? ′

) = − 2u (ū′ u′)u? = − 2 |u′|2 uu? .

By using this and left-dividing by u Equ. (26) now becomes

2 r u? ′′

+ (µ − 2 |u′| 2 )u? = 0 . (27)

4.3. Third step: Fixing the energy

From (7), (19), (12) we have

|x′ |2 = x′ x̄′ = 4u (u? ′

ū? ′

) ū = 4 r |u′ | 2 ; (28)

therefore Equ. (232) becomes

µ − 2 |u′ |2 = r h . (29)

Substituting this into the star-conjugate of (27) and dividing by r
finally yields

Theorem 2: The KS transformation (13) with the differentiation rule
(19) and the time transformation (22) maps the spatial Kepler problem
(20) into the quaternion differential equation

2 u′′ + h u = 0 (30)

describing the motion of four uncoupled harmonic oscillators with the
common frequency ω :=

√

h/2. 2
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5. The Kepler Formulas

As a first application we present an alternate way of deriving the
well-known explicit formulas describing Kepler motion in terms of the
eccentric anomaly E. For simplicity we restrict ourselves to the planar
case u2 = u3 = 0, u = u0 + i u1 ∈ C, in which the KS transformation
(13) reduces to Levi-Civita’s conformal squaring

x = x0 + i x1 = u2 . (31)

0 0.5 1 1.5 2
−0.5

0

0.5

1

b

Eφ
x

0

x
1

c = a e a

p

r

x=x
0
+ i x

1

µ

Figure 1. The planar elliptic Kepler motion with eccentricity e = 0.9. a, b semi-
axes, c focal distance, p semi-latus rectum, E eccentric anomaly, µ gravitational
parameter, r distance, φ polar angle

The differential equation (20) of Kepler motion,

ẍ + µ
x

r3
= 0 ∈ C , r = |x| = |u|2

is transformed into (30),

2u′′ +hu = 0 ∈ C with dt = r dτ , h = −1

2
|ẋ|2 +

µ

r
= const > 0 .

In this section bold-face characters denote complex numbers.

We begin with the general solution of (30) in two dimensions,

u = A cos(ω τ) + i B sin(ω τ) ∈ C , ω =
√

h/2 , (32)

thus parametrizing the origin-centered elliptic orbit of a planar har-
monic oscillator by means of τ . For simplicity we assume A,B ∈ R;
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this corresponds to using a coordinate system aligned with the principal
axes of the orbit. Then τ = 0 corresponds to an apex of the ellipse.

5.1. The eccentric anomaly

The square of (32),

x = u2 =
A2 − B2

2
+

A2 + B2

2
cos(2ωτ) + i AB sin(2ωτ) , (33)

describes the elliptic Keplerian orbit of Figure 1. By comparing the
figure with Equ. (33) the geometric meaning of the angle

E := 2ω τ =
√

2h τ , (34)

may immediately be identified as the angle marked in Figure 1, having
its vertex at the center of the ellipse. E is referred to as the eccentric

anomaly of the Kepler motion under consideration; it is known to be the
ideal parameter for describing Kepler motion. In the present approach
it comes into play in a completely natural way.

5.2. The orbit

From (33) and Figure 1 we immediately identify the geometric param-
eters a, b (major and minor semi-axes), and c (distance of the center
from the origin) as

a =
A2 + B2

2
, b = AB , c =

A2 − B2

2
. (35)

Because of c2 + b2 = a2 the origin is a focus of the ellipse; therefore the
eccentricity is

e :=
c

a
=

A2 − B2

A2 + B2
. (36)

In terms of a, e the parameters A,B may now be written as

A =
√

a (1 + e) , B =
√

a (1 − e) . (37)

Therefore, the parametrization of the orbit (33) in terms of E, in view
of x = x0 + i x1, becomes

x0 = a
(

e + cos(E)
)

, x1 = a
√

1 − e2 sin(E) . (38)

Furthermore, by using (32), (35) and (36) the distance r is found to be

r = |x| = |u|2 =
A2 + B2

2
+

A2 − B2

2
cos(E) = a

(

1+e cos(E)
)

. (39)
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5.3. Energy

According to Equ. (21) the negative energy h is a constant of motion.
In this section we will establish a relationship between h and the major
semi-axis a. According to (29) and (39) we have

2 |u′|2 = µ − r h with r = a
(

1 + e cos(E)
)

. (40)

On the other hand, the derivative of the regularized orbit (32) implies
the relation |u′|2 = ω2 a (1 − e cos (E)) or

2 |u′|2 = a h
(

1 − e cos(E)
)

.

This is compatible with (40) for every E if and only if

2 a h = µ or h =
µ

2 a
. (41)

5.4. Time

The motion as a function of time easily follows by rewriting Sundman’s
transformation (22) in terms of E by means of (34) and (39):

dt =
a√
2h

(

1 + e cos(E)
)

dE .

By using (41) this becomes

dt =
1

n

(

1 + e cos(E)
)

dE with n :=

√
µ

a3
. (42)

The quantity n = 2π/T (T the period of revolution) is the mean
angular velocity of the particle, or mean motion, as it is called in
astronomy. Finally, integration of (421) (normalized for t = 0 at the
apocenter) yields Kepler’s equation

t =
1

n

(

E + e sin(E)
)

, (43)

whereas (422) is Kepler’s third law,

n2 a3 = µ . (44)
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5.5. Polar coordinates

Keplerian orbits have a surprisingly simple representation in polar co-
ordinates r, φ satisfying x = r ei φ. Rewriting (32) in terms of E, a, e by
means of (34), (37) yields

u =
√

x =
√

a (1 + e) cos
(E

2

)

+ i
√

a (1 − e) sin
(E

2

)

=
√

r ei φ/2 .

This immediately implies the famous relation

tan
(φ

2

)

=

√

1 − e

1 + e
tan

(E

2

)

. (45)

Solving (45) for tan(E/2) and passing over to cos(E) yields

cos(E) =
cos(φ) − e

1 − e cos(φ)
.

Substituting this into the last expression for r in (39) yields

r =
p

1 − e cos(φ)
with p = a (1 − e2) . (46)

p is called the semi-latus rectum; it is the value of r for φ = π/2.

5.6. Angular momentum

The invariance of the angular momentum vector D may be derived
directly from the equations of motion (20) by considering the vector
product D = x × ẋ. Following the philosophy of this section, we will
derive the property from the orbit by explicit computations.

Again restricting ourselves to the planar case and using the complex
position x = x0 + i x1, the scalar angular momentum of a particle of
unit mass becomes D = Im(x̄ ẋ). By using the orbit (38) as well as r
from (39) and p from (46) we obtain

Im
(

x̄
dx

dE

)

=
√

a p · r .

Transforming this to time derivatives by means of (42) yields

D = Im
(
x̄

dx

dt

)
=

√
µp = const . (47)
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6. The Birkhoff Transformation

The conformal mapping proposed by G. D. Birkhoff (1915) regular-
izes all singularities of the planar restricted three-body problem with
a single transformation. The same transformation – under the name
Joukowsky mapping – is being used in aerodynamics in order to map the
cross section of airfoils to near-circular domains. A three-dimensional
generalization on the basis of the KS transformation was discovered by
Stiefel and Waldvogel (1965). Later these ideas were used by Waldvogel
(1967a, 1967b).

As a second application of our quaternion formalism for regular-
ization we will summarize the spatial generalization of the Joukowsky-
Birkoff transformation, following Waldvogel (2006b). The theory devel-
oped in Sections 2 to 4 allows for an elegant representation of the spa-
tial Birkhoff mapping. A concise proof of the resulting transformation
equation will be added.

We begin by revisiting the classical (planar) Birkhoff transforma-
tion and represent it as the composition of three elementary conformal
mappings; this will then readily generalize to the spatial situation by
means of quaternions.

−1 0 1

−1

0

1

 v−plane

Parametric Plane

A C

B

D

−1 0 1

−1

0

1

 u−plane

Auxiliary Plane

A

B

D
C=∞

C=∞
−1 0 1

−1

0

1

 x−plane

Auxiliary Plane

A

B

D

C=∞

−1 0 1

−1

0

1

 y−plane

Physical Plane

A CB

D

v 7→ u =
v + 1

v − 1
u 7→ x = u2 x 7→ y =

x + 1

x − 1

Figure 2: The sequence of conformal mappings generating the planar
Birkhoff transformation

Consider a rotating physical plane parametrized by the complex
variable y ∈ C; for convenience we assume the fixed primaries of the
restricted three-body problem to be located at the points A, C given
by the complex posititons y = −1 and y = 1, respectively (see Figure
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2). The complex variable of the parametric plane will be denoted by v

and will be normalized in such a way that the primaries correspond to
v = −1 or v = 1, respectively.

The key observation is that Levi-Civita’s conformal mapping (31),
u 7→ x = u2, not only regularizes collisions at x = 0 but also analogous
singularities at x = ∞. This is seen by closing the complex planes to
become Riemann spheres (by adding the point at infinity) and using
inversions x = 1/x̃, u = 1/ũ.

Taking advantage of this fact, we first map the v-sphere to an
auxiliary u-sphere by the Möbius transformation

v 7−→ u =
v + 1

v − 1
= 1 +

2

v − 1
, (48)

which takes the primaries A, C to the points u = 0, u = ∞, re-
spectively. The Levi-Civita mapping (31) will leave these points in-
variant while regularizing collisions at A or C. Finally, the Möbius
transformation

x 7−→ y =
x + 1

x− 1
= 1 +

2

x − 1
(49)

maps A, C to y = −1 and y = 1, respectively. The composition of the
mappings (48), (31), (49) yields

y =

(
v + 1

v − 1

)2

+ 1

(
v + 1

v − 1

)2

− 1

or y =
1

2

(

v +
1

v

)

, (50)

the well known mapping used by Joukowsky (1847-1921) and by G. D.
Birkhoff (1884-1944).

In the spatial case we choose v,u,x,y ∈ U to be quaternions, x =
x?, y = y? being quaternions with vanishing k-components associated
with 3-vectors x, y. Then the mappings (48), (49), now being shifted
inversions in 4 or 3 dimensions, are both conformal mappings, in fact
the only nontrivial conformal mappings existing in those dimensions
(except for rotated versions). Composing these with the KS or Hopf
mapping (13), u 7→ x = uu?, yields

Theorem 3: Let v ∈ U be the quaternion coordinate in a 4-dimensional
parametric space R

4, such that the points v = ±1 correspond to the
positions of the primaries of a spatial restricted three-body problem.
Then

y = 1 + (v? − 1) (v + v?)−1 (v − 1) (51)
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generalizes the Joukowsky-Birkhoff mapping from R
4 to R

3 with quater-
nion coordinates y = y? = y0 + i y1 + j y2 ∈ U, where the primaries are
normalized to be located at y = ±1. 2

Remark. The right-hand side of (51) is easily split up into components
by means of the inversion formula u−1 = ū/|u|2 of Section 2; they agree
with the results of Stiefel and Waldvogel (1965) up to the sign of v3.
Both transformations regularize; the discrepancy is due to a different
definition of the orientation in the inversions.

Proof: Composition of (49) with (13) and (48) (in the appropriate
quaternion versions) yields

y = 1 + 2
(
uu? − 1

)−1
with u = 1 + 2 (v − 1)−1 . (52)

Rewriting uu? − 1 as

uu? − 1 = (u − 1) (u? − 1) + u− 1 + u? − 1

and substituting u from (522) yields

uu? − 1 = 4 (v − 1)−1 (v? − 1)−1 + 2 (v − 1)−1 + 2 (v? − 1)−1 . (53)

By inserting appropriate unit factors, Equ. (521) becomes

y = 1 + 2 (v? − 1) (v? − 1)−1
(
uu? − 1

)−1
(v − 1)−1

︸ ︷︷ ︸

D−1

(v − 1) . (54)

Introducing the “denominator” D by defining D−1 as indicated in (54)
we obtain

D = (v − 1) (uu? − 1) (v? − 1) ,

which, by using (53), simplifies to

D = 2 (v + v?) . (55)

Now the statement (51) of Theorem 3 follows directly from (54). 2

7. The Perturbed Kepler Problem

Our third application of quaternion regularization is the perturbed
spatial Kepler problem,

ẍ + µ
x

r3
= ε f(x, t) , r = |x | , (56)

written in quaternion notation. f(x, t) is the perturbing function, x ∈ U

and f ∈ U are quaternions with vanishing k-components, and ε is a
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small parameter. Note that in the perturbed case an energy equation
formally identical with (21) still holds. However, h = h(t) and a = a(t)
are now slowly varying functions of time, a(t) being the osculating

major semi-axis; h(t) satisfies the differential equation

ḣ = −〈ẋ, ε f〉 or h′ = −〈x′, ε f〉 , (57)

where 〈· , ·〉 denotes the dot product of 3-vectors.
In the following, we report the results of the regularization procedure

outlined in Section 4; the details are left to the reader. Step 1 yields

r x′′ − r′ x′ + µx = r3 ε f(x, t)

instead of Equ. (231). By using (28) the energy equation (29) again
becomes

µ − 2 |u′ |2 = r h .

The right-hand side of Equ. (26) becomes

u ū r2 ε f(x, t)

instead of 0. Simplification as in Section 4 as well as left-multiplication
by r−1 u−1 and star conjugation finally yields the perturbing equation
for the quaternion coordinate u:

Theorem 4: KS regularization, as formulated in terms of quaternions
in Section 4, transforms the perturbed Kepler problem (56) into the
perturbed harmonic oscillator

2u′′ + hu = r ε f(x, t) ū? , r = |u |2 , (58)

where h = r−1 (µ − 2 |u′ |2) is the negative of the (slowly varying)
energy. 2

In the following summary we collect the complete set of differential
equations defining the regularized system equivalent to the perturbed
spatial Kepler problem (56). The harmonic oscillator of Theorem 4
appears in the first line. For stating an initial-value problem a starting
value of u needs to be chosen according to Section 3.3. The correspond-
ing initial velocity is obtained by solving (19) for du:

du

dτ
=

1

2 r

dx

dt
ū? . (59)

Summary. Regularized system corresponding to the perturbed spatial
Kepler problem (56):

2u′′ + hu = r ε f(x, t) ū? , r = |u |2, ( ) ′ =
d

dτ
t′ = r , x = uu?

h′ = −ε 〈x′, f(x, t) 〉 or h = r−1 (µ − 2 |u′|2) .

(60)
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Remark. Introducing the osculating eccentric anomaly E by the dif-
ferential relation dE =

√
2h dτ transforms the first equation of (60)

into
4u′′ + u =

ε

h

(

r f(x, t) ū? + 2 〈x′, f(x, t) 〉u′

)

, (61)

a perturbed harmonic oscillator with constant frequency ω = 1

2
. Here

( ) ′ = d/dE. This equation is particularly well suited for introducing
orbital elements with simple pertubation equations by means of the
method of varying the constant, see, e.g., Waldvogel (2006a).
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