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Exercise 1.1 Discrete Distribution
Suppose that N follows a geometric distribution with parameter p ∈ (0, 1), i.e.

P[N = k] =
{

(1− p)k−1p, if k ∈ N>0,
0, else.

(a) Show that the geometric distribution indeed defines a probability distribution on R.

(b) Let n ∈ N>0. Calculate P[N ≥ n].

(c) Calculate E[N ].

(d) Let r < − log(1− p). Calculate the moment generating function MN (r) = E[exp{rN}] of N .

(e) Calculate d
drMN (r)

∣∣
r=0. What do you observe?

Exercise 1.2 Absolutely Continuous Distribution
Suppose that Y follows an exponential distribution with parameter λ > 0, i.e. the density fY of Y
is given by

fY (x) =
{
λ exp{−λx}, if x ≥ 0,
0, else.

(a) Show that the exponential distribution indeed defines a probability distribution on R.

(b) Let 0 < y1 < y2. Calculate P[y1 ≤ Y ≤ y2].

(c) Calculate E[Y ] and Var(Y ).

(d) Let r < λ. Calculate the cumulant generating function logMY (r) = logE[exp{rY }] of Y .

(e) Calculate d2

dr2 logMY (r)
∣∣
r=0. What do you observe?

Exercise 1.3 Gaussian Distribution
For a random variable X we write X ∼ N (µ, σ2) if X follows a Gaussian distribution with mean
µ ∈ R and variance σ2 > 0. The density fX of X ∼ N (µ, σ2) is given by

fX(x) = 1√
2πσ

exp
{
−1

2
(x− µ)2

σ2

}
, for all x ∈ R.

(a) Show that the moment generating function MX of X ∼ N (µ, σ2) is given by

MX(r) = exp
{
rµ+ r2σ2

2

}
, for all r ∈ R.
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(b) Let X ∼ N (µ, σ2) and a, b ∈ R. Show that

a+ bX ∼ N (a+ bµ, b2σ2).

(c) Let X1, . . . , Xn be independent with Xi ∼ N (µi, σ
2
i ) for all i ∈ {1, . . . , n}. Show that

n∑
i=1

Xi ∼ N

(
n∑

i=1
µi,

n∑
i=1

σ2
i

)
.

Exercise 1.4 χ2-Distribution
For all k ∈ N>0 we assume that Xk has a χ2-distribution with k degrees of freedom, i.e. Xk has
density

fXk
(x) =

{ 1
2k/2Γ(k/2)x

k/2−1 exp{−x/2}, if x ≥ 0,
0, else.

(a) Let MXk
be the moment generating function of Xk. Show that

MXk
(r) = 1

(1− 2r)k/2 , for r < 1/2.

(b) Let Z ∼ N (0, 1). Show that Z2 (d)= X1.

(c) Let Z1, . . . , Zk
i.i.d.∼ N (0, 1). Show that

∑k
i=1 Z

2
i

(d)= Xk.
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Exercise 2.1 Maximum Likelihood and Hypothesis Test
Let Y1, . . . , Yn be claim amounts in CHF that an insurance company has to pay. We assume
that Y1, . . . , Yn are independent and identically distributed (i.i.d.) random variables following
a log-normal distribution with unknown parameters µ ∈ R and σ2 > 0. Then, by definition,
log Y1, . . . , log Yn are i.i.d. Gaussian random variables with mean µ ∈ R and variance σ2 > 0. Let
n = 8 and suppose that we have the following observations x1, . . . , x8 for log Y1, . . . , log Y8:

x1 = 9, x2 = 4, x3 = 6, x4 = 7, x5 = 3, x6 = 11, x7 = 6, x8 = 10.

(a) Write down the joint density fµ,σ2(x1, . . . , x8) of log Y1, . . . , log Y8.

(b) Calculate log fµ,σ2(x1, . . . , x8).

(c) Calculate the maximum likelihood estimates (MLEs)

(µ̂, σ̂2) = arg max
(µ,σ2)∈R×R>0

log fµ,σ2(x1, . . . , x8).

(d) Now suppose that we are interested in the mean µ of the logarithms of the claim amounts.
An expert claims that µ = 6. Perform a statistical test to test the null hypothesis H0: µ = 6
against the (two-sided) alternative hypothesis H1: µ 6= 6.

Exercise 2.2 Chebychev’s Inequality and Law of Large Numbers
Suppose that an insurance company provides insurance against bike theft. In our model a bike
gets stolen with a probability of 0.1, and in case of a theft the insurance company has to pay 1’000
CHF. We assume that we have n i.i.d. risks X1, . . . , Xn with

Xi =
{

1’000, with probability 0.1,
0, with probability 0.9,

for all i = 1, . . . , n. In this exercise we are interested in the probability

p(n) def= P

[∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ 0.1µ
]

of a deviation of the sample mean 1
n

∑n
i=1Xi to the mean claim size µ = E[X1] of at least 10%,

and how diversification effects this probability.

(a) Calculate µ.

(b) Suppose that n = 1. Calculate p(1).

(c) Suppose that n = 1’000. Calculate p(1’000).

(d) Apply Chebychev’s inequality to derive a minimum number n of risks such that p(n) < 0.01.

(e) What can you say about lim
n→∞

1
n

∑n
i=1Xi?
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Exercise 2.3 Central Limit Theorem
Let n be the number of claims and Y1, . . . , Yn the corresponding claim sizes, where we assume
that Y1, . . . , Yn are i.i.d. random variables with expectation E[Y1] = µ and coefficient of variation
Vco(Y1) = 4.

(a) Use the Central Limit Theorem to determine an approximate minimum number of claims
nCLT such that

P

∣∣∣∣∣∣ 1
nCLT

nCLT∑
i=1

Yi − µ

∣∣∣∣∣∣ < 0.01µ

 ≥ 0.95,

i.e. with probability of at least 95% the deviation of the sample mean 1
n

∑n
i=1 Yi from the

mean claim size µ is less than 1%.

(b) Compare the resulting minimum number of claims nCLT to the corresponding minimum
number of claims nChe when using Chebychev’s inequality instead of the Central Limit
Theorem in part (a). What do you observe?

Exercise 2.4 Conditional Distribution and Variance Decomposition
Suppose that Θ follows an exponential distribution with parameter λ > 0. We assume that,
conditionally given Θ, the number of claims N in a particular line of business of an insurance
company is modeled by a Poisson distribution with frequency parameter Θv, where v > 0 denotes
the volume, i.e. we have

P[N = k|Θ] =
{

e−Θv (Θv)k

k! , if k ∈ N,
0, else.

We remark that the expectation and the variance of a Poisson distribution are equal to its frequency
parameter, i.e. here we have E[N |Θ] = Var(N |Θ) = Θv.

(a) Calculate P[N = 0].

(b) Calculate E[N ].

(c) Show that Var(N) = E[Var(N |Θ)] + Var(E[N |Θ]) and use this result to calculate Var(N).
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Exercise 3.1 No-Claims Bonus
An insurance company decides to offer a no-claims bonus to good car drivers, namely

• a 10% discount on the premium after three years of no claim, and

• a 20% discount on the premium after six years of no claim.

How does the premium need to be adjusted such that the premium income is expected to remain
the same as before the grant of the no-claims bonus? For simplicity, we consider one car driver who
has been insured for at least six years. Answer the question in the following two situations:

(a) The claim counts of the individual years of the considered car driver are i.i.d. Poisson
distributed random variables with frequency parameter λ = 0.2.

(b) Suppose Θ follows an exponential distribution with parameter c = 1. Conditionally given
Θ, the claim counts of the individual years of the considered car driver are i.i.d. Poisson
distributed random variables with frequency parameter Θλ, where λ = 0.2 as above.

Exercise 3.2 Compound Poisson Distribution
For the total claim amount S of an insurance company we assume S ∼ CompPoi(λv,G), where
λ = 0.06, v = 10 and for a random variable Y with distribution function G we have

k 100 300 500 6’000 100’000 500’000 2’000’000 5’000’000 10’000’000
P[Y = k] 3/20 4/20 3/20 2/15 2/15 1/15 1/12 1/24 1/24

Table 1: Claim size distribution Y ∼ G.

Suppose that the insurance company wants to distinguish between

• small claims: claim size ≤ 1’000,

• medium claims: 1’000 < claim size ≤ 1’000’000 and

• large claims: claim size > 1’000’000.

Let Ssc, Smc and Slc be the total claim in the small claims layer, in the medium claims layer and in
the large claims layer, respectively.

(a) Give definitions of Ssc, Smc and Slc in terms of mathematical formulas.

(b) Determine the distributions of Ssc, Smc and Slc.

(c) What is the dependence structure between Ssc, Smc and Slc?

(d) Calculate E[Ssc], E[Smc] and E[Slc] as well as Var(Ssc), Var(Smc) and Var(Slc). Use these
values to calculate E[S] and

√
Var(S).

(e) Calculate the probability that the total claim in the large claims layer exceeds 5 million.
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Exercise 3.3 Compound Distribution
Assume that

S =
N∑

i=1
Yi

has a compound distribution with N having a geometric distribution with parameter p ∈ (0, 1) and
Y1, Y2, . . . being i.i.d. exponentially distributed with parameter λ > 0. Show that S is exponentially
distributed with parameter λp.

Exercise 3.4 Compound Binomial Distribution
Assume S ∼ CompBinom(v, p,G) for given v ∈ N, p ∈ (0, 1) and individual claim size distribution
G. Let M > 0 such that G(M) ∈ (0, 1). Define the compound distribution Ssc with individual
claims Yi that are at most of size M and the compound distribution Slc with individual claims Yi

that exceed threshold M by, respectively,

Ssc =
N∑

i=1
Yi 1{Yi≤M} and Slc =

N∑
i=1

Yi 1{Yi>M}.

(a) Show that Slc ∼ CompBinom(v, p[1−G(M)], Glc), where the large claims size distribution
function Glc satisfies Glc(y) = P[Y1 ≤ y|Y1 > M ].

(b) Give a short argument which shows that Ssc and Slc are not independent.
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Exercise 4.1 Poisson Model and Negative-Binomial Model
Suppose that we are given the following claim count data of ten years:

t 1 2 3 4 5 6 7 8 9 10
Nt 1’000 997 985 989 1’056 1’070 994 986 1’093 1’054
vt 10’000 10’000 10’000 10’000 10’000 10’000 10’000 10’000 10’000 10’000

Table 1: Observed claim counts Nt and corresponding volumes vt.

(a) Estimate the claim frequency parameter λ > 0 of the Poisson model. Moreover, calculate a
prediction interval which should contain roughly 70% of the observed claim frequencies Nt/vt.
What do you observe?

(b) Perform a χ2-goodness-of-fit test at significance level of 5% to test the null hypothesis of
having Poisson distributions.

(c) Estimate the claim frequency parameter λ > 0 and the dispersion parameter γ > 0 of the
negative-binomial model. Moreover, calculate a prediction interval which should contain
roughly 70% of the observed claim frequencies Nt/vt. What do you observe?

Exercise 4.2 χ2-Goodness-of-Fit-Analysis (R Exercise)
In this exercise we analyze the sensitivity of the χ2-goodness-of-fit test (of having a Poisson
distribution as claim count distribution) in situations where the claim counts are simulated from a
Poisson distribution and a negative binomial distribution, respectively.

(a) Write an R code that generates n = 10’000 times claim counts N1, . . . , NT
i.i.d.∼ Poi(λv) with

T = 10, λ = 10% and v = 10’000. Apply for each of these n replications of N1, . . . , NT a
χ2-goodness-of-fit test at significance level of 5% of having a Poisson distribution as claim
count distribution. Answer the following questions:

(i) What can you say about the distribution of the n MLEs of λ?
(ii) Consider a QQ plot to analyze whether the n values of the test statistic may indeed

come from a χ2-distribution with T − 1 = 9 degrees of freedom.
(iii) How often do we wrongly reject the null hypothesis H0 of having a Poisson distribution

as claim count distribution?

(b) Write an R code that generates n = 10’000 times claim counts N1, . . . , NT
i.i.d.∼ NegBin(λv, γ)

with T = 10, λ = 10%, v = 10’000 and γ ∈ {100, 1’000, 10’000}. Apply for each of these n
replications of N1, . . . , NT a χ2-goodness-of-fit test at significance level of 5% of having a
Poisson distribution as claim count distribution. Answer the following questions:

(i) How often are we able to reject the null hypothesis H0 of having a Poisson distribution
as claim count distribution?

(ii) Does the size of γ influence this percentage?
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Exercise 4.3 Claim Count Distribution
Suppose that in a given line of business of an insurance company the numbers of claims of the last
ten years are modeled by random variables N1, . . . , N10. We assume that N1, . . . , N10 are i.i.d. and
that we have collected the following observations:

t 1 2 3 4 5 6 7 8 9 10
Nt 7 21 19 18 25 17 33 6 39 28

Table 2: Observed numbers of claims Nt over the last ten years.

Which claim count distribution would you prefer in this situation? Give a short argument.

Exercise 4.4 Method of Moments
The i.i.d. claim sizes Y1, . . . , Y8 are supposed to follow a Gamma distribution with unknown shape
parameter γ > 0 and unknown scale parameter c > 0. We assume that we have the following
observations for Y1, . . . , Y8:

y1 = 7, y2 = 8, y3 = 10, y4 = 9, y5 = 5, y6 = 11, y7 = 6, y8 = 8.

Use the method of moments to estimate the parameters γ and c.
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Exercise 5.1 Large Claims
In this exercise we are interested in storm and flood events with claim amounts exceeding CHF 50
million as an example of large claims modeling. Assume that for the total yearly claim amount S of
storm and flood events with claim amounts exceeding CHF 50 million we model S ∼ CompPoi(λ,G),
where λ is unknown and G is the distribution function of a Pareto distribution with threshold
θ = 50 and unknown tail index α > 0. Note that we set θ = 50 as we will work in units of CHF 1
million. Moreover, all numbers of claims and claim sizes and, thus, also the total claim amounts
are assumed to be independent across different years. During the years 1986− 2005 we observed
the following 15 storm and flood events with corresponding claim amounts in CHF millions:

date amount in millions
20.06.1986 52.8
18.08.1986 135.2
18.07.1987 55.9
23.08.1987 138.6
26.02.1990 122.9
21.08.1992 55.8
24.09.1993 368.2
08.10.1993 83.8

date amount in millions
18.05.1994 78.5
18.02.1999 75.3
12.05.1999 178.3
26.12.1999 182.8
04.07.2000 54.4
13.10.2000 365.3
20.08.2005 1’051.1

Table 1: Dates and claim amounts in CHF millions of the 15 storm and flood events observed
during the years 1986-2005.

(a) Show that the MLE α̂MLE
n of α for n i.i.d. claim sizes Y1, . . . , Yn ∼ Pareto(θ, α) is given by

α̂MLE
n =

(
1
n

n∑
i=1

log Yi − log θ
)−1

.

(b) According to Lemma 3.8 of the lecture notes (version of March 20, 2019),

n− 1
n

α̂MLE
n

is an unbiased version of the MLE. Estimate α using the unbiased version of the MLE for the
storm and flood data given in Table 1.

(c) Calculate the MLE of λ for the storm and flood data given in Table 1.

(d) Suppose that we introduce a maximal claims cover of CHF M = 2 billion per storm and flood
event, i.e. the individual claims are given by min{Yi,M}. Using the estimates of α and λ
found in parts (b) and (c), calculate the estimated expected total yearly claim amount.

(e) Using the estimates of α and λ found in parts (b) and (c), calculate the estimated probability
that we observe at least one storm and flood event next year which exceeds the level of CHF
M = 2 billion.
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Exercise 5.2 Claim Size Distributions (R Exercise)
Write an R code that generates i.i.d. samples of size n = 10’000 from each of the following
distributions:

• Γ(γ, c) with shape parameter γ = 1
4 and scale parameter c = 1

40’000 ,

• Weibull(τ, c) with shape parameter τ = 0.54 and scale parameter c = 0.000175,

• LN(µ, σ2) with mean parameter µ = log
(
2000
√

5
)
and variance parameter σ2 = log(5),

• Pareto(θ, α) with threshold θ = 10’000
√

5
2+
√

5 and tail index α = 1 +
√

5
2 .

Note that the parameters are chosen such that the theoretical expectations and standard deviations
are approximately equal to 10’000 and 20’000, respectively, for all the distributions listed above.
For each of these i.i.d. samples consider

• the density plot (on the log scale),

• the box plot (on the log scale),

• the plot of the empirical distribution function (on the log scale),

• the plot of the empirical loss size index function,

• the empirical log-log plot,

• the plot of the empirical mean excess function.

Comment on your results.

Exercise 5.3 Hill Estimator (R Exercise)
Write an R code that samples 300 i.i.d. observations from a Pareto distribution with threshold
θ = 10 and tail index α = 2. Create a Hill plot and a log-log plot. What do you observe?

Exercise 5.4 Pareto Distribution
Suppose the random variable Y follows a Pareto distribution with threshold θ > 0 and tail index
α > 0.

(a) Show that the survival function of Y is regularly varying at infinity with tail index α.

(b) Show that for θ ≤ u1 < u2 the expected value of Y within the layer (u1, u2] is given by

E
[
Y 1{u1<Y≤u2}

]
=

 θ α
α−1

[(
u1
θ

)−α+1 −
(
u2
θ

)−α+1
]
, if α 6= 1,

θ log
(
u2
u1

)
, if α = 1.

(c) Show that for α > 1 and y > θ the loss size index function for level y is given by

I[G(y)] = 1−
(y
θ

)−α+1
.

(d) Show that for α > 1 and u > θ the mean excess function of Y above u is given by

e(u) = 1
α− 1 u.
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Exercise 6.1 Goodness-of-Fit Test
Suppose we are given the following claim size data (in increasing order) coming from independent
realizations of an unknown claim size distribution:

210, 215, 228, 232, 303, 327, 344, 360, 365, 379, 402, 413, 437, 481, 521, 593, 611, 677, 910, 1623.

(a) Use the intervals

I1 = [200, 239), I2 = [239, 301), I3 = [301, 416), I4 = [416, 725), I5 = [725,+∞)

to perform a χ2-goodness-of-fit test at significance level of 5% to test the null hypothesis of
having a Pareto distribution with threshold θ = 200 and tail index α = 1.25 as claim size
distribution.

(b) In goodness-of-fit tests with K disjoint intervals and a total of n observations we use the test
statistic

X2
n,K =

K∑
k=1

(Ok − Ek)2

Ek
,

where Ok denotes the actual number of observations and Ek the expected number of observa-
tions in the k-th interval. We assume that the parameters of the null hypothesis distribution
function are given and that the K disjoint intervals are chosen such that Ek > 0, for all
k = 1, . . . ,K. Show that in case of K = 2 disjoint intervals, the test statistic X2

n,2 converges
to a χ2-distribution with one degree of freedom, as n→∞.

Exercise 6.2 Log-Normal Distribution and Deductible
Assume that the total claim amount

S =
N∑

i=1
Yi

in a given line of business has a compound distribution with E[N ] = λv, where λ > 0 denotes the
claim frequency and v > 0 the volume, and with a log-normal distribution with mean parameter
µ ∈ R and variance parameter σ2 > 0 as claim size distribution.
(a) Show that

E[Y1] = exp
{
µ+ σ2

2

}
,

Var(Y1) = exp
{

2µ+ σ2} (exp
{
σ2}− 1

)
and

Vco(Y1) =
√

exp {σ2} − 1.

(b) Suppose that E[Y1] = 3’000 and Vco(Y1) = 4. Up to now, the insurance company was not
offering contracts with deductibles. Now it wants to offer a deductible of d = 500. Answer
the following questions:

(i) How does the claim frequency λ change by the introduction of the deductible?
(ii) How does the expected claim size E[Y1] change by the introduction of the deductible?
(iii) How does the expected total claim amount E[S] change by the introduction of the

deductible?
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Exercise 6.3 Kolmogorov-Smirnov Test
Suppose we are given the following data (in increasing order) coming from independent realizations
of an unknown distribution:

x1 =
(
− log 38

40

)2
, x2 =

(
− log 37

40

)2
, x3 =

(
− log 35

40

)2
, x4 =

(
− log 34

40

)2
, x5 =

(
− log 10

40

)2
.

Perform a Kolmogorov-Smirnov test at significance level of 5% to test the null hypothesis that the
data given above comes from a Weibull distribution with shape parameter τ = 1

2 and scale parameter
c = 1. Moreover, explain why the Kolmogorov-Smirnov test is applicable in this example.

Exercise 6.4 Akaike Information Criterion and Bayesian Information Criterion
Assume that we fit a gamma distribution to a set of n = 1’000 i.i.d. claim sizes and that we obtain
the following method of moments (MM) estimates and maximum likelihood estimates (MLE):

γ̂MM = 0.9794 and ĉMM = 9.4249,
γ̂MLE = 1.0013 and ĉMLE = 9.6360.

The corresponding log-likelihoods are given by

`Y
(
γ̂MM, ĉMM) = 1’264.013 and `Y

(
γ̂MLE, ĉMLE) = 1’264.171.

(a) Why is `Y
(
γ̂MLE, ĉMLE) > `Y

(
γ̂MM, ĉMM)? Which fit should be preferred according to the

Akaike Information Criterion (AIC)?

(b) The estimates of γ are very close to 1 and, thus, we could also use an exponential distribution
as claim size distribution. For the exponential distribution we obtain the MLE ĉMLE = 9.6231
and the corresponding log-likelihood `Y

(
ĉMLE) = 1’264.169. According to the AIC and the

Bayesian Information Criterion (BIC), should we prefer the gamma model or the exponential
model?
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Exercise 7.1 Re-Insurance Covers and Leverage Effect
In Figure 1 we compare the distribution function of a loss Y ∼ Γ(1, 1

400 ) (in black color) to the
distribution function of the loss after applying different re-insurance covers to Y (in red color).
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Figure 1: Distribution functions implied by re-insurance contracts (i), (ii) and (iii).

(a) Let d > 0. Show that Y satisfies

E[(Y − d)+] = P[Y > d]E[Y ].

(b) Can you explicitly determine the re-insurance covers from the graphs in Figure 1?

(c) Calculate the expected values of these modified contracts.

(d) Assume that a first claim Y0 has the same distribution as Y , and that a second claim Y1

fulfills Y1
(d)= (1 + i)Y0, for a constant inflation rate i > 0. Let d > 0. Show the leverage effect

E[(Y1 − d)+] > (1 + i)E[(Y0 − d)+].

Give an appropriate explanation for this leverage effect.

Exercise 7.2 Inflation and Deductible
We assume that this year’s claims in a storm insurance portfolio have been modeled by a Pareto
distribution with threshold θ > 0 and tail index α > 1. The threshold θ can be understood as
deductible. Suppose that the inflation in the next year is expected to be 100 ·r% for some r > 0. By
how much do we have to increase the deductible θ next year such that the average claim payment
remains unchanged?
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Exercise 7.3 Normal Approximation
Assume that the total claim amount S has a compound Poisson distribution with expected number
of claims λv = 1’000 and claim sizes following a gamma distribution with shape parameter γ = 100
and scale parameter c = 1

10 . Use the normal approximation to estimate the 0.95-quantile q0.95 and
the 0.99-quantile q0.99 of S.

Exercise 7.4 Translated Gamma and Translated Log-Normal Approximation
Consider the same setup as in Exercise 7.3. This time we use the translated gamma and the
translated log-normal approximation to estimate the quantiles q0.95 and q0.99 of the total claim
amount S.

(a) Use the translated gamma approximation to estimate q0.95 and q0.99.

(b) Use the translated log-normal approximation to estimate q0.95 and q0.99.

(c) Compare the results of (a) and (b) to the results found in Exercise 7.3, where we used the
normal approximation.

Updated: October 2, 2019 2 / 2



ETH Zürich, D-MATH
HS 2019
Prof. Dr. Mario V. Wüthrich

Coordinator
Andrea Gabrielli

Non-Life Insurance: Mathematics and Statistics
Exercise sheet 8

Exercise 8.1 Panjer Algorithm
In this exercise we use the Panjer algorithm to calculate monthly health insurance premiums for
different franchises d. We assume that the yearly claim amount

S =
N∑

i=1
Yi

of a given customer is compound Poisson distributed with N ∼ Poi(1) and Y1
(d)= k + Z, where

k = 100 CHF and Z ∼ LN(µ = 7.8, σ2 = 1). In health insurance the policyholder can choose
between different franchises d ∈ {300, 500, 1’000, 1’500, 2’000, 2’500}. The franchise d describes the
threshold up to which the policyholder has to pay everything by himself. Moreover, the policyholder
has to pay α = 10% of the part of the total claim amount S that exceeds the franchise d, but only
up to a maximal amount of M = 700 CHF. Thus, the yearly amount paid by the customer is given
by

Sins = min{S, d}+ min{α · (S − d)+,M}.
If we define π0 = E[S] and πins = E[Sins], the monthly pure risk premium π is given by

π = π0 − πins

12 .

Calculate π for the different franchises d ∈ {300, 500, 1’000, 1’500, 2’000, 2’500} using the Panjer
algorithm. In order to apply the Panjer algorithm, discretize the translated log-normal distribution
using a span of s = 10 and putting all the probability mass to the upper end of the intervals.

Exercise 8.2 Monte Carlo Simulations (R Exercise)
Consider the same setup as in Exercise 7.3. This time we use Monte Carlo simulations to determine
the distribution of the total claim amount S.

(a) Write an R code that simulates n = 100’000 times the total claim amount S. Compare
the resulting distribution function of S to the approximate distribution functions found in
Exercises 7.3 and 7.4, where we used the normal, the translated gamma and the translated
log-normal approximation.

(b) Write an R code that simulates n ∈ {100, 1’000, 10’000} times the total claim amount S
and replicates these simulations 100 times. For each n ∈ {100, 1’000, 10’000} discuss the
distribution of the resulting 100 values of the quantiles q0.95 and q0.99 of S.

Exercise 8.3 Fast Fourier Transform (R Exercise)
Consider the same setup as in Exercise 7.3. Write an R code that applies the fast Fourier transform
using a threshold of n = 2’000’000 in order to determine the distribution function of the total
claim amount S. Compare the resulting distribution function to the distribution function found
in Exercise 8.2, where we used Monte Carlo simulations. Moreover, determine the quantiles q0.95
and q0.99 of S and compare them to the values found in Exercises 7.3 and 7.4, where we used the
normal, the translated gamma and the translated log-normal approximation.
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Exercise 8.4 Panjer Distribution
Let N be a random variable that has a Panjer distribution with parameters a, b ∈ R. Calculate
E[N ] and Var(N). What can you say about the ratio of Var(N) to E[N ]?
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Exercise 9.1 Utility Indifference Price
In this exercise we calculate the premium for the accident insurance of a given company COMP
using the utility indifference price principle. We suppose that all employees of COMP have been
divided into two groups, depending on their work, and that the total claim amounts S1 and S2 of
the two groups are independent and compound Poisson distributed with volumes, claim frequencies
and claim size distributions as given in Table 1.

Group i vi λi Y
(i)

1
1 2’000 50% Γ(γ = 20, c = 0.01)
2 10’000 10% expo(κ = 0.005)

Table 1: Volumes, claim frequencies and claim size distributions for the two groups of employees.

We write S = S1 + S2 for the total claim amount of COMP. Let c0 be the initial capital of the
insurance company that sells accident insurance to COMP.

(a) Let u be a risk-averse utility function. Show that if the utility indifference price π = π(u, S, c0)
exists, then it is unique and satisfies π > E[S].

(b) Calculate E[S].

(c) Calculate π using the utility indifference price principle for the exponential utility function
with parameter α = 1.5 · 10−6.

(d) What happens to π if we replace the compound Poisson distributions of S1 and S2 by Gaussian
distributions with the same corresponding first two moments?

(e) For this part we assume that S has a general compound Poisson distribution with expected
number of claims λv ∈ N and i.i.d. claim sizes (Yi)i≥1 for which the moment generating
function MY1 exists at α for a given α > 0. Moreover, let u be the exponential utility function
with parameter α, and c0 > 0 a given initial capital. We write π = π(u, S, c0) for the utility
indifference price for S. Now define

S̃ =
λv∑
i=1

Yi,

i.e. for S̃ the number of claims is exactly given by λv. Calculate the utility indifference price
π̃ = π̃(u, S̃, c0) for S̃ and compare π̃ to π.

Exercise 9.2 Value-at-Risk and Expected Shortfall
Suppose that for the yearly claim amount S of an insurance company in a given line of business
we have S ∼ LN(µ, σ2) with µ = 20 and σ2 = 0.015. Moreover, we set the cost-of-capital rate
rCoC = 6%. Then, the premium πCoC for the considered line of business using the cost-of-capital
pricing principle with risk measure ρ is given by

πCoC = E[S] + rCoC · ρ(S − E[S]).
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(a) Calculate πCoC using the value-at-risk (VaR) risk measure at security level 1− q = 99.5%.

(b) Calculate πCoC using the expected shortfall risk measure at security level 1− q = 99%.

(c) Which security level is needed such that πCoC using the VaR risk measure is equal to the
price calculated in (b)?

(d) Let U and V be two independent copies of logS. Show that on the one hand

VaR1−q(U + V ) > VaR1−q(U) + VaR1−q(V )

for all 1− q ∈
(
0, 1

2
)
, but on the other hand

VaR1−q(U + V ) < VaR1−q(U) + VaR1−q(V )

for all 1− q ∈
( 1

2 , 1
)
. In particular, the VaR is not subadditive, and hence not coherent.

Exercise 9.3 Variance Loading Principle
We would like to insure the car fleet given in Table 2 under the assumption that the total claim
amounts for passenger cars, delivery vans and trucks can be modeled by independent compound
Poisson distributions.

i vi λi E[Y (i)
1 ] Vco(Y (i)

1 )
passenger car 40 25% 2’000 2.5
delivery van 30 23% 1’700 2.0
truck 10 19% 4’000 3.0

Table 2: Volumes, claim frequencies, expected claim sizes and coefficients of variation of the claim
sizes for the three sections of the car fleet.

(a) Calculate the expected claim amount of the car fleet.

(b) Calculate the premium for the car fleet using the variance loading principle with α = 3 · 10−6.

Exercise 9.4 Esscher Premium
Let S be a random variable with distribution function F and moment generating function MS .
Assume that there exists r0 > 0 such that MS(r) <∞ for all r ∈ (−r0, r0). For α ∈ (0, r0), let πα
denote the Esscher premium of S.

(a) Show that if S is non-deterministic, then πα is strictly increasing in α.

(b) Show that the Esscher premium for small values of α boils down to a variance loading principle.

(c) Suppose that S ∼ CompPoi(λv,G), where λv > 0 and G is the distribution function of a
gamma distribution with shape parameter γ > 0 and scale parameter c > 0. For which values
of α does πα exist? Calculate πα where it is defined.
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Exercise 10.1 Method of Bailey & Simon
Suppose that a car insurance portfolio of an insurance company has been divided according to two
tariff criteria
• vehicle type: {passenger car, delivery van, truck} = {1,2,3},

• driver age: {21-30 years, 31-40 years, 41-50 years, 51-60 years} = {1,2,3,4}.
For simplicity, we set the number of policies vi,j = 1 for all risk classes (i, j), 1 ≤ i ≤ 3, 1 ≤ j ≤ 4.
Moreover, we assume that we work with a multiplicative tariff structure and that we observed the
following claim amounts:

21-30y 31-40y 41-50y 51-60y
passenger car 2’000 1’800 1’500 1’600
delivery van 2’200 1’600 1’400 1’400
truck 2’500 2’000 1’700 1’600

Table 1: Observed claim amounts in the 3 · 4 = 12 risk classes.

Calculate the tariffs using the method of Bailey & Simon. Comment on the results.

Exercise 10.2 Method of Bailey & Jung
Consider the same setup as in Exercise 10.1. Calculate the tariffs using the method of Bailey &
Jung (i.e. the method of total marginal sums). Compare the results to those found in Exercise 10.1,
where we applied the method of Bailey & Simon.

Exercise 10.3 Log-Linear Gaussian Regression Model (R Exercise)
Consider the same setup as in Exercise 10.1. This time we calculate the tariffs using the log-linear
Gaussian regression model.

(a) Determine the design matrix Z of the log-linear Gaussian regression model.

(b) Calculate the tariffs using the MLE method within the log-linear Gaussian regression model
framework.

(c) Compare the results found in part (b) to the results found in Exercises 10.1 and 10.2, where
we applied the methods of Bailey & Simon and Bailey & Jung.

(d) Is there statistical evidence that the classification into different types of vehicles could be
omitted?

Exercise 10.4 Tweedie’s Compound Poisson Model
Let S ∼ CompPoi(λv,G), where λ > 0 is the unknown claim frequency parameter, v > 0 the known
volume and G the distribution function of a gamma distribution with known shape parameter
γ > 0 and unknown scale parameter c > 0. Then, S has a mixture distribution with a point mass
of P[S = 0] in 0 and a density fS on (0,∞).
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(a) Calculate P[S = 0] and the density fS of S on (0,∞).

(b) Show that S belongs to the exponential dispersion family with

w = v,

φ = γ + 1
λγ

(
λvγ

c

) γ
γ+1

,

θ = −(γ + 1)
(
λvγ

c

)− 1
γ+1

,

Θ = (−∞, 0),

b(θ) = γ + 1
γ

(
−θ
γ + 1

)−γ
,

c(0, φ, w) = 0 and

c(x, φ,w) = log
( ∞∑
n=1

[
(γ + 1)γ+1

γ

(
φ

w

)−γ−1
]n

1
Γ(nγ)n! x

nγ−1

)
, if x > 0.
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Exercise 11.1 Claim Frequency Modeling with GLM (R Exercise)
Suppose that a motorbike insurance portfolio of an insurance company has been divided according
to three tariff criteria

• vehicle class: {weight over 60 kg and more than two gears, other},

• vehicle age: {at most one year, more than one year},

• geographic zone: {large cities, middle-sized towns, smaller towns and countryside}.

Assume that we observed the following claim frequencies:

class age zone volume number of claims claim frequency
1 1 1 100 25 0.250
1 1 2 200 15 0.075
1 1 3 500 15 0.030
1 2 1 400 60 0.150
1 2 2 900 90 0.100
1 2 3 7’000 210 0.030
2 1 1 200 45 0.225
2 1 2 300 45 0.150
2 1 3 600 30 0.050
2 2 1 800 80 0.100
2 2 2 1’500 120 0.080
2 2 3 5’000 90 0.018

Table 1: Observed volumes, numbers of claims and claim frequencies in the 2 · 2 · 3 = 12 risk classes.

(a) Perform a GLM analysis for the claim frequencies using the Poisson model. Comment on the
results.

(b) Plot the observed and the fitted claim frequencies against the vehicle class, the vehicle age
and the geographic zone.

(c) Create a Tukey-Anscombe plot of the deviance residuals versus the fitted expected numbers
of claims.

(d) Is there statistical evidence that the classification into the geographic zones could be omitted?

Exercise 11.2 Claim Frequency Modeling with Neural Networks (R Exercise)
In this exercise we consider the French motor third-party liability insurance data set prepared in
Listing 1. We model the claim frequencies using the three continuous but categorized tariff criteria

power of the car, age of the car and age of the driver.

(a) Write an R code that performs a GLM analysis for the claim frequencies on the data trainset
using the Poisson model. Calculate the deviance statistics of the resulting GLM model on
both the data sets trainset and testset.
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(b) Write an R code that models the claim frequencies on the data trainset using a neural
network with two hidden layers with (r1, r2) = (20, 10) hidden neurons. Choose the hyperbolic
tangent activation function and 100 gradient descent steps. Calculate the deviance statistics
of the resulting neural network model on both the data sets trainset and testset. Compare
the results to the values obtained in part (a).

(c) Repeat the neural network fitting procedure of part (b) with 1’000 gradient descent steps
instead of 100. Calculate the deviance statistics of the resulting neural network model on
both the data sets trainset and testset. What do you observe?

Listing 1: R code for Exercise 11.2.
1 ### Dataset preparation
2 install . packages (" CASdatasets ", repos =" http :// dutangc .free.fr/pub/ RRepos /", type =" source ")
3 lapply (c(" CASdatasets ", " keras ", "plyr "), require , character .only=TRUE)
4 data (" freMTPL2freq ")
5 data <- freMTPL2freq [,c (1:6)]
6 data$VehPower <- relevel (as. factor ( data$VehPower ), ref ="6")
7 VehAgeCat <- cbind (c(0:100) , c(1, rep (2 ,3) , rep (3 ,2) , rep (4 ,2) , rep (5 ,3) , rep (6 ,2) , rep (7 ,2) , rep (8 ,3) ,
8 rep (9 ,83)))
9 data$VehAge <- relevel (as. factor ( VehAgeCat [ data$VehAge +1 ,2]) , ref ="2")

10 DrivAgeCat <- cbind (c(18:100) , c(rep (1 ,21 -18) , rep (2 ,26 -21) , rep (3 ,31 -26) , rep (4 ,41 -31) ,
11 rep (5 ,51 -41) , rep (6 ,71 -51) , rep (7 ,101 -71)))
12 data$DrivAge <- relevel (as. factor ( DrivAgeCat [ data$DrivAge -17 ,2]) , ref ="6")
13
14 ### Training set and test set
15 set.seed (100)
16 train <- sample (1: nrow(data), round (0.5* nrow(data )))
17 trainset <- ddply (data[train ,], .( VehPower ,VehAge , DrivAge ), summarise , ClaimNb =sum( ClaimNb ),
18 Exposure =sum( Exposure ))[ ,c (4:5 ,1:3)]
19 testset <- ddply (data[-train ,], .( VehPower ,VehAge , DrivAge ), summarise , ClaimNb =sum( ClaimNb ),
20 Exposure = sum( Exposure ))[ ,c (4:5 ,1:3)]

Exercise 11.3 Claim Severity Modeling with GLM (R Exercise)
In this exercise we consider the French motor third-party liability insurance data set prepared in
Listing 2. This time we model the claim severities using the three (categorical) tariff criteria

• area code: {A, B, C, D, E, F},

• brand of the vehicle: {B1, B10, B11, B12, B13, B14, B2, B3, B4, B5, B6},

• diesel/fuel: {diesel, regular fuel}.

(a) Perform a GLM analysis for the claim severities using the gamma model with log-link function.
Comment on the results.

(b) Is there statistical evidence that the area code could be omitted as tariff criterion?

Listing 2: R code for Exercise 11.3.
1 # install . packages (" CASdatasets ", repos =" http :// dutangc .free.fr/pub/ RRepos /", type =" source ")
2 lapply (c(" CASdatasets ", "plyr "), require , character .only=TRUE)
3 data (" freMTPL2freq ")
4 data (" freMTPL2sev ")
5 data <- freMTPL2sev [is. element ( freMTPL2sev$IDpol , freMTPL2freq$IDpol ),]
6 data <- ddply (data , .( IDpol ), summarize , ClaimAmount =sum( ClaimAmount ))
7 data <- cbind ( freMTPL2freq [is. element ( freMTPL2freq$IDpol , data$IDpol ),-3], data [ ,2])
8 colnames (data )[12] < - " ClaimAmount "
9 data <- ddply (data , .( Area , VehBrand , VehGas ), summarize , ClaimNb =sum( ClaimNb ),

10 ClaimAmount =sum( ClaimAmount ))
11 data$ClaimAmount <- data$ClaimAmount / data$ClaimNb
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Exercise 11.4 Neural Networks and Gradient Descent
We assume that we have M independent large claims Y = (Y1, . . . , YM ) with corresponding
covariates z1, . . . ,zM ∈ Z ⊂ Rr0+1, where r0 = 1 and zm = (1, zm), for all m = 1, . . . ,M . Let
α : Z → R+ be a given (but unknown) regression function. We assume that Ym is Pareto distributed
with threshold θ > 0 and tail index parameter α(zm) > 0, for all m = 1, . . . ,M . The goal is to
model the regression function α : Z → R+ with a neural network.

(a) Set up a single hidden layer neural network with r1 ∈ N hidden neurons for this regression
problem using the hyperbolic tangent activation function. How many parameters does this
model have?

(b) Calculate the deviance statistics for this regression problem.

(c) Assume that we have a large number of hidden neurons. Why are we in this situation in
general not interested in finding the maximum likelihood estimator? What alternative solution
do you propose?

(d) Calculate one step of the gradient descent optimization algorithm explicitly for the single
hidden layer neural network defined in part (a) and the deviance statistics loss function
derived in part (b).
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Exercise 12.1 (Inhomogeneous) Credibility Estimators for Claim Counts
Suppose that in Table 1 we are given the current year’s claim counts data for 5 different regions,
where, for all i ∈ {1, . . . , 5}, vi,1 denotes the number of policies in region i and Ni,1 the number of
claims in region i. We assume that we are in the Bühlmann-Straub model framework with I = 5,
T = 1 and

Ni,1|Θi ∼ Poi(µ(Θi)vi,1),

with µ(Θi) = Θiλ0 and λ0 = 0.088, for all i ∈ {1, . . . , 5}. Moreover, we assume that the pairs
(Θ1, N1,1), . . . , (Θ5, N5,1) are independent and Θ1, . . . ,Θ5 are i.i.d. with E[Θ1] = 1 and Θ1 > 0 a.s.
Finally, we set τ2 = Var(µ(Θ1)) = 0.00024.

region i vi,1 Ni,1
1 50’061 3’880
2 10’135 794
3 121’310 8’941
4 35’045 3’448
5 4’192 314

Table 1: Observed numbers of policies vi,1 and numbers of claims Ni,1 in the 5 regions.

(a) Calculate the inhomogeneous credibility estimator ̂̂
µ(Θi) for each region i ∈ {1, . . . , 5} and

comment on the results. What would we observe if we decreased the volatility τ2 between
the risk classes?

(b) We denote next year’s numbers of policies by v1,2, . . . , v5,2 and next year’s numbers of claims
by N1,2, . . . , N5,2. Suppose that Ni,1 and Ni,2 are independent, conditionally given Θi, for all
i ∈ {1, . . . , 5}, and that the number of policies grows 5% in each region. For all i ∈ {1, . . . , 5},
under the assumption Ni,2|Θi ∼ Poi(µ(Θi)vi,2), calculate the mean square error of prediction

E

[(
Ni,2
vi,2
−̂̂
µ(Θi)

)2
]
.

Exercise 12.2 (Homogeneous) Credibility Estimators for Claim Sizes
Suppose that in Table 2 we are given claim size data for two different years and four different risk
classes, where vi,t denotes the number of claims in risk class i and year t and Yi,t the total claim
size in risk class i and year t, for all i ∈ {1, 2, 3, 4} and t ∈ {1, 2}. We assume that we are in the
Bühlmann-Straub model framework with I = 4, T = 2 and

Yi,t|Θi ∼ Γ(µ(Θi)cvi,t, c),

with µ(Θi) = Θi and c > 0, for all i ∈ {1, 2, 3, 4} and t ∈ {1, 2}. Moreover, we assume that
(Θ1, Y1,1, Y1,2), . . . , (Θ4, Y4,1, Y4,2) are independent and that Θ1, . . . ,Θ4 are i.i.d. with E[Θ2

1] <∞
and Θ1 > 0 a.s. Finally, we also assume that Yi,1 and Yi,2 are independent, conditionally given Θi,
for all i ∈ {1, 2, 3, 4}.
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risk class i vi,1 Yi,1 vi,2 Yi,2
1 1’058 8’885’738 1’111 13’872’665
2 3’146 7’902’445 3’303 4’397’183
3 238 2’959’517 250 6’007’351
4 434 10’355’286 456 15’629’998

Table 2: Observed numbers of claims vi,1 and vi,2 and total claim sizes Yi,1 and Yi,2 in the 4 risk
classes.

(a) Calculate the homogeneous credibility estimator ̂̂
µ(Θi)

hom

for each risk class i ∈ {1, 2, 3, 4}
and comment on the results.

(b) We denote next year’s numbers of claims by v1,3, . . . , v4,3 and next year’s total claim sizes by
Y1,3, . . . , Y4,3. Suppose that Yi,1, Yi,2 and Yi,3 are independent, conditionally given Θi, for all
i ∈ {1, 2, 3, 4}, and that the number of claims grows 5% in each risk cell. For all i ∈ {1, 2, 3, 4},
under the assumption Yi,3|Θi ∼ Γ(µ(Θi)cvi,3, c), estimate the mean square error of prediction

E

(Yi,3
vi,3
−̂̂
µ(Θi)

hom
)2
 .

Exercise 12.3 Degenerate MLE and the Poisson-Gamma Model
Suppose that in a given line of business we observed the following claim counts data for T = 5
years t = 1, . . . , T :

t 1 2 3 4 5
Nt 0 0 0 0 0
vt 10 10 10 10 10

Table 3: Observed claim counts Nt and corresponding volumes vt for T = 5 years t = 1, . . . , T .

(a) First, we assume a Poisson model for the claim counts, i.e. N1, . . . , NT are independent with
Nt ∼ Poi(λvt), t = 1, . . . , T , for an unknown claim frequency parameter λ > 0. Calculate the
MLE λ̂T of λ. Does this estimate λ̂T make sense for premium calculation?

(b) Now we assume a Poisson-gamma model for the claim counts, i.e. Λ ∼ Γ(γ, c) with γ = 1
and c = 50, and, conditionally given Λ, N1, . . . , NT are independent with Nt ∼ Poi(Λvt),
t = 1, . . . , T .

(i) Determine the prior estimator λ0 and the posterior estimator λ̂post
T , conditionally given

data (N1, v1), . . . , (NT , vT ), of the unknown parameter Λ.
(ii) Find the credibility weight αT ∈ (0, 1) such that

λ̂post
T = αT λ̂T + (1− αT )λ0.

(iii) Suppose we have an additional observation (NT+1, vT+1) = (1, 10) within the Poisson-
gamma model framework and that λ̂post

T+1 denotes the posterior estimator, conditionally
given data (N1, v1), . . . , (NT+1, vT+1), of the unknown parameter Λ. Find the credibility
weight βT+1 ∈ (0, 1) such that

λ̂post
T+1 = βT+1

NT+1

vt+1
+ (1− βT+1) λ̂post

T .

(c) Finally, we assume a Poisson-normal model for the claim counts, i.e. Λ ∼ N (µ, σ2) with mean
µ ∈ R and variance σ2 > 0, and, conditionally given Λ, N1, . . . , NT are independent with
Nt ∼ Poi(Λvt), t = 1, . . . , T . Is such a model reasonable?
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Exercise 12.4 Pareto-Gamma Model
Suppose that Λ ∼ Γ(γ, c) with prior shape parameter γ > 0 and prior scale parameter c > 0 and,
conditionally given Λ, the components of Y = (Y1, . . . , YT ) are independent with Yt ∼ Pareto(θ,Λ)
for some threshold θ > 0, for all t ∈ {1, . . . , T}.

(a) Show that the posterior distribution of Λ, conditional on Y , is given by

Λ|Y ∼ Γ
(
γ + T, c+

T∑
t=1

log Yt
θ

)
.

(b) For the estimation of the unknown tail index parameter Λ of the Pareto distributions, we
define the prior estimator λ0 = E[Λ] and the observation based estimator (MLE of the Pareto
tail index parameter)

λ̂T = T∑T
t=1 log Yt

θ

.

Find the credibility weight αT ∈ (0, 1) such that the posterior estimator λ̂post
T = E[Λ|Y ] has

the credibility form
λ̂post
T = αT λ̂T + (1− αT )λ0.

(c) Show that for the (conditional mean square error) uncertainty of the posterior estimator λ̂post
T

we have
E
[(

Λ− λ̂post
T

)2
∣∣∣∣Y ] = (1− αT ) 1

c
λ̂post
T .

(d) Let λ̂post
T−1 denote the posterior estimator in the sub-model where we only have observed

(Y1, . . . , YT−1). Find the credibility weight βT ∈ (0, 1) such that the posterior estimator λ̂post
T

has the recursive update structure

λ̂post
T = βT

1
log YT

θ

+ (1− βT ) λ̂post
T−1.

Updated: December 2, 2019 3 / 3



ETH Zürich, D-MATH
HS 2019
Prof. Dr. Mario V. Wüthrich

Coordinator
Andrea Gabrielli

Non-Life Insurance: Mathematics and Statistics
Exercise sheet 13

Exercise 13.1 Chain-Ladder Algorithm
We write i = 1, . . . , I for the accident years denoting the years of claims occurrence. For every
accident year we consider development years j = 0, . . . , J . For all i = 1, . . . , I and j = 0, . . . , J we
write Ci,j for the cumulative payments up to development year j for all claims that have occurred
in accident year i. For simplicity, we set I = J + 1 = 10. Assume that we have observations

DI = {Ci,j | i+ j ≤ I, 1 ≤ i ≤ I, 0 ≤ j ≤ J}

given by the following upper claims reserving triangle:

accident development year j
year i 0 1 2 3 4 5 6 7 8 9

1 5’946’975 9’668’212 10’563’929 10’771’690 10’978’394 11’040’518 11’106’331 11’121’181 11’132’310 11’148’124
2 6’346’756 9’593’162 10’316’383 10’468’180 10’536’004 10’572’608 10’625’360 10’636’546 10’648’192
3 6’269’090 9’245’313 10’092’366 10’355’134 10’507’837 10’573’282 10’626’827 10’635’751
4 5’863’015 8’546’239 9’268’771 9’459’424 9’592’399 9’680’740 9’724’068
5 5’778’885 8’524’114 9’178’009 9’451’404 9’681’692 9’786’916
6 6’184’793 9’013’132 9’585’897 9’830’796 9’935’753
7 5’600’184 8’493’391 9’056’505 9’282’022
8 5’288’066 7’728’169 8’256’211
9 5’290’793 7’648’729
10 5’675’568

Table 1: Upper claims reserving triangle DI .

This data set can be downloaded from https://people.math.ethz.ch/~wueth/exercises2.html by
clicking on “Data to the Examples”.

(a) Use the chain-ladder (CL) method to predict the lower triangle

Dc
I = {Ci,j | i+ j > I, 1 ≤ i ≤ I, 0 ≤ j ≤ J}.

(b) Calculate the CL reserves R̂CL
i for all accident years i = 1, . . . , I.

Exercise 13.2 Bornhuetter-Ferguson Algorithm
Consider the same setup as in Exercise 13.1. We assume that we have prior informations µ̂1, . . . , µ̂I

for the expected ultimate claims E[C1,J ], . . . ,E[CI,J ] given by

accident year i 1 2 3 4 5
prior information µ̂i 11’653’101 11’367’306 10’962’965 10’616’762 11’044’881

accident year i 6 7 8 9 10
prior information µ̂i 11’480’700 11’413’572 11’126’527 10’986’548 11’618’437

Table 2: Prior informations µ̂1, . . . , µ̂I .

(a) Use the Bornhuetter-Ferguson (BF) method to calculate the BF reserves R̂BF
i for all accident

years i = 1, . . . , I.

(b) Explain why in this example we have R̂CL
i < R̂BF

i , for all accident years i = 2, . . . , I, where
R̂CL

i denotes the CL reserves for accident year i calculated in Exercise 13.1.
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Exercise 13.3 Over-Dispersed Poisson Model
Consider the same setup as in Exercise 13.1. This time we apply the over-dispersed Poisson (ODP)
model. To this end, for all i = 1, . . . , I and j = 0, . . . , J , we write Xi,j for all payments done in
development year j for claims with accident year i. According to Model Assumptions 9.10 of the
lecture notes (version of March 20, 2019), we assume that there exist positive parameters µ1, . . . , µI ,
γ0, . . . , γJ and φ such that all Xi,j are independent (in i and j) with

Xi,j

φ
∼ Poi(µiγj/φ),

for all i = 1, . . . , I and j = 0, . . . , J , and side constraint
∑J

j=0 γj = 1 holds.

(a) Determine the MLEs of µ1, . . . , µI and γ0, . . . , γJ .

(b) Calculate the ODP reserves R̂ODP
i for all accident years i = 1, . . . , I. What do you observe?

(c) Perform a GLM analysis for the payments Xi,j using the ODP model in order to check the
results obtained in part (b).

Exercise 13.4 Mack’s Formula and Merz-Wüthrich (MW) Formula (R Exercise)
Consider the same setup as in Exercise 13.1.

(a) Write an R code using the R package ChainLadder in order to determine the following
quantities:

• the conditional mean square error of prediction

msepMack
Ci,J |DI

(
ĈCL

i,J

)
,

given in formula (9.21) of the lecture notes, for all accident years i = 1, . . . , I;
• the conditional mean square error of prediction for aggregated accident years

msepMack∑I

i=1
Ci,J |DI

(
I∑

i=1
ĈCL

i,J

)
,

given in formula (9.22) of the lecture notes;
• the one-year (run-off) uncertainty

msepMW
CDRi,I+1|DI

(0),

given in formula (9.34) of the lecture notes, for all accident years i = 1, . . . , I;
• the one-year (run-off) uncertainty for aggregated accident years

msepMW∑I

i=1
CDRi,I+1|DI

(0),

given in formula (9.35) of the lecture notes.

The references for the four formulas above correspond to the version of the lecture notes of
March 20, 2019.

(b) Interpret the square-rooted conditional mean square errors of prediction relative to the claims
reserves calculated in Exercise 13.1.

(c) Interpret the square-rooted one-year (run-off) uncertainties relative to the square-rooted
conditional mean square errors of prediction.
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