
LOCAL RRH

THOMAS WILLWACHER

Abstract. In [6] Engeli and Felder describe a generalized Riemann-Roch-

Hirzebruch formula to compute the Lefschetz numbers of differential operators
on holomorphic vector bundles. Essentially, the trace is computed by taking

a cup product of the differential operator with a cocyle in a certain sheaf

hypercohomology group. Engeli and Felder give a Dolbeault representative of
such a cocycle. In this paper, we construct a Čech representative.

As corollaries, we obtain
(i) a formula for the change of the Lefschetz number when blowing up

points.

(ii) a localization formula that expresses the Lefschetz number as the sum
over residues at the isolated zeroes of a holomorphic vector field, provided

such a field exists. This formula is similar to the Baum-Bott formula for

characteristic numbers and reduces to this formula in the special case where
the differential operator is the identity.

1. Introduction

1.1. The Generalized RRH Formula. Let M be an n-dimensional compact
connected complex manifold and E → M a holomorphic vector bundle of rank
r. Denote by E the sheaf of holomorphic sections of E and by DE the sheaf of
holomorphic differential operators on E. Let D ∈ Γ(M,D) be a global holomor-
phic differential operator. It descends to an operator, also denoted D, on the sheaf
cohomology H•(M ; E). The generalized Riemann-Roch-Hirzebruch formula, con-
jectured by Feigin and Shoikhet and proved by Engeli and Felder in [6], computes
the supertrace of this operator as an integral of a differential form.

(1) L(D) = strH•(M ;E)(D) =

∫
M

µ

The 2n-form µ on the right hand side is constructed using methods of formal
differential geometry. We will explain this construction explicitly in section 3.

Of course, the form µ represents a de Rham cohomology class. This is, in turn,
the same as a class in the hypercohomology of the complex of sheaves

Ω0 ∂→ Ω1 ∂→ · · · ∂→ Ωn

of holomorphic forms. Of course, the hypercohomology class defined by the Dol-
beault representative µ can also be represented by a Čech representative. The basic
result of this paper is an explicit formula for this Čech representative.

1.2. Applications and Results. Although the change from a Dolbeault to a Čech
representative might seem rather irrelevant, it still allows us to obtain at least two
relevant results.

The first is a localization theorem in the spirit of [1].
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Theorem 1. Suppose there exists a holomorphic vector field ξ on M with isolated
zeros z1, .., zk and a lifting to E. Then

L(D) =

p∑
j=1

ReszjΩj

for some locally defined holomorphic n-forms Ωj. In the notation of sections 2
and 6 these forms are explicitly given by an integral over the n-simplex ∆n:

Ωj =

∫
∆n

τ r2n(D̂, ω∆, . . . , ω∆)

The second result concerns the change of the trace L(D) upon blowing up a point

of M . We assume that the bundle E is trivial and that n > 1. Let M̃ denote the
manifold M with the point m ∈ M blown up. Let D̃ be holomorphic differential
operator on M̃ . By Hartog’s theorem, it defines a differential operator of M . We
denote the respective traces of D acting on H•(M ;D) and D̃ acting on H•(M ;D)

by L(D) and L(D̃).

Theorem 2.

L(D)− L(D̃) = ResmΩ

for some locally defined holomorphic n-form Ω. In the notation of sections 2 and 5
these forms are explicitly given by an integral over the n-simplex ∆n:

Ω =

∫
∆n

τ2n(D̂, ω∆, . . . , ω∆)

Remark 3. In both these Theorems the forms Ω depend only on local data. In
particular, the change in Lefschetz number upon blowup is computable from the
the ∞-jet of D at m alone. For example, one can blow up arbitrarily many points
m1,m2, .. in arbitrary order, but the change in the Lefschetz number upon blowing
up mj is always the same constant number.

1.3. Outline of this Paper. We will heavily use formal differential geometry on
complex manifolds. Unfortunately, we know of no single reference which presents
this topic in a way suitable for our treatment. Hence we will give a more or less
self-contained introduction in section 2.

In section 3 we will provide the yet missing definition of µ in eqn. (1), and
rephrase this formula in a more sheaf theoretic language.

In section 4 the explicit formula for the Čech representative of [µ] that was
mentioned in the introduction will be given.

Finally, the sections 5 and 6 are dedicated to the proofs of Theorems 1 and 2.

2. Formal Differential Geometry on Complex Manifolds

There currently exist several slightly different styles and notational conventions
in formal differential geometry. We will briefly review the basic notions in the
language used in this paper. This section is mostly a simple adaptation of Fedosov’s
treatise of symplectic manifolds [7]. Apart from some rephrasings, the only new
result in this section is Proposition 18.

We will use the following notational convention. A smooth differential form
ηηη = η+ η̄ ∈ Γ(T ∗1,0⊕T ∗0,1) on a complex manifold will be denoted in bold letters,
and its components η ∈ Γ(T ∗1,0) and η̄ ∈ Γ(T ∗0,1) by plain letters and with a bar
respectively. Similarly, let ∇∇∇ be a connection on a holomorphic vector bundle over
M . It can always be split up into a “holomorphic” and an “antiholomorphic” part

∇∇∇ = ∇+ ∇̄
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in the sense that for any vector fields X ∈ Γ(M,T 1,0M), X̄ ∈ Γ(M,T 0,1M) we
have ∇X̄ = ∇̄X = 0. As indicated, the smooth connection∇∇∇ will always be printed
in bold font, while the plain ∇ denotes only the holomorphic component.1

2.1. The Bundles of Formal Functions and Formal Differential Operators.
Let F be the frame bundle of the holomorphic tangent bundle of M . It is a GLn(C)-
principal bundle. Hence we can form the associated bundle (of algebras)

G∞M := F ×GLn C[[y1, .., yn]]

where the algebra of formal power series C[[y1, .., yn]] is equipped with the obvious
GLn(C)-module structure. We call this bundle the bundle of formal functions on
M .

Similarly, define the tensor product bundle

G∞E := J∞M × E.
which we call the bundle of formal sections of E. Naturally, J∞E is a bundle of
modules over the bundle of algebras G∞M .

Furthermore, note that the subbundle of formal functions which are at most
linear in y can be naturally identified with the bundle J1M of 1-jets of holomorphic
funtions on M . In particular, there are maps

(2) πi : G≤i∞M → JiM.

for i = 0, 1.

Definition 4. A connection ∇∇∇ on G∞M is good if it is compatible with the above
structures in the following sense,

• It is a derivation, i.e., for a vector field X and local sections f1, f2, we
have

∇∇∇X(f1f2) = (∇∇∇Xf1)f2 + f1(∇∇∇Xf2).

• It commutes with the projections (2), i.e., the following diagram commutes
for any vector field X and local section f :

f ∈ Γ(G∞M)

∇X
��

π1 // (π1f) ∈ Γ(J1M)

X·
��

∇∇∇Xf ∈ Γ(G∞M)
π0// (π0∇∇∇Xf) = Xπ1f ∈ Γ(J0M)

Here the map X· maps the 1-jet (f0, f1) to the 0-jet Xf0 − ιXf1.

Similarly, a connection ∇∇∇E on G∞E is compatible with the good connection ∇∇∇
on G∞M if it preserves the module structure, i.e.,

∇∇∇EX(fs) = (∇∇∇Xf)s+ f(∇∇∇EXs)
for all vector fields X, sections f of G∞M and sections s of G∞E.

To understand the meaning of these two conditions more concretely, pick a local
coordinate system zj on M . Then the first condition means that the connection
one-form AAA of ∇∇∇ = d+AAA takes values in the formal vector fields

(3) AAA = dzl(ail + ail,jy
j + ail,jky

jyk + . . . )
∂

∂yi
+ dz̄l(āil + āil,jy

j + . . . )
∂

∂yi

and the second means that the constant term is minus the identity

ail = −δil āil = 0

1Of course, this does not mean that the connection coefficients of ∇ are holomorphic, just that
they have no dz̄-component.
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The compatibility condition on ∇∇∇E means that

∇∇∇E =∇∇∇E0 +∇∇∇⊗ 1E +EEE

for some connection ∇∇∇E0 on E and some form EEE taking values in G∞M ⊗ End(E).

Remark 5. Note that a connection ∇∇∇ on G∞M automatically defines an affine
connection ∇∇∇0 on TM . Concretely, the connection coefficients are given by the
linear part of (3), i.e., ail,j and āil,j . Conversely, since G∞M is an associated bundle

to the frame bundle, any affine connection defines a (non-good) connection on
G∞M . In the local frame, it is simply obtained by letting ail,j equal the affine
connection coefficients and setting all other a’s to zero.

In the same manner, the constant, non-vector field term of the connection coef-
ficients of ∇∇∇E defines a connection on E.

Convention: In this paper, we will deal exclusively with good connections on
G∞M and connections on G∞E compatible with good connections. Furthermore,
we will assume that the connections ∇∇∇0 and ∇∇∇E0 defined as in the previous remark,
have the form

∇∇∇0 = ∇0 + ∂̄ ∇∇∇E0 = ∇E0 + ∂̄.

We call these connections simply connections. In particular, when we talk about
a connection ∇∇∇E on G∞E, we imply that there is a good connection ∇∇∇ on G∞M
with which it is compatible.

Finally, we will need the bundles of formal differential operators

D∞M = F ×GLn C[[y1, .., yn]][
∂

∂y1
, ..,

∂

∂yn
]

on M and on E
D∞E = D∞M ⊗ End(E).

They are bundles of non-commutative algebras acting naturally on G∞M and
G∞E. We will denote the sub-bundles of formal differential operators of degree
p in ∂

∂y and degree q in y by

Dp,q
∞ M.

Furthermore, any good connection ∇∇∇ on G∞M uniquely extends to D∞M in
such a way that it remains a derivation. In a local frame as before the connection
on D∞M is given by

d+ [AAA, ·]
where, also as before, AAA is the connection one-form in this frame, i.e., ∇∇∇ = d+AAA.
In the same way, a compatible connection

∇∇∇E =∇∇∇+nablanablanablaE0 +EEE

on G∞E extends to a connection on D∞E.

2.2. Flat Connections. The bundles G∞M and G∞E are more complicated than
M and E, but have a decisive virtue: they possess many flat connections. Even
better, the space of flat connections has a very simple structure:

Proposition 6. The space of flat connections on G∞ is isomorphic to the space
of pairs

(∇0,Φ)

where ∇0 is a torsion free affine connection on M and Φ is a formal vector field of
cubic or higher order. The latter is a section of a sub-bundle

D1,≥3
∞ M
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of the bundle of formal differential operators D∞M .
The space of flat connections ∇∇∇E on E compatible with a given good flat connec-

tion on G∞M is isomorphic to the space of pairs

(∇E0 ,ΦE)

where ∇E0 is a connection on E and ΦE is a section of

G≥2
∞M ⊗ End(E).

Here the term connection is used as stated in the Convention in the previous section.

Observe that the above proposition shows that the flat connections form an affine
space. However, the dependence of the connection coeffiecients on the given data
(∇0,Φ) is highly nonlinear. We postpone the proof of this proposition to section
2.4.

Remark 7 (Geometric Meaning). Later we will see explicitly that picking a flat
good connection is equivalent to picking at every point m ∈M a (jet of a) param-
eterization of a neighborhood of m by TmM .

2.3. Lifting Functions to Flat Sections. The idea of formal differential geome-
try is that one can lift questions about the holomorphic functions on M (or sections
of E) to the flat sections of G∞M (or G∞E), given a flat connection ∇∇∇.

Proposition 8. Let ∇∇∇ be a (possibly only smooth) good flat connection on G∞M .
Then the sheaf of flat sections of G∞M is isomorphic to the structure sheaf O(M)
of M as a sheaf of algebras.

Let ∇∇∇E be a flat connection of G∞E. Then the sheaf of flat sections of G∞E is
isomorphic to the sheaf of holomorphic sections E of E.

Furthermore, the above isomorphism maps the module structure of O(M) on E
to the the natural module structure of the flat sections of G∞M on the flat sections
of G∞E.

To see that this proposition is true, we first need to show that any holomorphic

function f can be lifted to a flat section f̂ of G∞M , such that f̂ evaluated at y = 0
on the fiber above each point equals f . The equations to be solved are hence

∇f̂ = 0(4)

∇̄f̂ = 0(5)

f̂(y = 0) = f(6)

The first equation together with the third already defines f̂ completely:

Lemma 9. If the following holds:

∇f̂ = 0

f̂(y = 0) = 0

then f̂ = 0.

The proof will follow easily from the construction of f̂ . Equation (4) has the
explicit form

0 = ∇f = ∇0f − δf + ωf.

Here ∇0 is a connection on G∞M , associated to the affine connection ∇0. The
operator δ is in local coordinates defined by

(7) δ = dzi
∂

∂yi
.
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The formal vector field valued form ω is the holomorphic part of the so called
the Maurer-Cartan form and is at least quadratic in y, i.e., a section of (T ∗1,0M)⊗
D1,≥2
∞ M .
We now want to solve (4) recursively, order by order in y. As done by Fedosov,

this computation can be neatly organized using the following operators

δ∗ = yiιi = yiι ∂

∂zi
(8)

δ−1 = G−1δ∗(9)

Here G is the gradation operator whose value is (holomorphic form degree)+(degree
in y), i.e.,

G(yi1 · · · yip ∂

∂yj1
· · · ∂

∂yjq
dzk1 · · · dzkrdzl1 · · · dzls)

= (p+ r)yi1 · · · yip ∂

∂yj1
· · · ∂

∂yjq
dzk1 · · · dzkrdzl1 · · · dzls .

The following Lemma shows that δ−1 is indeed similar to an inverse of δ.

Lemma 10.

{δ, δ∗} = G(10) {
δ, δ−1

}
= 1−Π00(11)

(12)

where Π00 is the projector onto the component of zero holomorphic form- and zero
y-degree.

Proof. �

Applying δ−1 to both sides of (4) we obtain

(13) f̂ = δ−1
(
∇0f̂ + ωf̂

)
.

Since the operator δ−1 raises degree in y by one, and since ∇0 and ω O(y2) do

not lower the y-degree, this equation constitutes a recursive definition of f̂ . In

particular, if the constant part vanishes, f̂ = 0, proving Lemma 9.

Lemma 11. The section f̂ of G∞M defined above satisfies (4) and (5).

Proof. The statement of Lemma 9 remains true for a section valued form η̂, as long
as δ−1η = 0. This can be easily checked by a similar calculation as above. Hence,
to show eqn. (5), it suffices to show that

∇∇f̂ = 0

δ−1∇f̂ = 0

(∇f̂)(y = 0) = 0.

The first equation is trivially satisfied by the flatness of ∇. The third equation
follows from the second. The l.h.s. of the second in turn reads

δ−1δ−1δ
(
∇0f̂ + ωf̂

)
where we applied δ to (13), used (11) and inserted. The above expression vanishes
since (δ−1)2 = 0.

For the antiholomorphic part, eqn. (5), the argument is simpler. Obviously

∇∇̄f̂ = ∇̄∇f̂ = 0
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by the above and flatness of ∇∇∇. Furthermore

∇̄f̂(y = 0) = ∂̄f = 0

is just the analyticity of f . �

Remark 12. One can also define the lift f̂ of a smooth function f by the definition

(13). This lift will satisfy ∇f̂ = 0, but not ∇̄f̂ = 0. The lift f̂ can be thought of as
the lift of the “function” (∞-jet) defined by the not necessarily convergent Taylor
series ∑

I

zI

I!

∂f

∂zI

of f .

2.4. Constructing Flat Connections I: Fedosov’s Way. We now want to
prove Proposition 6 by explicitly solving the Maurer-Cartan equations

∇∇∇2 = 0.

All the constructions in this section will be coordinate-independent. Nevertheless,
concrete expressions of the tensors involved will be given in some fixed local coor-
dinate system zj to facilitate both notation and understanding.

The flat good connection we want to construct must have the form

∇∇∇ =∇∇∇0 − δ +ωωω.

Here again, ∇0 is the connection on G∞M , associated to the given affine connection
∇0. The operator δ is defined by (7) as in the prvious section. The formal vector
field valued form ωωω = ω + ¯omega is called the Maurer-Cartan form and is at least
quadratic in y, i.e., a section of T ∗M)⊗D1,≥2

∞ M . Our goal is to explicitly compute
this form ωωω.

In terms of these quantities, the Maurer-Cartan equation becomes

(14) 0 =∇∇∇2 =∇∇∇2
0+[∇∇∇0, δ]+[δ,ωωω]+[∇∇∇0,ωωω]+

1

2
[ωωω,ωωω] = RRR+TTT+δωωω+∇∇∇0ωωω+

1

2
[ωωω,ωωω] .

Here we again abused notation and denoted by ∇0 also the associated connection
on D∞M and by δ the operator on D∞M defined by taking the commutator with
δ. Furthermore, the linear and constant formal vector fields RRR = R+ R̄ and TTT are
related to the curvature form RRRij and the torsion form TTT i of ∇0 as follows

RRR = RRRijy
j ∂

∂yi

TTT = TTT i
∂

∂yi
.

Note that TTT is the only contribution of order y0 to (14), and hence has to vanish.
This means that the affine connection on M determined by a good flat connection
on G∞M is always torsion free.

Note also that (14) is an equation of holomorphic two-forms and hence can be
decomposed into three distinct equations, one on the holomorphic cotangent bundle
Ω2,0(M), one mixed equation on Ω1,1(M) and one antiholomorphic on Ω0,2(M).
The first two should be seen as a definition of the holomorphic and antiholomorphic
part of ω, whereas the last is a nontrivial relation fulfilled by these two parts.

As in the previous section, we first want to exploit the “definition” and solve
the holomorphic and mixed components of (14) order by order in y. This yields
a recursive definition of ω. This computation can again be neatly organized using



8 THOMAS WILLWACHER

the operators δ−1 from (8). Applying δ−1 to both sides of (14) we obtain for the
holomorphic part

ω = δ−1

(
R+∇0ω +

1

2
[ω, ω]

)
+ δ(δ−1ω).(15)

In this equation δ−1ω can be freely chosen, we set

δ−1ω = Φ.

Now, since δ−1 raises the degree in y by one, we see that (15) recursively determines
all orders of ω.

The antiholomorphic part ¯omega is then related to the curvature of ∇ by

∇ω̄ = −
[
∇̄0,∇

]
.

This equation also can be solved uniquely, in the same way that the equation

∇f̂ = 0 could be solved in the preceding section when lifting functions.
We still need to show is that the ω̄ thus defined satisfies the antiholomorphic

part of the Maurer-Cartan equations, namely

(16) ∂̄0ω̄ +
1

2
[ω̄, ω̄] = 0

Lemma 13. Eqn. (16) holds.

Proof. The equation obviously holds up to order y0, since all occuring terms are
O(y2). But by uniqueness of the lifting (describe) it is sufficient to show that both
sides are annihilated by ∇.

∇(∂̄ω̄ +
1

2
[ω̄, ω̄]) =

{
∇, ∂̄

}
ω̄ − ∂̄∇ω̄ + [∇ω̄, ω̄]

= −∂̄∇ω̄
= −

[
∂̄,∇ω̄

]
=

[
∂̄,
{
∇, ∂̄

}]
= 0

The third equality is simply a change of notation, we switched from seeing ω̄ as a
formal vector field valued form to seeing it as an operator on the formal functions.
In this notation, the last equality becomes an obvious consequence of ∂̄2 = 0. �

Remark 14. Note that it is here that we use that ∇̄0 = ∂̄. If we worked with a
connection with arbitrary antiholomorphic part ∇̄0 instead, we would have seen
that the above calculation yields the constraint ∇̄2

0 = 0. In fact, the reason for
demanding that ∇̄0 = ∂̄ is to circumvent this additional complication.

Hence the first part of Proposition 6 has been proved.
Similarly, any compatible connection on G∞E has the form

∇E = ∇E0 +∇⊗ 1E + E.

The Maurer-Cartan equation then reads
(17)

0 = (∇E)2 = (∇E0 )2+∇E0 E+∇E+
1

2
[E,E] = F+∇E0 E+∇0E+δE+ωE+

1

2
[E,E]

Here F is simply the curvature form of ∇E0 . We want to solve this equation for E.
As before, applying δ−1 to both sides we obtain

(18) E = δ−1

(
F + (∇0 +∇E0 )E + ωE +

1

2
[E,E]

)
+ δ(δ−1E).

Here again δ−1E can be freely chosen, we set

δ−1E = ΦE .
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Apart from this, (18) constitutes an explicit recursive formula for E.
Almost the same calculation as above shows that the antiholomorphic part Ē

satisfies the Ω0,2 part of the Maurer-Cartan euation. Hence Proposition 6 has been
proved.

Example 15. For a K”ahler manifold M we can explicitly sove the Maurer Cartan
equations (14) for δ−1ω = 0. Let the connection A be the Levi Civita connection.
Then it is easily checked that

ω = 0

ω =
∑
j≥0

(δ−1∇0)jδ∗R̄.

is the unique solution satisfying

δ−1ω = 0.

Similarly, if the connection ∇E0 comes from a Hermitian metric on the bundle,
we obtain

E = 0

Ē =
∑
j≥0

[
δ−1(∇0 +∇E0 )

]j
δ∗F̄ .

Remark 16. The T ∗0,2-component of the Maurer Cartan equation, i.e.,

∂ω +
1

2
= 0

states that ∂ + ω defines a P∞ structure on ST 1,0M ⊗ Ω0,1M [−1]. See [9].

2.5. Constructing Flat Connections II: Formal Exponential Maps. We saw
in section 2.1 that the components in G∞M of degree 0 and 1 in y can be canonically
identified with the bundle of 1-jets of holomorphic functions J1M . It is easy to see
that this isomorphism can be non-canonically extended to the bundle of ∞-jets
J∞M . Picking a good flat connection on G∞M is equivalent to picking one such
extension

(19) G∞M ∼= J∞M.

The map from right to left (“horizontal to vertical”) associates to the jet f at m
its flat lift. It is given explicitly by the recursion

f̂(m) = −δ−1
(
∇0f̂ + ωf̂

)
(m)

which involves only the derivatives of f at m as it should be.
The map from the left to the right (“vertical to horizontal”) is given by parallel

transporting f̂ to a neighborhood of m and then taking the jet of the y0-component.
To further discuss the correspondence between local coordinates and the flat

good connection we introduce the following definition by Kapranov [9].

Definition 17. The bundle Exp∞M of formal exponential maps is the bundle
whose fiber at the point m is the affine space of jets at 0 of holomorphic mappings

φ : TmM →M

such that

(i) φ(0) = m.
(ii) dφ(0) = 1EndTmE .
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Picking a section of Exp∞M is also equivalent to picking a particular isomor-
phism

(20) G∞M ∼= J∞M.

by composition. Hence, by the aforementioned, equivalent to picking a flat connec-
tion of G∞M . The mapping between flat connections and sections of Exp∞M can
be spelled out in detail as follows: Given a flat connection ∇ we have, we can map
the linear functions yj in the fiber of G∞M over m ∈ M to jets of functions over
m by (19). They define local coordinates and can be inverted to yield the desired
parameterization.

In the other direction, it is easiest to work in local coordinates zj . Let the section
of Exp∞M in these cordinates be given by functions y ∈ TzM 7→ φj(z, y). We want
to find a connection

∇ = d+A

such that for any holomorphic function f(z) the image of its jet under (20) is
constant:

0 = (d+A)(f ◦ φ) =
∂f

∂zj

(
∂φj

∂zi
dzi +

∂φj

∂yi
Ai
)
.

This equation must hold for any f , hence we can deduce that

Ai = −

[(
∂φ

∂y

)−1
]i
j

∂φj

∂zk
dzk.

We also saw in Proposition 6 that the space of flat connections was isomorphic
to the affine space of pairs (∇0,Φ), where ∇0 is a torsion-free affine connection
and Φ is a section of D1,≥3

∞ . By the above, also the sections of Exp∞M are in
one-to-one correspondence to these pairs. We can state several facts about this
correspondence.

Proposition 18. The pair (∇0, 0) corresponds to the section of Exp∞M given by
holomorphic exponential coordinates wrt. the connection ∇0.

For the proof, we need the following Lemma, interesting in its own right.

Lemma 19. For the special choice δ−1ω = 0 the lift of a function f is given by

(21) f̂ =
∑
j≥0

(δ−1∇0)jf.

Proof. Write

ω = dzkωlk
∂

∂yl
.

Then the equality δ−1ω = 0 means that ykωlk = 0 for all l. Hence the second term
on the rhs. of

f̂ = δ−1(∇0f̂) + δ−1(ωf̂).

can be dropped and (21) easily follows. �

Proof of Proposition 18. We first recall the definition of formal exponential coordi-
nates: If the connection ∇0 is holomorphic, exponential coordinates around a point
m ∈ M define a holomorphic map TmM → M . But if ∇0 is not holomorphic,
neither are the exponential coordinates. Nonetheless, note that the k-jet of the ex-
ponential map TmM →M depends only on the k-jet of the connection (coefficients
of) ∇0 at m for k = 1, 2, ... This means in particular that the ∞-jet of this map is
defined given any ∞ jet of connection coefficients, regardless of whether the Tay-
lor series it defines converges. Now holomorphic exponential coordinates are those
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defined by the holomorphic jet of the connection ∇0 at m. In local coordinates
where

∇0 = d+A

the holomorphic jet of A is simply the formal sum∑
I

∂A

∂zI
yI .

In case A is real analytic, this sum converges and so does the jet we called the
“holomorphic exponential map”.

Now we want to prove the proposition. We will work in the holomorphic expo-
nential coordinates zj around m ∈M . Of course, these are in general not actually
coordinates, but formal Taylor series of all function involved can still be defined.
We need to show that the flat lift of the function zk at the point z = 0 (i.e., at m)
is yk. But by the preceeding lemma, the lift is given explicitly by (21), i.e.,

(22) (̂z)k =
∑
j≥0

(δ−1∇0)jzk.

Let the connection coefficients of ∇0 be Aikj , so that

∇0 = d+ dzk
[
Aikjy

j ∂

∂yi
, ·
]
.

Since the zj are exponential coordinates, we know that the symmetrization of the
s-th derivatives, s = 0, 1, .. of A at 0 vanishes

Aikj,r1···rs(0)yjyjyr1 · · · yrs = 0.

But it is clear that at least one such term occurs in every term on the right of (22)
that involves A′s, when evaluated at 0. Hence, at 0, the only contributions left are

(̂z)k(0) =
[
(1 + (δ−1d))zk

]
(0) = zk(0) + yk = yk

and the proposition is proven. �

In general we have one-to-one correspondencies between (i) pairs (∇0,Φ), (ii)
flat connections ∇ and (iii) sections φ of Exp∞M . We can explicitly compute the
linear response of a change of one of these onto the other two.

Proposition 20. Let the objects (∇0,Φ), ∇, φ be mapped to each other under the
above one-to-one correspondence. Let further ∆ ∈ Γ(D1≥2

∞ ). Let µ be the unique
solution to

δ−1∇µ = ∆

Then to linear order in ε the following objects correspond to each other

(i) The pair (∇0 + εδ∆2,Φ + ε∆≥3). Here ∆ = ∆2 + ∆≥3 is the splitting into
quadratic and higher components in y.

(ii) The flat connection ∇+ ε∇µ.
(iii) The section of the formal exponential maps φ ◦ (id − εµ). Here (id − εµ)

at a point m ∈M is considered as a diffeomorphisms of TmM .

Proof. �
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2.6. Interpolating Flat Connections. In the following, it will be a central topic
to interpolate between k flat connections ∇0,∇1, ..,∇k of G∞M given on a com-
mon domain, say an open set U ⊂ M . Of course, we cannot just take the affine
combination

λ0∇0 + λ1∇1 + · · ·+ λk∇k

where λ0 + .. + λk = 1, because this will not be flat, in general. However, note
that the space of flat connections is isomorphic to the space of sections of Exp∞M
and to the space of pairs (∇0,Φ), both of which are endowed with non-isomorphic
affine structures. We can use any of these to interpolate the connection, i.e.,

∇λ := A(λ0∇0
0 + · · ·+ λk∇k0 , λ0Φ0 + · · ·+ λkΦk)

or

∇λ := B(λ0φ
0 + · · ·+ λkφ

k).

These two ways ways to interpolate are different, as can be seen by an explicit
calculation in one dimension. In this paper, we will generally stick to the first way,
because it leads to explicit, relatively simple formulas. In contrast, the second way
involves inversion of functions which is generally quite difficult.

The interpolated connection ∇λ gives rise to a connection on the pullback bundle

π∗G∞M → ∆k × U
where ∆k is the k-simplex and

π : ∆k × U → U

is the projection onto the second factor. This connection has the form

dλ +∇λ

where dλ is the differential on ∆k and is not flat. However, we can uniquely extend
it to a flat connection

∇ = dλ +∇λ + ωλ

where ωλ ∈ Γ(π∗D1,≥2
∞ U) ⊗ Ω1(∆k) is a formal vector field valued form. The

uniqueness can be seen as follows. Note that the Maurer-Cartan equation for ∇
reads

∇λωλ = −
{
dλ,∇λ

}
− dλωλ −

1

2
[ωλ, ωλ] .

The component in π∗D∞U ⊗ Ω1(∆k)⊗ Ω1(U) reads

(23) ∇λωλ = −
{
dλ,∇λ

}
and can be uniquely solved by invertibility of ∇λ. The remaining components read

(24) dλωλ +
1

2
[ωλ, ωλ] = 0.

This is a nontrivial relation that has to be proved to be satisfied by the unique
solution to (23).

Lemma 21. Eqn. (24) holds.

Proof. The proof of Lemma 13 goes through almost without change: The constant
order of (24) vanishes, hence it is sufficient to show that

0 = ∇λ
(
dλωλ +

1

2
[ωλ, ωλ]

)
=

{
∇λ, dλ

}
ωλ −∇λωλ +

[
∇λωλ, ωλ

]
= −dλ(∇λωλ) =

[
dλ,
{
dλ,∇λ

}]
= 0

�
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3. The Construction of Engeli and Felder

3.1. Hochschild Cohomology of the Weyl Algebra. The key step in the con-
struction of the 2n-form µ in (1) is to write down an explicit formula for a 2n-
Hochschild-cocycle τ2n of the “formal Weyl algebra” C[[y1, .., yn]][ ∂

∂y1 , ..,
∂
∂yn ]. This

cocycle was constructed in [8], we merely state the formula here:

(25) τ2n(a0 ⊗ · · · ⊗ a2n) = µ2n

∫
∆2n

∏
0≤i<j≤2n

e(2ui−2uj+1)αijπ2n(a0 ⊗ · · · ⊗ a2n).

The operator π2n is defined as

π2n = det

 1∂1 1∂2 · · · 1∂2n

...
...

...
. . .

...

2n∂1 2n∂2 · · · 2n∂2n.


where the operator i∂α on a tensor product of differential operators a0 ⊗ · · · ⊗ a2n

acts as

i∂α(a0 ⊗ · · · ⊗ a2n) = a0 ⊗ · · · ⊗ ai−1 ⊗ [Yα, ai]⊗ ai+1 ⊗ · · · ⊗ a2n

where Y2k−1 = ∂
∂yk

and Y2k = yk.

Furthermore

αij :=
1

2

n∑
k=1

(i∂2k−1)(j∂2k)− (i∂2k)(j∂2k−1)i.

Finally µ2n is symmetrization followed by evaluation at y = 0 and multiplication

µ2n(a0 ⊗ · · · ⊗ a2n) = (Sa0)(0)(Sa1)(0) · · · (Sa2n)(0)

Here, the symmetrization map S is defined as

S(Y1 · · ·Yk) =
1

k!

∑
σ

sgn(σ)Yσ1
· · ·Yσk .

Similarly, one can define a 2n-cocycle τ r2n on the Hochschild cohomology of the
algebra of matrices of differential operatos C[[y1, .., yn]][ ∂

∂y1 , ..,
∂
∂yn ] ⊗ Cr×r as fol-

lows.

(26) τ r2n((a0 ⊗M0)⊗ · · · ⊗ (a2n ⊗M2n)) = τ2n(a0 ⊗ · · · ⊗ a2n)tr(M0 · · ·M2n)

Remark 22. These long definitions have been cited here for completeness. In the
following, only a single feature will be important: The map π2n is defined such that
the commutator of one of the operators a1, .., a2n with y1 occurs in every term.
This means that if all the ak, k = 1, .., 2n are independent of y1, then the cocycle
vanishes on them. This fact will imply lateron that the Lefschetz number vanishes
if there exists a nonzero holomorphic vector field on M .

3.2. Construction of µ. The differential form µ(D) of equation (1) can now be
defined as

µ(D) = τ r2n(D̂ ⊗ Ω∧n)

where we used the shorthand Ω = δ+ω+ ω̄+E+ Ē for the part of the connection
coefficients that is not linear in y. Here τ r2n is a Hochschild 2n-cocycle on Dn,r.
This cocycle is given by an explicit integral formula in [8] and is invariant wrt.
linear coordinate transformations.
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3.3. The Formula in Sheaf Language. We now reformulate the formula (1) in
a sheavy language. We start with the sheaf of algebras DE and want to compute
a Hochschild 0-cocycle of the algebra of global sections H0(M ;DE). There is a
natural map from this algebra into the zeroth hypercohomology of the complex of
sheaves

DE,• : · · · → DE,−2n → DE,−2n+1 → · · · → DE,0.
where DE,−p is the sheaf associated to the presheaf of Hochschild p-chains of holo-
morphic differential operators on M .

Lemma 23 (Brylinski, Engeli and Felder). The hypercohomology H•(M ;DE,•) of
DE,• satisfies

Hp(M ;DE,•) ∼= H2n+p(M ; C).

In particular, the zeroth hypercohomology is one-dimesional and the natural com-
position

H0(H0(M ;DE))→ H0(M ;DE,•)→ H2n(M ; C)→ C

coincides, up to normalization, with the supertrace (1).

Proof. Let any finite good open cover U of M be given. Then Engeli and Felder [6]
have essentially proved that the cohomology of the corresponding Čech -Hochschild
double complex satisfies the above assertions. We only need to show that the
statements remain true after passing to the direct limit over open covers. I.e.,
we need to show that the natural map from the Čech hypercohomology wrt. the
given cover U into the sheaf hypercohomology is bijective. Since any open cover
has a finite good refinement (???), it is sufficient to show that for any finite good
refinement V of U the natural map

H•(U ;DE,•)→ H•(V ;DE,•)

is an isomorphism. Since both spaces are isomorphic to H2n+p(M ; C), it is sufficient
to show that

H•(U ;DE,•)

∼= ((

// H•(V ;DE,•)

∼=vv
H2n+•(M ; C)

commutes. But, using Leray’s Theorem, this is equivalent to showing that

H•(U ;DE,•)

∼=
��

// H•(V ;DE,•)

∼=
��

H2n+•(U ; C)
∼= // H2n+•(V ; C)

commutes. But this is easily shown by tracing the definitions of the four maps
involved. �

Although the map

H•(M ;DE,•) ∼= H2n+•(M ; C)

is given explicitly by the above construction, it is quite hard to compute in this
language, and furthermore, is non-local. We would like to realize this map as the
map on cohomology induced by a homomorphism of sheaves of complexes

DE,• → Ω•

where Ω• is the sheaf of holomorphic forms on M with differential ∂. Its hyperco-
homology is the de Rham cohomology.
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However, such a map of complexes of sheaves does in general not exist, for it
would in particular imply that L(D) = 0. Such a map can also be seen as a global
section of the sheaf of homomorphims of sheaves of complexes

Hom(DE,•,Ω•)
and the evaluation of such a map on a cocycle can be seen as the cup product
coming from the pairing

Hom(DE,•,Ω•)⊗DE,• → Ω•

coming from evaluation.
This viewpoint suggests that a natural way to explicitly construct the map

(27) Φ : H•(M ;DE,•) ∼= H2n+•(M ; C)

is by taking the cup product with a cocycle φ in the hypercohomology

H2n(Hom(DE,•,Ω•)).
So we will have

(28) Φ(·) = [φ] ∪ (·).
where a representative φ can be explicitly constructed. In fact, a Dolbeault repre-
sentative is already provided by Engeli and Felder: It will be denoted by φEF and
is defined as

φEF =
∑
j

φEFj

where

(29) φEFj : DE,j → Ω•

is given by

(30) φj(η) = τ r2n(η̂ ∗sh 1⊗ ω ⊗ . . . ω)

where ∗sh is the shuffle product.
In this paper we will present a Čech representative φ. This also means, that we

will deal exclusively with holomorphic objects.

4. Construction of φ

In this section, we will construct a Čech representative of the cocycle φ. For this,
assume that we are given a good locally finite open cover Uα of M . The component
of Φ of Čech degree k is defined to be

(31) φ[α0, .., αk](η) =

∫
∆2n−k

τ r2n(η̂ ∗sh 1⊗ ω∆ ⊗ . . . ω∆).

Here, the forms ω∆ are “extended” Maurer-Cartan forms living on ∆2n−k ×⋃k
j=0 Uαk .

Note that this is similar to eqn. (30), but we integrate over the simplex and the

integrand contains extended Maurer-Cartan forms ω∆ living on ∆2n−k×
⋃k
j=0 Uαk .

We will postpone the construction of these forms to section 4.1, but state the
following lemma to be proved there.

Lemma 24. Let µ(η) denote the integrand in eqn. (31). Then

dµ(η) = µbη

where d is the de Rham differential on ∆2n−k ×
⋃k
j=0 Uαk and b is the Hochschild

boundary operator.

Using this lemma, we can prove the following
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Proposition 25. φ as constructed above is a cocycle.

Proof. Let η be a local section of DE,•. We need to show that

(δ + d)φ(η) = φ(bη).

But by Lemma 24 we know that

dφ(η)[α] = d

∫
∆2n−k

µ(η)

=

∫
∂∆2n−k

µ(η) +

∫
∆2n−k

dµ(η)

= (δφ)(η)[α] + φ(bη)[α]

(TODO:signs) �

4.1. Construction of the ω∆[α]. In the following α = (α0, .., αk). Let π :
∆k × Uα → Uα be the projection onbto the second factor. The forms ω∆[α] are
holomorphic forms on ∆k × Uα with values in the first order formal differential
operators on π∗ E|Uα .

4.2. [φ] ∪ · = [φEF ] ∪ ·.

Theorem 26. The cocycle φ as constructed above induces, via (28), the isomor-
phism (27) on the hypercohomologies.

Proof. Since any hypercohomology class in Hp(M ;DE,•) can be represented by a
cocycle

η ∈ (̌C)2n−p(M ;DE,2n)

it is sufficient to check the Theorem on these cocycles. But there, the only nonva-
nishing contributions come from the components of φ in

(̌C)0(Hom(DE,2n,Ω0))

and these components are just the applications of τ r2n to lifts of the local Hochschild
2n-cycles η[α]. These resulting numbers are, however, independent of local connec-
tions ∇ on G∞(E) chosen and equal the maps in the definition (??) of Φ. �

5. Blowing ups

We can use the above construction of φ to prove Theorem 2. We will use the
same notation as in the statement of the theorem. To define φ pick local coordinates
zj around m. Similarly to [1], construct an open cover of M as follows:

U0 = {|zj | < 1 ∀j}
Ui = {|zj | < 2 ∀j; zi 6= 0} i = 1, .., n

Complete the Uα to a cover with open sets Vβ such that

Vβ ∩ U0 = ∅.

Construct an open cover of M̃ :

Ṽβ = π−1Vβ

Ũj =
[
π−1 (Uj ∪ {x})

]◦
j = 1, .., n

To construct the ω∆[α], we assign the following local holomorphic connections
to these open sets.

• To the set U0 the flat connection that vanishes in the coordinates zj .
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• To the set Ui, i = 1, 2, .. we assign the flat connection vanishing in the
coordinates wji defined by

wji =

{
zi i = j
zj

zi i 6= j

To the sets Ũj we assign the connection defined in the same way.

• To the sets Vβ we arbitrarily assign some connections. To the set Ṽβ we
assign the same connection as to the set Vβ .

When constructing φ as above for the original manifold and the blowup, we see
that the only difference is the term φn[0, 1, .., n] defined on

U0 ∪ U1 ∪ · · · ∪ Un.

This term is present for the original manifold M , but missing for the blowup M̃ .
All other terms contributing to Φ(D) or Φ(D̃) respectively are exactly the same.
Hence the difference of the Lefschetz numbers is exactly the contribution of this
term:

L(D)− L(D̃) =

∫
φn[{0, 1, .., n}] ∪D

However, the map
∫

on the right hand side reduces to the map Resx, as shown in
Lemma 45. Hence Theorem 2 is proven.

5.1. Computation of the Maurer Cartan form and Lefschetz number.
Using the explicit connections given in the previous paragraph, we can calculate
the Maurer Cartan form and the quantity L(D)−L(D̃) in lowest orders. Decompose
ω∆ into a form in Ω(M) and Ω(∆n) respectively:

ω∆ = ωM + ωλ

We have

ωM = δ−1

(
F + dωM + [A,ωM ] +

1

2
[ωM , ωM ]

)
(32)

ωλ = δ−1 (dωλ + [A,ωλ] + [ωM , ωλ] + dλA)(33)

We will work throughout in the coordinate system on U0. First, let us treat
the classical RRH case where D = D̃ = 1. The total number of derivatives in the
formal variable involed in the computation of the integrand

µ = τ2n(1̂, ω∆, . . . , ω∆)

is easily seen to be 2n. Since the lowest order terms in ωλ are already of order 2,
and we need ωλ n times, we see that we need to compute all quantities to lowest
orders only. But then

ωM = 0

ωλ = δ−1dλA =
1

2

n∑
α=1

A
(α)m
kl ykyl∂mdλj

Inserting this into
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5.2. Computation of Connection Coefficients. Let us now compute the con-
nection one-forms A(α) of the connections ∇(α) on the open sets Uα. We will work
in the above cordinates zj . Then, of course, ∇(0) = d. Furthermore ∇(i), i = 1, .., n
must annihilate the vectors

e
(i)
1 = zi

∂

∂z1

e
(i)
2 = zi

∂

∂z2

...

e
(i)
i =

n∑
j=1

zj

zi
∂

∂zj
...

e(i)
n = zi

∂

∂zn

because these are the coordinate vector fields in the coordinates wji described above,
as is easily checked by applying them to these functions. It follows that for k 6= i

∇(i) ∂

∂zk
= −dz

i

zi
∂

∂zk

and furthermore

∇(i) ∂

∂zi
= −

n∑
j=1
j 6=i

(
d
zj

zi
− dzi

zi

)
∂

∂zj
=

1

(zi)2

n∑
j=1
j 6=i

(
(zj + zi)dzi − zidzj

) ∂

∂zj

From the l.h.s. of these equations we get the connection one-forms, which can
be written in the form

A
(i)j
k =

δik
(zi)2

(
(zj + zi)dzi − zidzj

)
− dzi

zi
δjk

valid for all k.
The general formula is

A
(α)m
kl =

∂2wiα
∂zk∂zl

∂zm

∂wiα
.

6. A Bott Formula

6.1. A Vanishing Theorem. Now suppose that there exists a nowhere vanishing
holomorphic vector field ξ on M , together with a holomorphic lift ∇ξ to E. The
following result and particularly its corollary is the main goal of this subsection.

Proposition 27. If there exist ξ, ∇ξ as above, we can find a flat connection ∇∇∇ on

G∞M and a compatible flat connection ∇∇∇E on G∞E satisfying

(34) ∇̂ξ = δ(xi)

Such a pair of connections will be called ξ-constant.

Corollary 28. If there exists a nowhere vanishing holomorphic vector field on M
together with a holomorphic lift to E, the Lefschetz number vanishes identically.
I.e.,

L(D) = 0

for any holomorphic differential operator D on E.



LOCAL RRH 19

of the Corollary. Pick a Maurer Cartan form ω as in Proposition 27. To evaluate
τ r2n as in eqn. (26) at m ∈M , pick a basis {∂1, .., ∂n} of TmM , such that ∂1 = ξm.
As in Remark 22, note that he definition of τ2n involves a ∂1-derivative applied to
ω. But this yields zero by (34). �

We now want to proof Proposition 27, i.e., construct a suitable Maurer Cartan
form satisfying (34). Just as in sections 2.4 and 2.5 there are two ways to do this
construction, a “Fedosov way” and a “formal exponential maps way”. We will treat
the Fedosov way first.

6.1.1. Constructing ξ-constant Flat Connections I: Fedosov’s Way. This section
will be almost a copy of section 2.4.

Definition 29. A pair of connections ∇0 on TM and ∇E0 on E is called ξ-constant,
if for any vector field Y on M

∇0,ξY = [ξ, Y ]

and for any section s of E

∇E0,ξs = ∇ξs.

It is easily seen that the constant order of (34) says that a ξ-constant connection
∇E on G∞E comes from a pair of ξ-constant connections ∇T on TM and ∇E on
E.

Similarly to Proposition 6 we have the following:

Proposition 30. The set of ξ-constant flat connections ∇E is non-canonically in
one-to-one correspondence with the set of collections of the following data

• A ξ-constant torsion free affine connection ∇0 and a ξ-constant connection
∇E0 on E.

• A section Φ ∈ Γ(D1,≥3
∞ M ⊕D0,≥2

∞ M) such that

[δ(ξ), T ] = 0.

The important difference to Proposition 6 is that the correspondence is not
canonical and depends on some extra data, namely a section of the bundle of
projections from TM to the subbundle spanned by ξ. Equivalently, we need a
splitting of the exact sequence

0→ Annξ(T
∗M)→ T ∗M → T ∗M/Annξ → 0

of the cotangent space. This is, of course, undesirable, but at present we cannot
give a canonical characterisation of the space of ξ-constant flat connections.

Choosing such a projection is equivalent to choosing a (smooth) section η ∈
Γ(T ∗1,0) such that

ιξη = 1.

Similarly to eqns. (7), (8) we define the following operators

δξ = δ − εη [δ(ξ), ·](35)

δ∗ξ = δ∗ − yηιξ(36)

(37)

suppressing the dependence on η. In these formulas, we denoted by εη exterior
multiplication by η and by yη the image of the canonical inclusion

T ∗1,0 ↪→ G∞M.

Similarly to Lemma 10 we have
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Lemma 31. The operators δξ, δ
∗
ξ satisfy

(38)
{
δξ, δ

∗
ξ

}
= Gξ

where Gξ is the gradation operator counting (form degree+degree in y) onAnnξT
∗M .

For example

Gξ(y
i1 · · · yipyiηdzk1 · · · dzkr ∧ ηdz̄l1 · · · dz̄ls)

= (p+ r)yi1 · · · yipyiηdzk1 · · · dzkr ∧ ηdz̄l1 · · · dz̄ls .

where now
[
δ(ξ), yia

]
= ιξdz

kb = 0 for a = 1, .., p and b = 1, .., r.

Again, as in (8), we can define

δ−1
ξ = G−1

ξ δ∗ξ

which satisfies

(39)
{
δ(ξ), δ−1

ξ

}
= G−1G = 1−Π0

where Π0 is the projector onto the kernel of Gξ.

Applying the operator δ−1
ξ to both sides of the Maurer-Cartan equation and

using that Π0ω = 0 we obtain the recursive definition

(40) ω = δ−1
ξ

(
R+∇0ω +

1

2
[ω, ω]

)
+ δΦ.

where we set δ−1ω = Φ.

Lemma 32. The ω thus defined satisfies (34).

Proof. In view of (39) it suffices to show that

[δ(ξ), F ] = 0

and
[δ(ξ), ·]∇0 = ∇0 [δ(ξ), ·]

The first equation easily follows from the second since

[R, ·] = ∇2
0.

Furthermore, since ∇ is a derivation

∇0 [δ(ξ), ·] = [∇0δ(ξ), ·] + [δ(ξ),∇·]
= [δ(∇0ξ), ·] + [δ(ξ), ·]∇0

= 0 + [δ(ξ), ·]∇0

showing the second equation and thus the lemma. �

Just as section 2.4 we can compute ω̄, E and Ē. Explicit formulas can be
obtained by merely replacing δ by δξ.

6.1.2. Constructing ξ-constant Flat Connections II: Formal Exponential Maps. By
section 2.5 we can interpret any flat connection∇ on G∞M as a section of Exp∞M .
Under this correspondence, the ξ-constant flat connections are mapped to those
local coordinates in which ξ is a constant vector field, as is evident already by the
definition (34). Furthermore, the affine linear combination of two sets of coordinate
functions, in which ξ is constant, still has the property that ξ is constant in the
linearily combined coordinates. In other words, ξ-constancy is compatible with the
affine structure on Γ(Exp∞M). This also implies that the subbundle of Exp∞M
formed by the ξ-constant section has contractible fibers and hence a global section.
Of course, this result would also follow from the construction in the last section
and the correspondence of section 2.5.
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These considerations suggest that the “formal exponential maps-framework” is
more natural to use than the “Fedosov-framework”. However, practical calculations
also quickly become quite involved.

Remark 33. We saw that, given an affine connection ∇0, there was a canonical
choice of flat connection ∇, namely Φ = 0, which was equivalent to taking holo-
morphic exponential coordinates. Now however, in exponential coordinates ξ need
not be constant, even if ∇0ξ = 0. So there is not any more a canonical choice.

6.1.3. Interpolating ξ-constant Flat Connections. To adapt Theorem 26 to the ξ-
constant context, we need to be able to interpolate between ξ-constant flat con-
nections. In the formal exponential framework this is easily done since the affine
structure on Γ(Exp∞M) is compatible with ξ-constancy as mentioned in the last
subsection.

In the Fedosov-framework, we can still interpolate the connections ∇0 and the
functions Φ = δ−1

ξ ω, but we also need to interpolate the auxiliary one-forms η.
Hence the interpolation is non-canonical and depends on the special choice of η.
This is an undesired fact.

For the proof of Theorem 1 we will also need to interpolate ξ-constant and non-
ξ-constant flat connections. In the formal exponential maps framework this is not
a problem, since we use the same interpolation method for ξ-constant and non-
ξ-constant connections anyways. In the Fedosov framework, we first interpolate
the ξ-constant connections using the method described above and then interpolate
the resulting connection with the remaining ones using the standard interpolation
method.

6.2. A Bott Formula. Given the vanishing theorem, Corollary 28, we can now
prove Theorem 1 in the spirit of Baum and Bott [1]. Concretely, assume that there
is a homolomorphic vector field ξ on M with holomorphic lift ∇ξ to E, and that ξ
has isolated zeros at p1, .., pl. For notational convenience, we will discuss the case
of a single isolated zero at p. The generalization to l > 0 will be obvious.

Similarly to [1] and section 5, construct an open covering of M as follows. Pick
coordinates zj on a neighbourhood of p, such that zj(p) = 0 for all j = 1, .., n. The
vector field ξ will in these coordinates take on the form

ξ =

n∑
j=1

aj
∂

∂zj
.

Then define, for a sufficiently small constant ε,

U0 = {|zj | < ε∀j}
Ui = {|zj | < 2ε∀j; ai 6= 0} i = 1, .., n

By rescaling the coordinates, we can, of course, assume that ε = 1. Complete the
Uα to a cover of M with open sets Vβ such that

Vβ ∩ U0 = ∅.
On U1, .., Un and Vβ , we can construct ξ-constant Maurer Cartan forms by one

of the two methods described above. We then apply Theorem 26 and see that
all contributions from intersections not involving U0 vanish by Theorem 1: The
intersection of U0 with any set Vβ is empty by construction. Furthermore, since the
Maurer-Cartan forms on the Uα are all holomorphic, any intersection of less than
n+ 1 of them does not contribute. Hence the only contribution present is that on

U0 ∩ U1 ∩ · · · ∩ Un
Finally, by lemma 45 we get the residue formula, just as we got in the blow-up

case, and the proof is complete.
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7. Example: 1-dim case

Unfortunately, explicit calculations in the above framework quickly become quite
complicated due to the nonlinearity of the Maurer-Cartan equations. The very
simplest example where this does not happen is the case However, on a curve the
nonlinear terms vanish and we can compute everything explicitly. Wlog. we can
treat the case of a neighbourhood of the origin in C1 with the origin being an
isolated zero of the vector field

ξ = a(z)∂ = a(z)
∂

∂z
.

On U0 = {|z| < 1; z 6= 0} we pick the connection ∇00 = d. On U1 = {|z| < 2; z 6= 0}
we pick the connection defined by ∇01∂ = −a

′(z)
a(z) dz∂ which is obviously ξ-constant.

We obviously obtain that ω = 0 by dimensional reasons. Furthermore, the recursive
definition for ωλ is

ωλ = δ−1

(
a′(z)

a(z)
y∂ydλdz + dωλ +

a′(z)

a(z)
dz [y∂y, ωλ]

)
.

We can set

ωλ =
∑
j≥2

ωj
yj

j!
∂ydλ

and obtain the recursion relation

ωj+1 = (∂ + u(j − 1))ωj

ω2 = −u

for u = a′

a the logarithmic derivative of a. The solution is obviously

ωj = −(∂ + u(j − 2)) · · · (∂ + u)u.

For a linear vector field u = 1
z and hence ωj = 0 for j ≥ 3.

Appendix A. The Simplex Space of M

A.1. Basic Definitions. Let
⋃
α∈A Uα = M be an open cover of M . The disjoint

union of the Uα and all their finite intersections

U =
∐
B⊂A
|B|<∞

⋂
β∈B

Uβ

is naturally a simplicial space. Its geometric realization ([11], p. 403f) will be
denoted ΣM and called the “simplex space of M”.2

ΣM = U×∆ Delta

There is a natural projection

π : ΣM →M

coming from the projection

U→M.

We will here consider only locally finite open covers Uα and give less formal
down-to-earth construction of ΣM :

(i) Begin with the manifold M .

2Although this notation does not mention the cover Uα for simplicity, it should be clearly kept
in mind that ΣM essentially depends on it.
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(ii) Construct the “bundle with varying fiber” ΣM over M which has as fiber
over a point m ∈M the simplex ∆k where

k = |{α ∈ A;m ∈ Uα}| − 1 ∈ {0, 1, ..}.
Label each corner of the simplex by one element of {α ∈ A;m ∈ Uα}.

(iii) Endow the set ΣM with the obvious topology such that corners with the
same label are glued together. See Figure ?? for examples.

The central point is now, that we can endow the topological space ΣM with
a kind of “smooth structure”. Note first that for any B ⊂ B′ ⊂ A we have the
inclusion

ΣMM ⊃ UB ×∆|B|−1 ⊃ UB′ ×∆|B|−1

ιBB′
↪→ ⊃ UB′ ×∆|B′|−1 ⊂ ΣM.

The map ιBB′ is a smooth injective map between manifolds with boundary.

Definition 34. The space of smooth p-forms on ΣM , denoted Ωp(ΣM), p =
0, 1, . . . , consists of collections of p-forms ηB on the manifold with boundary UB ×
∆|B|−1, such that for all B ⊂ B′ ⊂ A we have

(41) ωB |UB′×∆|B|−1
= ι∗BB′ωB′ .

Lemma 35. On the space Ω•(ΣM) the operations of exterior product “∧” and
differentiation “d” are well defined.

Proof. Both operations commute with pullbacks. �

Example 36. For each α ∈ A, there is canonically defined smooth function λα ∈
Ω0(ΣM). It is zero on the sets

UB ×∆|B|−1

if α /∈ B and equals the barycentric coordinate on ∆|B|−1 associated to the corner
labeled by α if α ∈ B. It is easily seen that this definition satisfies (41). These
functions satisfy

∑
α∈A λα = 1

Let (ρα)α∈A be a partition of unity subordinate to the cover Uα, i.e.,
∑
α∈A ρα =

1, 0 ≤ ρα ≤ 1 and supp ρα ⊂ Uα. It obviously defines a “smooth section”

ρ : M → ΣM

of ΣM .

Definition 37. A smooth section of ΣM is a continuous map

ρ : M → ΣM

that comes from a partition of unity of M subordinate to Uα.

Let now
ρ : M → ΣM

be a smooth section and let ω be a smooth p-form on ΣM . Let m ∈M and V 3 m
be a small enough open neighbourhood, such that V ⊂ UBx where

Bx = {α ∈ A;m ∈ Uα}
and such that

V ∩ suppρβ = ∅
for all β /∈ Bx. We have a smooth section of a bundle (in the standard sense)

ρBx,V : V → V ×∆|Bx|−1

where ρBx,V is constructed in the obvious manner from ρβ |V , β ∈ Bx.
Hence can define the pullback

ρ∗Bx,V (ω|V×∆|Bx|−1
) ∈ Γ(Ωp(V )).
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Lemma 38. The above local pullbacks glue together to a smooth p-form

ρ∗ω ∈ Γ(Ωp(M))

which we call the pullback of ω by ρ. Furthermore, pullback commutes with the
exterior differential

ρ∗(dΣMω) = dMρ
∗ω.

Proof. The proof is more a notational challenge. For the first part it suffices to show
that for m, V as above and m′ ∈ V and a small open neighbourhood x′ ∈ V ′ ⊂ V
we have

ρ∗Bx′ ,V ′(ω|V ′×∆|B
x′ |−1

) =
[
ρ∗Bx,V (ω|V×∆|Bx|−1

)
]
V ′

= ρ∗Bx,V ′(ω|V ′×∆|Bx|−1
)

But, by construction Bx′ ⊃ Bx and

ρBx′ ,V ′ = ιBxBx′ ◦ ρBx,V ′ .

Inserting this into the previous equation and using (41) the first part of the lemma
is proven.

The second part is a trivial consequence of the commutativity of pullback with
d. �

A.2. De Rham Cohomology. We denote the cohomology of the complex (Ω•, d)
by H•(ΣM) and call it the de Rham cohomology of ΣM .

In this section, let furthermore the Čech -de Rham hypercohomology wrt. the
cover Uα be denoted by Ȟ•(M,Ω•(M)). There is a natural chain map between the
underlying complexes, which we call the fiber integral :∫

fiber

: Ω•(ΣM)→ Č•(M,Ω•(M)).

On a form ω ∈ Ω•(ΣM) it is defined as(∫
fiber

ω

)
[α0, .., αk] =

∫
∆k

ω|Uα×∆k
.

In the integral, the orientation of ∆k is that of the standard simplex when the
vertex labeled by α0 is identified with (1, 0, .., 0), that labeled by α1 is identified
with (0, 1, 0, .., 0) etc.

Lemma 39. The fiber integral
∫
fiber

is a chain map.

Proof. [
(d ◦

∫
fiber

ω)

]
[α] = d

∫
∆k

ω|Uα×∆k

=

∫
∂∆k

ω|Uα×∆k
+

∫
∆k

dω|Uα×∆k

=

[
(δ ◦

∫
fiber

)ω

]
[α] +

[
(

∫
fiber

◦d)ω

]
[α]

�

Proposition 40. Assume that the covering Uα of M is good. Then the following
diagram commutes for any smooth section ρ of ΣM and the homomorphism involved
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are all isomorphisms.

H•(ΣM)

ρ∗ %%

∫
fiber // Ȟ•(M,Ω•(M))

ρ̂ww
H•dR(M)

Note that the right downwards map does not depend on the ρ chosen and hence
the left downwards map does neither.

Proof. The map ρ∗ is an isomorphism. The proof of this statement is word-by-word
the same as that for the analogous statement for fiber bundles with contractible
fibers.

Next we construct a right inverse I. For an ordered subset

α = {α0, . . . , αk} ⊂ A

we first define the k-form

µα := λα0dλα1 · · · dλαk ∈ Ωk(ΣM)

where the functions λα are those of Example 36. Then the operator I is given by

I(η) =
∑
α

µα ∧ π∗η[α].

This function is a chain map since

d(I(η)) =
∑
α

(dµα) ∧ π∗η[α]

+ π∗dη[α]

=
∑
α

∑
α

λα(dµα) ∧ π∗η[α]

+ π∗dη[α]

=
∑
α

µα ∧
∑
α

±π∗η[α− {α}]

+ π∗dη[α]

= I((d+ δ)η).

It is a right inverse since for all β = {β0, .., βk} ⊂ A

[∫
fiber

◦π∗(η)

]
[β] =

∫
fiber

∑
α

µα ∧ π∗η[α]

 [β]

=

∫
∆k

∑
σ

µσβ ∧ η[σβ]

= η[β]

∫
∆k

∑
σ

sgn(σ)µσβ

= η[β].

In the second equality we used that µα vanishes on the domain of integration except
β ⊃ α. But by dimensional reasons, the cardinalities of these sets must be equal
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and hence α = σβ for some permutation σ. The computation of the integral in the
last step is elementary: W.l.o.g. we can assume β = {0, .., k}. Then∫

∆k

∑
σ

sgn(σ)µσβ = k!

∫
∆k

k∑
i=0

(−1)iλidλ0 · · · ˆdλi · · · dλk = k!

∫
∆k

(1−
k∑
j=1

λj)dλ1 · · · dλk+

k∑
i=1

k∑
j=1

dλj · · · ˆdλi · · · dλk

= k!

∫
∆k

dλ1 · · · dλk = n!V ol(∆k) = 1

It is easy to see that ρ∗ ◦ I = ρ̂ and hence the commutativity of the diagram has
been proven.

For the last statement note that if the cover is good, the map ρ̂ and ρ∗ are both
isomorphisms and hence

∫
fiber

is.

�

A.3. The Holomorphic Case. Next we treat the case of actual interest in our
present context. If the manifold M is holomorphic and U ⊂ M is open, we can
define the holomorphic p forms on the product

U ×∆k

for some k = 0, 1, .. to be the sections of the pullback bundle

π∗Ωp,0(U)

which can be extended to a holomorphic section on a neighbourhood of U ×∆k in
U × Ck. This means that the dependence on the U -argument is holomorphic and
the dependence on the ∆k-argument is real analytic.

As in section A.1 the pullbacks ι∗BB′ map holomorphic p − forms to holomor-
phic p-forms. Hence, as before, we can define the space of holomorphic p-forms
Ωph(ΣM) on ΣM to be the collections of holomorphic p-forms (φB)B⊂A, where φB
is a holomorphic p-form on

U ×∆|B|−1,

that satisfy

φB |UB′×∆|B′|−1
= ι∗BB′φB′

for all B ⊂ B′ ⊂ A. Again, there can be defined an exterior differential d = ∂ on
Ωph(ΣM), and we can compute the cohomology H•h(ΣM) of Ω•h(ΣM). In analogy
to Proposition 40 we have the following

Proposition 41. Assume that the covering Uα of M is acyclic. Then the following
diagram commutes for any smooth section ρ of ΣM and the homomorphism involved
are all isomorphisms.

H•h(ΣM)

ρ∗ %%

∫
fiber // Ȟ•(M,Ω•h(M))

ρ̂ww
H•dR(M)

A.4. A First Application. Let Cα be a covering of M by closed sets such that

• Cα ⊂ Uα.
• Each Cα is the continuous image of a polyhedron in R2n.
• The intersections of two distinct polyhedra is either empty or a common

face.

Such a covering will be called a cell decomposition subordinate to Uα. Fix such a
cell decomposition.
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Definition 42. The cell integral∫
cell

: Č•(M,Ω•(M))→ C

is defined as the map

η[ᾱ] 7→
∑
ᾱ

∫
Cᾱ

η[ᾱ].

Here
Cᾱ := Cα0

∩ ... ∩ Cαk .

Lemma 43.
∫
cell

is a cochain map, i.e., vanishes on exact elements. Hence it
descend to a map on cohomology.

Proof. This follows from the proof of the next proposition. �

Proposition 44. The following diagram commutes

H•(M)

∫
M ""

ρ̌ // Ȟ•(M,Ω•(M))

∫
cellxx

C

Proof. (TODO:noch gepfuscht) Consider the chain map

ω̌ : Č•(M,Ω•(M))→ Ω•(ΣM)

defined by

η[ᾱ] 7→
∑
ᾱ

π∗η[ᾱ] ∧ ωᾱ.

Here ωᾱ is the volume form on the fiber over Uᾱ. The map ω̌ is defined such that

ρ̌ = ρ∗ ◦ ω̌.
For closed η[ᾱ], the form ω̌(η[ᾱ]) is closed and hence the integral∫

M

ρ̌(η[ᾱ]) =

∫
M

ρ∗ω̌(η[ᾱ]) =

∫
ρ(M)⊂M

ω̌(η[ᾱ])

is independent of the embedding3 ρ of M into ΣM chosen. Hence we can deform
the embedding to one containing horizontal patches in the interior of the Cα and
vertical patches along their boundaries as indicated in figure ??. However, the sum
of the integrals over all those patches is exactly the sum of integrals occuring in the
definition of

∫
cell

. �

Appendix B. Residues and relative cohomology

Let {Uα, Vβ} be a covering of M as in sections 6 and 5. Let an element in

Ȟn(M,Ωn,0(M)) be given that is represented by

η[U0, .., Un] = ω

with all other components vanishing and ω a holomorphic n-form on U0 ∩ .. ∩ Un.
Let ResM be the composition

Ȟ•(M,Ω(M)) ∼= H•(M)

∫
→ C.

Lemma 45.
ResM (η) = Resx(ω)

where Resx is the residue at the special point x (...which was blown up or a zero of
the vector field respectively).

3Note that any partition of unity is an embedding of M into ΣM .
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First Proof. We will apply Lemma 44 to the following cell decomposition:

C0 = {|z1| ≤ 1, .., |zn| ≤ 1}
C1 = {|z1| ≥ 1}

. . .

Ci = {|z1| ≤ 1, .., |zi−1| ≤ 1, |zi| ≥ 1}
. . .

The common boundary
⋂n
i=0 Ci is exactly the torus

{|z1| = |z2| = · · · = |zn| = 1}.
Hece Lemma 44 yields the desired result. �

Second Proof. I repeat here the argument from [1]. η defines an element of the
relative cohomology

Ȟ•(M,W ; Ω(M))

where W = M − {x}. By excision

Ȟ•(M,W ; Ωn,0(M))

∼= Ȟ•(M − (M −D),W − (M −D); Ωn,0(M))

∼= Ȟ•(D,D − {x}; Ωn,0(M))

where D is a small disk around x. By what is said in [1] the map ResM descends
to the map Resp on Ȟ•(D,D − {x}; Ω(M)). �

Third Partial Proof (?TODO: still not so good). In the local coordinates z1, ..zn we
have by Laurent expansion

ω = dz1 · · · dzn
∑

j1,..,jn∈Z

cj1..jnz
j1
1 · · · zjnn .

Any term in the sum with (j1, .., jn) 6= (−1, ..,−1) is de Rham-exact. E.g., for
j1 6= −1

cj1..jnz
j1
1 · · · zjnn dz1 · · · dzn = d

(
cj1..jn
j1 + 1

zj1+1
1 zj22 · · · zjnn dz2 · · · dzn

)
.

Hence this defines a Čech -de Rham exact element since the intersection of U0∩..∩Un
with any other open set from the cover vanishes. But ResM vanishes on Čech -de
Rham exact elements and hence is proportional to Resx. �
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