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Solution 1.1 Discrete Distribution

(a) Note that N only takes values in N5 and that p € (0,1). Hence, we calculate

PIVER] = S BN =H = Y (1-p)p = p (-0 = p—r— = L
k=1 k=1 k=0 p

from which we can conclude that the geometric distribution indeed defines a probability
distribution on R.

(b) For n € Nyg we get

PN > n] ZIF’ => A-plp=0-p"pd (1-p"=0-p",
k=n k=0

where we used that p> ;2 (1 — p)*¥ =1, as was shown in (a).

(c) The expectation of a discrete random variable that takes values in N5 can be calculated (if

it exists) as
Nl =Y k-PIN =
k=1

Thus, we get
EIN] =Y k(1-p)*'p =) (k+1)(1 = > k(1-p)fp+> 1-p)'p
1 k=0 k=0 k=0

E[N] = 1.
p
(d) Let r € R. Then, we calculate
Elexp{rN}] = Zexp{rk} PN Zexp{rk:} (1—p)F~

= pexp{r} Z[(l —p)exp{r}]* " = pexp{r} Z[(l — p) exp{r}]*.

k=1 k=0

Since (1 — p) exp{r} is strictly positive, the sum on the right hand side converges if and only
if (1 —p)exp{r} < 1, which is equivalent to r < —log(1 — p). Hence, E[exp{rN}] exists if
and only if r < —log(1 — p), and in this case we have

) B 1 B pexp{r}
My(r) = Elesp{rN}] = pe{r == 5oty = T - pexpi)”
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(e) For r < —log(1 — p) we have

iM (r) = da pexp{r} _ pexp{r}1— (1 —p)exp{r}] + pexp{r}(1 — p)exp{r}
ar N dr1—(1-p)exp{r} [1—(1—p)exp{r}?
pexp{r}

T = -pep{r}?

Hence, we get

d B pexp{0} _ p _ P 1
Ol = T epF T T-0-2F ~ #  p

We observe that M N(T)|T:O = E[N], which holds in general for all random variables for
which the moment generating function exists in an interval around O.

Solution 1.2 Absolutely Continuous Distribution

(a) We calculate

PY e R] = /:)O fy(z)dz = /Ooo)\exp{)\x}dx = [fexp{f)\x}]go =[-0-(-1)] =1,

from which we can conclude that the exponential distribution indeed defines a probability
distribution on R.

(b) For 0 < y1 < y2 we calculate

Y2 Y2
Plyy <Y <y] = fy(@x)de = / dexp{—Az}dzr = [— exp{—/\x}]zf

Y1 Y1
= exp{—Ay1} —exp{—Ay2}.

(¢) The expectation and the second moment of an absolutely continuous random variable can be
calculated (if they exist) as

ElY] = /Oo zfy(x) dx and E[Y?] = /00 22 fy (z) da.

—0o0 —0o0
Thus, using partial integration, we get

ElY] = / xAexp{—Az}dr = [fxexp{fA:z:}}goJr/ exp{—Az}dx
0 0

0+ {/1\ exp{)\x}}0 = %

The variance Var(Y') can be calculated as

Var(Y) = E[Y?] - E[Y]? = E[Y?] - %

For the second moment E[Y 2] we get, again using partial integration,

E[Y?] = /Oo w?Nexp{-Az}dr = [—;152 exp{—)\x}]go + /000 2z exp{—Az}dx

0

2 2
0+ ZE[Y] = =
+SEY] = 5,
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from which we can conclude that

2 1 1

Note that for the exponential distribution both the expectation and the variance exist. The
reason is that exp{—Ax} goes much faster to 0 than x or 22 go to infinity, for all A > 0.

(d) Let r € R. Then, we calculate
o0 o
Elexp{rY}] = / exp{ra}lexp{—Az}dr = / Aexp{(r — Nz} dz.
0 0

The integral on the right hand side and therefore also E[exp{rY}] exist if and only if r < A.
In this case we have

My (r) = Elexp{rY}] = :\A lexp{(r — Nz}]g~ = %(0 —1) = 5 i -
and therefore
log My (r) = log (}\ i r) .
(e) For r < X\ we have
j—;logMY(T) = szzlog ()\ir> = ;—;[log()\) —log(A—r)] = %Air - (A—lr)Q'
Hence, we get
d? 1 1

log My (1)|r=0 =

dr? (A—02  A

We observe that ;l—; log My (1)|r—0 = Var(Y’), which holds in general for all random variables
for which the moment generating function exists in an interval around 0.

Solution 1.3 Gaussian Distribution
(a) Let r € R. Then, we calculate

Mx(r) = Elexp{rX}] = /_Z exp{rm}ﬁ exp {_;(35;2#)2} dx

00 1 1 2_2 2 2
/ exp{—x (ptro)ztnp }dac

oo V27O 2 o2
/°° 1 122 —2(pu+ro?)x + p? + 2ruo? +r2c* — 2rpo? — r2ot d
_ _z x
oo V2mo P 2 o2

r2g2 > 1 1[r— (u+ro?)?
- exp{rqu 5 }/OO 27mexp{202} dx

7"202
= expyrpt o,

where the last equality holds true since we integrate the density of a normal distribution with

mean g + ro? and variance o2.
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(b) The moment generating function M,1px of a + bX can be calculated as
Moipx(r) = Elexp{r(a+bX)}] = exp{ra}E[exp {rbX}] = exp{ra} Mx(rb),

for all r € R. Using the formula for the moment generating function of X given in part (a),
we get

252 212 2
Mavpx(r) = exp{ra} exp {war (rb)z - } = exp {r(a+bu)+ - bza }

which is equal to the moment generating function of a Gaussian random variable with
expectation a + by and variance b%?02. Since the moment generating function (if it exists in an
interval around 0) uniquely determines the distribution, see Lemma 1.2 of the lecture notes
(version of March 20, 2019), we conclude that

a+bX ~ N(a+ bu,b*c?).

(¢) Using the independence of X1, ..., X,, the moment generating function My of Y = 3" | X;
can be calculated as

My (r) = Elexp {rY}]

=E eXp{rZXi}] = HE[eXp {rX;}] = HMX'i(T)
- r2o? - r? o}
Hexp{rm—k 2’} —exp{rzul Z’ L },

for all » € R. This is equal to the moment generating function of a Gaussian random variable
with expectation Y-, p; and variance Y., 0Z. We conclude that

zn:Xi ~ N(iu“i(j?) .
i=1 i=1 i=1

Solution 1.4 y2-Distribution

(a) Let r € R. The moment generating function Mx, of X} can be calculated as

Mx, (7‘)

E [exp{rX;}] = /0C><J exp{m:}mka—l exp{—x/2} dz

Y 1 k/2—1

= /0 Wﬂ? exp{—x(1/2 —r)} dx.
This integral (and consequently the moment generating function) exists if and only if r < 1/2.
Let r < 1/2. Then, we use the substitution

1
1/2—r

u=uxz(1/2—r), dx = du.

We get

o0 1 - 1\ 1
vt = [ g () v

1 1 1 ety

= 5 W EDEEOR) /0 U exp{—u}du
- 1

(1= 2r)k
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where in the last equality we used the definition of the gamma function

e}
I'(z) = / u*texp{—u}du, forzcR.
0

(b) For all r < 1/2 the moment generating function Mz2 of Z2 is given by

M) = Blow {r2)] = [ o (r2?) \/1277exp{—x;} dz

— 00

<1 x2(1 - 2r)
- [m Wors exp{—2 }da:
x

= (1—2r)"1/2 /Z Nore —12r)1/2 eXp{Q(l—;)_l} o

B 1
(1 —2r)l/2
= Mx, (r),

where the second to last equality holds true since we integrate the density of a normal

distribution with mean 0 and variance (1 — 27)~! > 0. We conclude that Z2 @ Xi.

(¢) Using that 7y, ..., Zy are i.i.d., the moment generating function My of Y = Ele Z? is given
by

k

= H]E lexp {rZ?}] = (MZ%(T))IC

i=1

My(r) = Elexp{rY}] = E

k
exp {r Z ZZ}
i=1
1

= 1 —2n)k2 = Mx,(r),

)

for all r < 1/2. We conclude that Zle zZ7 = Xy.
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Solution 2.1 Maximum Likelihood and Hypothesis Test

(a) Since logY1,...,logYs are independent random variables, the joint density f, ,2(x1,...,2s)
of logYy,...,logYsg is given by product of the marginal densities of logY7,...,logYs. We
have .

1 1 (@ — p)?
fﬂ7ﬂ2($1,...,$8) = Emexp{—202 s
as logY7,...,log Yy are Gaussian random variables with mean p and variance o2.

(b) By taking the logarithm, we get
8 2

1 T; —
log f02(x1,...,28) = E —log v 2m loga—g%
i=1

1 &
2
—810g\/27r—810g0—ﬁ g (x; — p)°.

i=1

(c) We have log f, o2 (21,...,28) < —8logo for all 4 € R. Hence, independently of the value
of p, log f.02(21,...,28) — —oo if 0% — co. Moreover, since for example z1 # 2, there

exists a ¢ > 0 with Z?Zl(xi — p)? > ¢ and thus log f, ,2(z1,...,25) < —8logo — 5%
for all p € R. Since 55 goes much faster to oo than 8logo goes to —oo if o2 = 0, we
have log f, »2(%1,...,28) = —oo if 0 — 0, independently of x. Finally, if 02 € [61,62]
for some 0 < ¢; < ¢z, we have log f,, o2 (z1,...,28) < —8logc; — i Zﬁ:l(xi — w)?. Hence,
independently of the value of o in the interval [c1, cz], log f, o2 (21, ..., z8) = —o0 if |u| — oco.
Since log f,, 52 (1, ..., xg) is continuous in p and o2, we can conclude that it attains its global
maximum somewhere in R x R+q. Thus, /i and 52 as defined on the exercise sheet have to
satisfy the first order conditions

0
%Inguyﬁ(xlv“"x8)|(u,02):(ﬂ,&2) =0 and

0
m log fu,o2 (l'l, ey xS)l(M’UQ):(ﬂ,&% = 0.

We calculate

0 1
35,108 oz (@1, 28) = — > (@i —p),
I ,
which is equal to 0 if and only if u = % Zle x;. Moreover, we have
8 8
0 1 1
o7y 8 I es78) = g0+ 55 > i R

which is equal to 0 if and only if 02 = 3 Zi:l(xi — )2 Since there is only tuple in R x R
that satisfies the first order conditions, we conclude that

,Z and % = éZ(l‘Z —n)? = éZ(J:Z -7 =1

| =
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Note that the MLE 52 (considered as an estimator) is not unbiased. Indeed, if we replace
Z1,...,Tg by independent Gaussian random variables X1, ..., Xg with expectation p € R
and variance 0% > 0, and write /i for % Zle X, we can calculate

8 8
1 ~ 1 U
gE (Xiﬂ)zl = SE[E (X7 —2X;p+7%) | .

=1 i=1

E[6?] = E[6%(X,...,Xs)] = E

By noting that Zle X; = 871 and that E[X?] = --- = E[XZ], we get
1 8
E[6%) = SB[ X7 -2-8-° + 87| = EIX}] - E[@® = o® + E[X,* - Var(d) - E[f]*.
i=1

By inserting

we can conclude that

7
o? —E[X1]? = -0 # o7,

E[6?] = 0? + E[X,]* — S

| =

2 is not unbiased.

ie. o
Since the logarithms of the claim amounts are assumed to follow a Gaussian distribution
and the variance is unknown, we perform a t-test. Under Hy, we have p = 6. Thus, the test
statistic is given by

1 8
82— 10gYi—6
T = T(logYy,...,logYs) = V8% > iy log |

Vs2

where

Note that S? is an unbiased estimator for the variance o2 of the logarithmic claim sizes.
Under Hy, T follows a Student-¢ distribution with 7 degrees of freedom. With the data given
on the exercise sheet, the random variable S? attains the value

1< - i 1o 2
7Z<!Ei—8ziﬁi> :?Z(mi—ﬂ = 8.
i=1 i=1

i=1
Thus, for T we get the observation
15 2,—6 76
T(xy,...,18) = V8E=EL — — \g— — = 1.
(21 8) o7 NG

The probability under Hg to observe a T that is at least as extreme as the observation 1 we
got above is

PT|>1] = P[T>1]+P[I'< -1 = 1-P[T <1 +1-PT <1] = 2 2P[T' < 1],
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where we used the symmetry of the Student-t distribution around 0, i.e. P[T < —1] =
1 —P[T < 1]. The probability P[T" < 1] is approximately 0.84, and the p-value is given by

PIT|>1] =2-2P[T <1] ~ 2—2-0.84 = 0.32.

This p-value is fairly high, and we conclude that we can not reject the null hypothesis, for
example, at significance level of 5% or 1%.

Solution 2.2 Chebychev’s Inequality and Law of Large Numbers
(a) We have = E[X;] =1°000-0.1+0-0.9 = 100.
(b) For n =1 we get

1 n
E;Xi*ﬂ

As both values 900 and 100 are bigger than 0.1y = 10, we conclude that p(1) = 1. In
particular, if we only have n = 1 risk in our portfolio, then the corresponding claim amount
deviates from the mean claim size by at least 10% with probability equal to 1.

900, with probability 0.1,

= [X1 —100] = { 100, with probability 0.9.

(c) For the n i.i.d. risks Xi,..., X, we define

n

X;
Stn) =3 1°000

=1

to be the corresponding (random) number of bikes stolen. We note that S(n) has a binomial
distribution with parameters n and p = 0.1. In particular, we have

plstn = = () o (1=,
for all k € {0,...,n}. For n € N we can now write
1< 1<
w2 X POy
=1 =1
1 n n
1-P [—o.m <= d Xi—p< 0.14 =1-P [O.Qnu <Y Xi< 11%]
=1

i=1

) "X 1.1 ) 1.1
:1—P[097w<z < nﬂ:l—P[ognM<S(n)< nu}.

p(n) 11”[

zo.m] = 1IP’[

< O.lu]

pt 1’000 ~ 1’000 1’000 1’000

For n = 1’000 we get

: 0.9 - 1°000 - 100 , 1.1-1°000 - 100
p(1°000) = 1 —P [1,000 < 8(1°000) < 17000}
= 1-P[90 < $(1°000) < 110]
109
1’000 k 1°000—k
=1- 0.1¥0.9
2 (%)

~ 0.32.

Thus, if we have n = 1°000 risks in our portfolio, then the sample mean of the claim amounts
deviates from the mean claim size by at least 10% with a probability of 0.32. In particular,
diversification led to a reduction of this probability.
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(d) As
E [iZX] = %ZE[Xi] = E[X1] = p

and, using the independence of X1,..., X,

Var (7112)(}) = %ZVM (X3) = %Var(Xl) = %E (X3 _/”L)Q}
i=1 i=1

1 90°000
= = (900*- 0.1 + 100 - 0.9) = ,
n n

Chebychev’s inequality leads to

1 n
E;Xi_'u

_ Var (3 3iL, Xi) 900000 900

> 0.1 —.
=T = (0.1p)2 n(0.1u)? n

p(n) ZP[

We have 900
. < 0.01 <— n > 90°000.

This implies that Chebychev’s inequality guarantees that if we have more than 90’000 risks,
then the probability that the sample mean of the claim amounts deviates from the mean claim
size by at least 10% is smaller than 1%. However, we remark that Chebychev’s inequality is
very crude. In fact, the true minimum number n of risks such that p(n) < 0.01 is given by
n = 6’000, approximately, while for n = 90’000 we basically have p(n) = 0.

(e) We have that X, X»,... are i.i.d. and that E[|X;|] = E[X;] = u < co. Thus, we can apply
the strong law of large numbers, and we get

n—o00 N 4

1 n
lim — Y X; — E[X;] = p = 100, P-as.
=1

Solution 2.3 Central Limit Theorem

(a) Let 02 be the variance of the claim sizes and z > 0. We have

1 & x -1 - x 1 & x
Pl=YYi—p <= =P|=>Yi—p<=|-P|=Y Vi-u< -
| R P R P e

12?:1}@_/~‘<E _
o o

=P|/n2

- rla<Z]pfas-]

where | <
2N Y —
Z, = Jnre=i=tt B
w=n o

According to the Central Limit Theorem, Z,, converges in distribution to a standard Gaussian
random variable. Hence, if we write ® for the distribution function of a standard Gaussian
random variable, we have the approximation

“s(5)-0(2) - (5
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where we used that ®(—2) = 1—®(Z). On the one hand, as we are interested in a probabilty

of at least 95%, we have to choose x > 0 such that 2®(Z) — 1 = 0.95. We have

2% (f) 12095 = @ (f) — 0.975.
g

g

Using ®71(0.975) = 1.96, this implies that

L = 1.96.
o
It follows that
x =196-0 =196-Vco(Y1) -pn = 196-4-p. (1)
On the other hand, as we want the deviation of the empirical mean from p to be less than
1%, we set
2 001-p
VO
which implies
22
= —. 2
T 0012 2 @)

Combining (1) and (2), we conclude that

1.96 -4 - u)?
pour — W96 4 7 e 2 30000 — 6147656,
0.012 - p2
(b) In this part we use Chebychev’s inequality instead of the Central Limit Theorem in order
to derive a minimum number of claims n°"® such that with probability of at least 95% the
1

deviation of the sample mean ;- >, Y; from the mean claim size y is less than 1%. We have

=1

1 — 1 —
Pl=SN Y, —ul <0.01u] > 0.95 Pl|=S"Y - ul >0.01u| < 0.05.
UnZ u‘ u] > = Unzl u‘ u]

Similarly as in Exercise 2.2 we apply Chebychev’s inequality to get

1 & Var(£ 3" | Y;) Var(Y7) Veo(Y7)? 160’000
P||— Y: —p| >0.01 < n = = = = .
Un ; ' “‘ == T 0012 n-0012-12  n-0.012 n
We have 160°000
- < 0.05 —= n > 3’200°000.
Thus, we get

nChe = 3200000 > 614’656 = nCLT.

This comparison confirms that Chebychev’s inequality is rather crude, see also Exercise 2.2.

Solution 2.4 Conditional Distribution and Variance Decomposition

(a) First, we write Mg for the moment generating function of ©. As © follows an exponential
distribution with parameter A > 0, we know from Exercise 1.2 that

A
r®
M@(T’) = E[e ] = m,
for all r < A\. As —v < 0 < A, we calculate
A
_ _ _ _ —Ov] __ _ _
PN = 0] = E[P[N = 06]] = E[e™®"] = Mo(—v) = .
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(b)

According to the remark on the exercise sheet, we have E[N|©] = ©Ouv. The tower property of
conditional expectation then leads to

E[N] = E[E[N|6]] = E[©v] = 1,
as the expectation of an exponential distribution with parameter A > 0 is equal to %, see
Exercise 1.2.

Note that

2
2 2 2 2 v 2v
E[N“] = E[E[N“|©]] = E[Var(N|©) + E[N|©]7] = E[Ov + (Ov)*] = X + Nz < 00,
where in the third equation we used that the expectation and the variance of a Poisson
distribution are equal to its frequency parameter, and in the fourth equation that the second
moment of an exponential distribution with parameter A > 0 is equal to )\%, see Exercise 1.2.
In particular, the second moment of N, and thus the variance Var(V), exist. Now we have

E[Var(N|©)] = E[E[N?|0] - (E[N|O])*] = E[N’] - E[(E[N|6])’]
and
Var(E[N|€]) = E[(E[N|©])’] - E[E[N|6]]* = E[(E[N|6])*] — E[N]*.

Combining these two results, we get the variance decomposition formula
E[Var(N|0)] + Var(E[N|0]) = E[N?] — E[N]? = Var(N).

Using this formula, we can calculate

’U2

Var(N) = E[Var(N|0)] + Var(E[N|6]) = E[0v] + Var(Qv) = §+ T2
where in the last equation we used that the variance of an exponential distribution with
parameter A > 0 is equal to %, see Exercise 1.2. In particular, we have

v U2 v

Var(N) = -+ — > — = E[N

a‘r( ) A + A2 A [ ]7

i.e. contrary to the (unconditional) Poisson distribution, the random variable N has a variance
which is bigger than the expectation.

Remark: The variance decomposition formula also holds in its general form
Var(X) = E[Var(X|G)] + Var(E[X|G]),

where X is a square-integrable random variable on a probability space (Q, F,P) and G any
sub-o-algebra of F.
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Solution 3.1 No-Claims Bonus
(a) We define the following events:
A = {“no claims in the last six years”},

B = {“no claims in the last three years but at least one claim in the last six years”},

C = {“at least one claim in the last three years”}.
Note that since the events A, B and C' are disjoint and cover all possible outcomes, we have
P[A] + P[B] + P[C] = 1,

i.e. it is sufficient to calculate two out of the three probabilities. Since the calculation of P[B]
is slightly more involved, we will look at P[A] and P[C]. Let Ny,..., Ng be the number of
claims of the last six years of our considered car driver, where Ng corresponds to the most
recent year. By assumption, Ny, ..., Ng are i.id. Poisson random variables with frequency
parameter A = 0.2. Therefore, we can calculate

P[A] = P[N1 =0,...,Ng=0] = [[P[N; =0] = [Jexp{-A} = exp{—6\} = exp{-1.2}

i=1 i=1
and, similarly,
PC] =1-P[C°] =1-P[Ny=0,N;5 =0,Ng =0] = 1 —exp{—3A} = 1 —exp{—0.6}.
For the event B we get
PB] = 1 -P[A] = P[C] = 1 —exp{—1.2} — (1 — exp{—0.6}) = exp{—0.6} — exp{—1.2}.

Thus, the expected proportion g of the premium that is still paid after the grant of the
no-claims bonus is given by

¢ =FE[08-144+09-15+1-1¢] = 0.8-P[A] +0.9-P[B] +1-P[C]

0.8 - exp{—1.2} + 0.9 - (exp{—0.6} — exp{—1.2}) + 1 — exp{—0.6}
~ 0.915.

If s denotes the surcharge on the premium, then it has to satisfy the equation
g (1+ s) - premium = premium,

which leads to 1
s = ——1.
q

We conclude that the surcharge on the premium is given by approximately 9.3%.
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(b) We use the same notation as in (a). Since this time the calculation of P[B] is considerably more
involved, we again look at P[A] and P[C]. By assumption, conditionally given ©, Ny,..., N
are i.i.d. Poisson random variables with frequency parameter O\, where A = 0.2. Therefore,
we can calculate

6
P[A] = P[N; =0,...,Ng=0] = E[P[N, =0,...,Ng=0/0]] = E [H]P’[Ni = 0[]

=1

E [H exp{—O\}| = E[exp{—60)}] = Mo(—6)),

where Mg denotes the moment generating function of ©®. Since © has an exponential
distribution with parameter ¢ =1, Mg is given by

1
Me(r) = —
for all r < 1, see Exercise 1.2, which leads to
1 1
P[A] = = —.
[4] 146X 2.2
Similarly, we get
1 1 0.6
P =1-P[C°l =1—P[N;,=0,N;s =0,Ng=0] = 1— -1 - -

For the event B we get

1 0.6 1 1
P[B] =1-P[A]-P =1l-—-— = — - —.
5] 4] €] 22 1.6 1.6 2.2
Thus, the expected proportion ¢ of the premium that is still paid after the grant of the

no-claims bonus is given by

1 11 0.6
q = 0.8-P[A]+09-P[B] +1-P[C] = 0.8 7 +0.9- <1.6_2.2)+1.6 ~ 0.892.

We conclude that the surcharge s on the premium is given by

1
s = -—1=~ 12.1%,
q

which is considerably bigger than in (a). The reason is that in (b) we introduce dependence
between the claim counts of the individual years of the considered car driver. This increases
the probability of having no claims in the last six years, and decreases the expected proportion
q of the premium that is still paid after the grant of the no-claims bonus.

Solution 3.2 Compound Poisson Distribution

(a) Since S ~ CompPoi(\v,G), we can write S as

where N ~ Poi(\v), Y7,Ys,... are i.i.d. with distribution function G and N and Y;,Y3, ...
are independent. Now we can define Sy., S and S as

N N N
Ssc = ZYil{Yigl’ooop Sme = ZE1{1’000<)@§1*000*000} and Sic = ZYil{Yi>1’OOO’OOO}-

i=1 i=1 i=1
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(b) Note that according to Table 2 given on the exercise sheet, we have

3 4 3 1
00]+IP’[Y1=300]+P[Y1:500]:%+%+%:57

Ply; =1
P[Y; = 6°000] + P[Y; = 100°000] 4 P[Y; = 500°000]
2 2 1 1

- 2 4.2 4 - d
5 1 15 3 ™
111

— <’ ’ = —_—_-— = = -,
1-P¥y < 1000000 = 1 -5 — 3 = ¢

P[Y; < 1°000] =

P[1°000 < ¥; < 1°000°000]

P[Y; > 1°000°000]

Thus, using Theorem 2.14 (disjoint decomposition of compound Poisson distributions) of the
lecture notes (version of March 20, 2019), we get

Sse ~ CompPoi <)\2U,GSC) , Sme ~ CompPoi ();},Gmc> and S)c ~ CompPoi ()\61)76*16) ,

where

Gsc(y) P[Yl < y|Y1 < 1’000}7
Gme(y) = P[Y1 < y[1°000 < Y; < 1°000°000] and
Gie(y) = P[Y1 < y|¥1 > 1°000°000],

for y € R. In particular, for a random variable Yy, having distribution function G, we have

Py, = 100]  3/20 3
P[Y,. = 100] = _ _ 3
[ )= By <To00] ~ 12 T 10
Py, =300]  4/20 4
P[Y.. = 300] = _ _ 4
Yoo = 3000 = 555000 =~ 12 ~ 10
Py, =500  3/20 3

P[y; <1000  1/2 ~ 10

P[Y,. = 500] =

Analogously, for random variables Y. and Y}, having distribution functions Gy, and Gy,
respectively, we get

2 2 1
P[Yine = 6°000] = R P[Yime = 100°000] = 5 and P[Yi. = 500°000] = R
as well as

1 1 1
P[Yie = 20000000 = 5, P[¥ic =5000000] = 7 and P[Yic = 10'000°000] = .

According to Theorem 2.14 of the lecture notes (version of March 20, 2019), Ss., Smc and Sjc
are independent.

In order to find E[Ss], we need E[Y;.], which can be calculated as

300 1200 1500
E[Yie] = 100-P[Yae = 100]+300-P[Yae = 300]+500-P[Ye = 500] = 5"+ 1=+~ = 300.

Now we can apply Proposition 2.11 of the lecture notes (version of March 20, 2019) to get

A
E[Ss] = %’E[YSC] — 0.3-300 = 90.

Similarly, we get
E[Yinc] = 142’400 and E[Yi] = 4’750°000.
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Thus, we find

A A
E[Sme] = ?”E[Ymc} — 28480 and E[S.] = %E[YIC] = 475°000.

Since S = Ss¢ + Sme + Sic, we get
E[S] = E[Sse] + E[Sumec] + E[Sic] = 503'570.
In order to find Var(Ss.), we need E[Y.2], which can be calculated as

E[YZ] = 100? - P[Ys. = 100] + 3007 - P[Yz. = 300] + 5007 - P[Yz. = 500]
30°000 360000 750'000
10 10 10

= 114’000.

Now we can apply Proposition 2.11 of the lecture notes (version of March 20, 2019) to get

A
Var(Ss) = %’E[Ysi] = 0.3-114°000 = 34°200.

Similarly, we get
E[Y2.] = 54°014°400°000 and E[Y;?] = 33’250°000°000°000.
Thus, we find

A A
Var(Sme) = ?UE[YH%C] = 10802'880°000 and Var(Si) = %E[Yﬁ] = 3'325'000°000°000.

Since S = Ss¢ + Sme + Sie, and Sse, Sme and S are independent, we get

V/Var(S) = v/Var(Ss) + Var(Sme) + Var(Si) = Vv/3'335°802'914'200 ~ 1'826°418.

(e) First, we define the random variable Ny as

Nlc ~ Poi (?) .

The probability that the total claim in the large claims layer exceeds 5 million can be calculated
by looking at the complement, i.e. at the probability that the total claim in the large claims
layer does not exceed 5 million. Since the smallest claim size for a claim in the large claims
layer is given by 2’000°000, with three claims in the large claims layer we already exceed 5
million with probability one. Thus, it is enough to consider only up to two claims. We get
P [S < 5°000°000]
= P[Nie = 0] + P[Nye = 1]P[Yie < 5°000°000] 4+ P[N}. = 2]P[Yi. = 2°000°000]?

-l e ) () e ) ()L
6 6 6 \2 4 6 6 2\ 2
= exp{—0.1} (1 + 0.075 4+ 0.00125)

~ 97.4%.

We can conclude that

P[Si. > 5000°000] = 1 —P[S), < 5°000°000] ~ 2.6%.
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Solution 3.3 Compound Distribution

We show that the moment generating function Mg of S is equal to the moment generating function
of an exponential distribution with parameter Ap. According to Proposition 2.2 of the lecture notes
(version of March 20, 2019), Mg is given by (wherever it exists)

Ms(r) = My([log My, (r)],

where My and My, are the moment generating functions of N and Y7, respectively. As S > 0
almost surely, Mg(r) exists at least for all 7 < 0. In Exercises 1.1 and 1.2 we have seen that

pexp{r}

M) = T ety

for all » < —log(1 — p), and that

A
log My, (r) = log (/\_T> )

for all » < A. Thus, we get

A—r

)}:1_(136@{10%02)} o »

1—p)exp{log(ﬁ)} T A—r—Al-p) -1

With Lemma 1.3 of the lecture notes (version of March 20, 2019), we conclude that S has indeed
an exponential distribution with parameter Ap. We remark that for this compound model the
corresponding distribution function can be given in closed form. However, usually this is not
possible. Therefore, we will consider other methods for the calculation of the distribution function
of S in Chapter 4 of the lecture notes (version of March 20, 2019).

Ms(r) = My [bg(

Solution 3.4 Compound Binomial Distribution

(a) Let S ~ CompBinom(#,p,G) with the random variable ¥; having distribution function G
and moment generating function My. . Then, by Proposition 2.6 of the lecture notes (version

of March 20, 2019), the moment generating function Mg of S is given by

Mg(r) = (pMy, (r) +1-5)",

for all 7 € R for which My, is defined. We calculate the moment generating function Mg, of
Sic and show that it is exactly of the form given above. Let r € R such that Mg, (r) exists.
Note that since S} > 0 almost surely, its moment generating function is defined at least for
all 7 < 0. We have

Mg, (r) = Elexp{rSi.}] = E

N
exp {TZYZ— 1{1@>M}H =E

i=1

N
[Texp {rv: 1{m>M}}]

=1

N|{| =E

N
e x| Tlesn 3 1)

i=1

ﬂE [exp {TYi 1{Yi>M}}]] ’

i=1

where in the fourth equality we used the tower property of conditional expectation and in the

fifth equality the independence between IV and Y;. For the inner expectation we get
Efexp{rYi Livisay f] = Efexp {rYi} - Livismy + Lvicany)

E [exp {rY;} |Y; > M]P[Y; > M] + P[Y; < M)

Elexp {rY;} |Y: > M][1 — G(M)] + G(M).
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Note that the distribution function of the random variable Y;|Y; > M is G).. Thus, we can

write

E [exp {rYi 1iy,smy ] = My, jvisu(r)[L = G(M)] + G(M).

Hence, we get

Ms,, (T)

=

E

(My; vy >0 (r)[L = G(M)] + G(M))]

[(MY1|Y1>M )1 -G +G)"]

E [exp {Nlog (My,y,>nm (r)[1 — G(M)] + G(M)) }]
Mn(p),

where My is the moment generating function of N and

p

= log (My, |y, >n(r)[1 = G(M)] + G(M)) .

Since we have N ~ Binom(v,p), My(r) is given by

Therefore, we get

Mslc(r) =
= (p[l = G(M)|My, v, >m(r) + 1 —p[l = G(M)])".

My (r) = (pexp{r}+1—p)°.

[P (My,y,>m(r)[1 = GM)] + G(M)) +1 = p]’

Applying Lemma 1.3 of the lecture notes (version of March 20, 2019), we conclude that
Sie ~ CompBinom(?, p, G) with = v, p = p[l — G(M)] and G = G.

(b) In (a) we showed that the number of claims of the compound distribution S has a binomial
distribution with parameters v and p[l — G(M)] > 0. In particular, there is a positive
probability that we have v claims with Y; > M. Now suppose that Ss. > 0. Then, we know

that there isan ¢ € {1,...,

N} with ¥; < M. In particular, this claim cannot be part of Sj.

and there is zero probability that we have v claims with Y; > M. This explains why S
and Sj. cannot be independent. However, note that with the Poisson distribution as claims
count distribution such a split in small and large claims leads to independent compound
distributions, see Theorem 2.14 of the lecture notes (version of March 20, 2019).
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Solution 4.1 Poisson Model and Negative-Binomial Model

(a) In the Poisson model we assume that Ny, ..., Ny are independent with Ny ~ Poi(Av;) for all
t€{l1,...,10}. We use Estimator 2.32 of the lecture notes (version of March 20, 2019) to
estimate the claim frequency parameter \ by

10
~ N, 10224
MLE = =1 0000 10.22%.
D i=1 Ut

Let t € {1,...,10}. We have

E[M}:W:M:)\ and Var(
Ut

Ut Ut

2 2
Ui Ui

Ne Var(Ny) — Avg A
V¢ o 'Ut.

Note that for the random variable N; ~ Poi(Av;) we can write
Nt (i) Z ﬁh
i=1

where Ny, ..., ]\vat are i.i.d. random variables following a Poi(\)-distribution. Thus, we can
use the Central Limit Theorem to get

Nt/’l)t—E[Nt/Ut] _ Nt/’l}t—)\ — 7

v/ Var (N /vy) VA vy ’

as vy — 00, where Z is a random variable following a standard normal distribution. This
leads to the approximation

N, Jvr — A
P [A— VNve < NyJog < A+ \/)\/vt] =P [—1 < % < 1] ~P(-1<Z<1) ~ 07,

i.e. with a probability of roughly 70%, N;/v; lies in the interval [A —\/A/ve, A4 /A /ve]. Since

A is unknown, we replace it by the estimator AMIE to get the approximate prediction interval

[X%LE — /AMLE [y AMLE 4 [AMLE /vt] ~ [9.90%,10.54%),

which should contain roughly 70% of the observed claim frequencies N;/v;. We have the
following observations of the claim frequencies:

t 1 2 3 4 5 6 7 8 9 10

Nefve | 10% 9.97%  9.85% 9.89% 10.56% 10.70% 9.94% 9.86% 10.93% 10.54%

Table 1: Observed claim frequencies N /v;.

We observe that instead of the expected seven observations, only four observations lie in the
estimated interval. We conclude that the assumption of having Poisson distributions might
not be reasonable.
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(b) By equation (2.9) of the lecture notes (version of March 20, 2019), the test statistic

~ 2
10 (Nt/vt — )\%LE>
= ’Ut
t=1

ok

YMLE
AT0

is approximately y2-distributed with 10 — 1 = 9 degrees of freedom. By inserting the numbers,
we get X* ~ 14.84. The probability that a random variable with a y2-distribution with 9
degrees of freedom is greater than 14.84 is approximately equal to 9.55%. Hence we can reject
the null hypothesis of having Poisson distributions only at significance levels that are higher
than 9.55%. In particular, we can not reject the null hypothesis at significance level of 5%.

(¢) In the negative-binomial model we assume that Ny, ..., Nig are independent with, condition-

ally given O, Ny ~ Poi(©: v;) for all t € {1,...,10}, where ©4,...,019 - I'(v,) for some
~v > 0. We use Estimator 2.28 of the lecture notes (version of March 20, 2019) to estimate the
claim frequency parameter A by

to N 10224
10 100°000

t=1"Vt

~ 10.22%.

)‘11\10]3 =
As in equation (2.8) of the lecture notes (version of March 20, 2019), we define
10 2
. 1 N, ~ ~
Vip = < — =) =017 > AP
0= g5 ;Ut <Ut 10 > A0

Let v =v; = -+ = v19 = 10°000. Now we can use Estimator 2.30 of the lecture notes (version
of March 20, 2019) to estimate the dispersion parameter v by

2 2 2
INB TNB 100> TNB
o OW) (Zm o T ) _ W) (o) (W)
Vfo - )\11\10B 9 V120 - )\IroB 9 V12o - )‘11\1013

t=1 t=1"Vt
1576.15.

Q

For all t € {1,...,10} we have

:A’

E |:]Vt:| _ E[NV] _ E[E[N|O:]] _ E[Odve] _ Avg

Ut Ut Ut Ut VUt

since E[O¢] = v/v =1, and

Var (Nt) _ E[Var(N¢|0;)] + Var(E[N;|0;]) _ E[©:A\vy] + Var(©;Avy) _ A+ A2y Jy

2 2

(%7 Uy Uy V¢

since Var(©;) = v/v? = 1/v. Similarly as in part (a), we get the prediction interval

~ ~ 2 ~ ~ 2

NP (RP) e [P (NP) /AN

10~ " A0 T+ » ~ [9.81%, 10.63%],
t t

which should contain roughly 70% of the observed claim frequencies Ny/v;. Looking at
the observations given in Table 1 above, we see that eight of them lie in the estimated
interval, which is clearly better than in the Poisson case in part (a). In conclusion, here the
negative-binomial model seems more reasonable than the Poisson model.
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Solution 4.2 y?-Goodness-of-Fit-Analysis

(a) The R code used in part (a) is provided in Listing 1.

(i) In Figure 1 (left) we can see that the n MLEs of A approximately have a Gaussian
distribution with mean equal to the true value of A = 10%. On the one hand, this is due
to the fact that (under regularity assumptions) the MLE is consistent and asymptotically
Gaussian distributed (as T — o). For more details we refer to Chapter 6 of the textbook
“Theory of Point Estimation” by E.L. Lehmann and G. Casella (2nd edition, 1998).
On the other hand, in the Poisson case we directly have an approximate Gaussian
distribution of the MLE, independently of the value of T, provided that the volume v is

large enough, see also Exercise 4.1.

(ii) From the QQ plot, see Figure 1 (right), we deduce that the test statistic indeed has
approximately a y2-distribution with 77— 1 = 9 degrees of freedom. We only observe
slightly heavier tails in the observations, compared to a x2-distribution with 7—1 =9
degrees of freedom. By increasing the values for n and v, we get even closer to a

x2-distribution with T'— 1 = 9 degrees of freedom.

(iii) We observe that we wrongly reject the null hypothesis Hy of having a Poisson distribution
as claim count distribution in 5.16% of the cases. This corresponds almost perfectly to
the chosen significance level (indicating the probability of rejecting Hy even though it is

true) of 5%.

Listing 1: R code for Exercise 4.2 (a).

### Function generating the data and applying the chi-squared goodness-of-fit test
chi.squared.test.1l <- function(seedl, n, t, lambda, v, alpha){

### Generate the claim counts
set.seed(seedl)
claim.counts <- array(rpois(mn*t,lambdax*v), dim=c(t,n))

### Distribution of the MLEs of lambda

lambda_MLE <- colSums(claim.counts)/(t*v)

plot (density(lambda_MLE), main="Distribution of the MLEs", xlab="Values of the MLEs",
cex.lab=1.25, cex.main=1.25, cex.axis=1.25)

abline (v=mean(lambda_MLE), col="red")

legend ("topleft", 1lty=1, col="red", legend="mean")

print ("1: See plot for the distribution of the MLEs")

### Distribution of the test statistic
lambda_MLE_array <- array(rep(lambda_MLE,each=t), dim=c(t,n))
test.statistic <- colSums(v*(claim.counts/v-lambda_MLE_array)”~2/lambda_MLE_array)
theoretical.quantiles <- qchisq(p=(1:n)/(n+1), df=t-1)
empirical.quantiles <- test.statistic[order(test.statistic)]
lim <- c(min(theoretical.quantiles,empirical.quantiles),
max (theoretical.quantiles ,empirical.quantiles))
plot (theoretical.quantiles, empirical.quantiles, xlim=1lim, ylim=1lim,

xlab="Theoretical Quantiles", ylab="Empirical Quantiles", main="QQ plot", cex.lab=1.25,

cex.main=1.25, cex.axis=1.25)
abline (a=0, b=1, col="red")

print ("2: See the QQ plot for a comparison between the empirical quantiles of the test

statistic and the theoretical quantiles of a chi-squared distribution with t-1
degrees of freedom")

### Result of the hypothesis test
print (paste("3: How often we wrongly reject the null hypothesis: ",
sum(test.statistic > qchisq(p=1-alpha, df=t-1))/n,sep=""))
}

### Apply the function with the desired parameters
chi.squared.test.1(seed1=100, n=10000, t=10, lambda=0.1, v=10000, alpha=0.05)

Updated: October 7, 2019

3/5



Non-Life Insurance: Mathematics and Statistics, D-MATH

HS 2019 Solution sheet 4
Distribution of the MLEs QQ plot
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Figure 1: Left: Density plot of the distribution of the MLEs. Right: QQ plot of the theoretical
quantiles of a y2-distribution with 7" — 1 = 9 degrees of freedom against the empirical quantiles of
the values of the test statistic.

(b) The R code used in part (b) is provided in Listing 2.

(i) We observe the following results:

dispersion parameter ~y 100 1’000 10’000
Percentage with which we reject Hy | 99.78% 48.38%  7.96%

Table 2: Percentage with which we reject Hy for different values of ~.

(ii) We see that in case of a negative binomial distribution with a comparably small parameter
(v = 100) for the latent gamma distribution we are almost always able to reject the
null hypothesis Hg of having a Poisson distribution as claim count distribution. The
bigger ~, the less we are able to reject Hy. This is because for very large values of -, the
corresponding gamma distribution does not vary a lot, i.e. is almost constantly equal to
1. Thus, for increasing v, we move back to the Poisson model and, consequently, the
x2-goodness-of-fit test does not detect the latent variable anymore.

Solution 4.3 Claim Count Distribution

The sample mean i and the sample variance o2 of the observed numbers of claims Ny, ..., Nig are
given by
1 Qo 1 Jo
~ 4 _ ~2 1 M2
=1 ZNt =213 and 5% = 5 Z(Nt )% ~ 109.1.
t=1 t=1
We have
7% ~ 5[,

which suggests Var(N7) > E[N7]. In such a case we would choose a negative binomial distribution,
as it allows the variance to exceed the expectation.
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Listing 2: R code for Exercise 4.2 (b).

### Function generating the data and applying the chi-squared goodness-of-fit test

chi.squared.test.2 <- function(seedl, n, t, lambda, v, alpha, gamma){
### Generate the claim counts
set.seed(seedl)

claim.counts <- array(rnbinom(n*t,

### Calculate the MLEs
lambda_MLE <- colSums(claim.counts)/(t*v)

### Calculate the test statistic

lambda_MLE_array <- array(rep(lambda_MLE,each=t), dim=c(t,n))

size=gamma, mu=lambda*v), dim=c(t,n))

test.statistic <- colSums(v*(claim.counts/v-lambda_MLE_array)~2/lambda_MLE_array)

### Result of the hypothesis test
print (paste ("How often we correctly reject the null hypothesis:
sum(test.statistic > qchisq(p=1-alpha,

"
B

### Apply the function with the desired parameters

chi.squared.test.2(seed1=100, n=10000, t=10, lambda=0.1, v=10000, alpha=0.05,
chi.squared.test.2(seed1=100, n=10000, t=10, lambda=0.1, v=10000, alpha=0.05,
chi.squared.test.2(seed1=100, n=10000, t=10, lambda=0.1, v=10000, alpha=0.05,

df=t-1))/n,sep=""))

gamma=100)
gamma=1000)
gamma=10000)

Solution 4.4 Method of Moments

IfY ~T(y,c), we have

E[Y] = 1

2
d Var(y) = .
. an ar(Y) 2

The sample mean Jig and the sample variance 62 of the eight observations y, ...

S L R YU s
,UJ8—8 yz—g_ an 08_7 Yi — M8

i=1 i=1

The method of moments estimates (7,¢) of (v, ¢) solve the equations

~ 7 o 7
== and 05 = =.
hs ¢ 8T 2
We see that 7 = jigc and, thus,
52 = B _ s
8 o2 B )
which is equivalent to
~ J2z3 8
=58 _2_9
‘TR T
Moreover, we get
~9
~ o~ Mg 64
= C= 7= —— = 16
Y us O% 4

We conclude that the method of moments estimates are given by (7,¢)
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Solution 5.1 Large Claims

(a) The density of a Pareto distribution with threshold 6 = 50 and tail index a > 0 is given by

)

F(z) = falz) = %(g)*(!ﬂrl)

for all x > 6. Using the independence of Y7,...,Y,,, the joint likelihood function Ly («) for
the observation Y = (Y7,...,Y},) can be written as

n n —(a+1) n
£xte) = [1500 = IT5 (%) = [Loomy
i=1 i=1 i=1

whereas the joint log-likelihood function ¢y () is given by

ly(a) =log Ly (a Zloga—i—alog@ (a—«—l)logYi:nloga—i—nalog@—(a—l—l)ZlogYi.
i=1 i=1

The MLE aME is defined as

aMLE — arg max Ly(a) = arg max Iy ().

Calculating the first and the second derivative of £y («) with respect to a, we get

0 n =
il - 1 _ 1 ;
by (@) + nlogh ; 1 ogY; and

82 a n n n
92 (@) = 54 (anw—;bgn) -t <o
for all a > 0, from which we can conclude that £y () is strictly concave in a. Thus, aMME

can be found by setting the first derivative of fy(«) equal to 0. We get
1 B
AMLE—i—nlog@ ZlogY =0 = aMLE — (nZIOgY;—log9> .
i=1 =

(b) Let a denote the unbiased version of the MLE for the storm and flood data given in Table 1
of the exercise sheet. Since we observed 15 storm and flood events, we have n = 15. Thus, &
can be calculated as

-1
- n—1 14
a = < ZlogY log9> = (15 ZlogY log50> ~ 0.98,

where for Y7, ..., Y15 we plugged in the observed claim sizes given in Table 1 of the exercise
sheet. Note that with @ = 0.98 < 1 the expectation of the claim sizes does not exist.
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(¢c) We define Ny, ..., Nog to be the numbers of yearly storm and flood events for the twenty
years 1986 — 2005. By assumption, Ny, ..., Ny are i.i.d. Poisson distributed with frequency
parameter A. Using Estimator 2.32 of the lecture notes (version of March 20, 2019) with

Ul:.-.:U20:1,theMLEXof/\isgivenby

20 20

< 1 1
A= o DN = > N
Y1 20

i=1"+ =1 i=1
Since we observed 15 storm and flood events in total, we get

~ 15
A= — = 0.75.
20

(d) Using Proposition 2.11 of the lecture notes (version of March 20, 2019), the expected yearly
claim amount E[S] of storm and flood events with maximal claims cover M is given by

E[S] = AE[min{Y;, M}].
The expected value of min{Y7, M} can be calculated as

E[min{Yy, M}] = E[min{Y1, M }1(y, <y + Emin{Y1, M}1y, 500
= E[Y1liyv,<amy] + E[M 1y, 50
= E[Y11{y,<my] + MP[Y; > M],

where for E[Y11¢y,<py] and MP[Y; > M] we have

M
o a fx\~(atl) 1
E[Yl]-{YlgM}] = /9 .’El{ISM}f((E) dr = /9 1’5 (5) dx = af® |:1
[0}

« « M\ o
aMl—a_ - o _
- = 2o ()

11—« -« 0 11—«

w5 (7))
MP[Y; > M] = M(1—P[Y; < M]) = M (1 [1 (J\:)QD =0 <Aj)1a.

Hence, we get
M l-«a 1 M l-«a o
0 — =0— | — -0 .
* (9) 1—a<9) l-«a

Replacing the unknown parameters by their estimates, we get for the estimated expected
total yearly claim amount E[S]:

1—& ~ B 1—-0.98 .
IE[S]X[G (M> - 9'0‘] %0.75[ 5 <2000> o0 0'98] ~ 180.4.

and

E[min{Y;, M}] = 9% [(‘Aj)m 1

1-a\éo 1-a 50 1-0.98

(e) According to our compound Poisson model, next year’s total yearly claim amount S ~
CompPoi(\, G) of storm and flood events with claim amounts exceeding CHF 50 million can
be written as
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where N ~ Poi()\), Y1,Ys, ... are i.i.d. with distribution function G, and N and Y3,Y5,...
are independent. Since we are only interested in events that exceed the level of CHF M = 2
billion, we define Sy, as

N
Sy = Zm{YpM}.

i=1
Due to Theorem 2.14 of the lecture notes (version of March 20, 2019), we have Sy ~
CompPoi(Apr, Gar) for some distribution function Gj; and

Aar = AP[V: > M] = A(1—P[Y; < M]) = A <1_ [1_ (]9\4)_&]) - A(]\;>_a.

Defining a random variable Nj; ~ Poi(Ays), the probability that we observe at least one
storm and flood event next year which exceeds the level of CHF M = 2 billion is given by

M

PNy > 1] = 1-P[Ny = 0] = 1 —exp{-Ay} = 1_exp{_A (0>a}‘

If we replace the unknown parameters by their estimates, this probability can be estimated by

N (M —& 2°000 —0.98

Note that, in particular, such a storm and flood event that exceeds the level of CHF 2 billion
is expected roughly every 1/0.02 = 50 years.

Solution 5.2 Claim Size Distributions

The R code used to generate the four i.i.d. samples is given in Listing 1.

Listing 1: R code for Exercise 5.2 (Data generation).

### Size of the i.i.d. samples
n <- 10000

### Generate the gamma i.i.d. sample

gamma <- 1/4

c <- 1/40000

set.seed (100)

gamma.sample <- rgamma(n=n, shape=gamma, rate=c)

### Generate the Weibull i.i.d. sample

tau <- 0.54

c <- 0.000175

set.seed (200)

weibull.sample <- rgamma(n=n, shape=1, rate=1)"(1/tau)/c

### Generate the log-normal i.i.d. sample

mu <- log (2000%sqrt (5))

sigma.squared <- log(5)

set.seed (300)

lognormal.sample <- exp(rnorm(n=n, mean=mu, sd=sqrt(sigma.squared)))

### Generate the Pareto i.i.d. sample

theta <- 10000*(sqrt (5)/(2+sqrt(5)))

alpha <- 1+sqrt(5)/2

set.seed (400)

pareto.sample <- theta*exp(rgamma(n=n, shape=1, rate=alpha))

In Figure 1 (generated by the R code given in Listing 2) we show the densities (left) of the generated
i.i.d. samples as well as the corresponding box plots (right), both on a log scale. We only display
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logarithmic values starting from 0. We see for example that we have a lot of very small values in
case of the gamma distribution and the Weibull distribution. The smallest values observed are
considerably bigger for the log-normal and especially the Pareto distribution. Moreover, the value of
the biggest value observed increases in going from the gamma over the Weibull and the log-normal
to the Pareto distribution. We cannot say much about the tails from looking at these two plots.

Densities Box plot

Gamma
7 — weibul 4 — e i
—— Log-normal
Pareto

15
14
|

12

10

Density
1.0
|
Sampled values (log scale)
8
|

© 7 :
0 ; :
oS Al ; T
! ' o
____ 1
g - p—- NI |
© I I I I I I I I [ | I
0 2 4 6 8 10 12 14 Gamma  Weibull Log-normal Pareto
Sampled values (log scale) Distribution

Figure 1: Plot of the densities of the four i.i.d. samples (left). Box plots of the four i.i.d. samples
(right).

Listing 2: R code for Exercise 5.2 (Figure 1).

### Densities

ymax <- max(density(log(gamma.sample))$y, density(log(weibull.sample))$y,
density(log(lognormal.sample))$y, density(log(pareto.sample))$y)

ymax2 <- max(log(gamma.sample),log(weibull.sample),log(lognormal.sample),log(pareto.sample))

plot (density(log(gamma.sample)), xlim=c(0,ymax2), col="grey", ylim=c(0,ymax), main="Densities",
xlab="Sampled values (log scale)", cex.lab=1.25, cex.main=1.25, cex.axis=1.25,

lwd=2)

lines(density(log(weibull.sample)), col="red", xlim=c(0,ymax2), lwd=2)

lines (density(log(lognormal.sample)), col="blue", xlim=c(0,ymax2), lwd=2)

lines (density(log(pareto.sample)), col="green", xlim=c(0,ymax2), lwd=2)

legend ("topleft", 1lty=1, 1lwd=2, col=c("grey","red","blue","green"),

legend=c("Gamma","Weibull","Log-normal","Pareto"))

### Box plots

boxplot (log(gamma.sample), log(weibull.sample), log(lognormal.sample), log(pareto.sample),
ylim=c (0, ymax2), col=c("grey","red","blue","green"), main="Box plot",
names=c ("Gamma","Weibull","Log-normal","Pareto"), xlab="Distribution",
ylab="Sampled values (log scale)", cex.lab=1.25, cex.main=1.25, cex.axis=0.95)

In Figure 2 (generated by the R code given in Listing 3) we show the plots of the empirical
distribution functions (left, on a log scale) and of the empirical loss size index functions (right) of
the generated i.i.d. samples. For the plot of the empirical distribution functions we only display
logarithmic values starting from 0. We observe that the empirical distribution functions almost
perfectly intersect at the point with z-coordinate equal to log(10°000)=z 9.21. This means that for
all of the four considered distributions approximately the same percentage of observations is smaller
than the expected value. This percentage is roughly equal to 75%, indicating that three quarters of
the observations are smaller than the expected value and one quarter of the observations are above
the expected value. Thus, not surprisingly, the large claims are the main driver of the expected
value. We get confirmed the observations from Figure 1, namely that the smallest values observed
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are considerably bigger for the log-normal and especially the Pareto distribution, compared to the
gamma and the Weibull distribution. This carries over to the plot of the empirical loss size index
function. Also these two plots do not tell us much about the tails of the distributions.

Empirical distribution function Empirical loss size index function

o c ©
- Gamma o Gamma
2 —  Weibull = —  Weibull
S ® | — oo S oo | — _
c T g—-normal > - Log—normal
5 o = o
= Pareto 5 Pareto
[
S o | 2 o |
5 o S, O
3 N
= n
NZE n 3
T O n O
T 2
ESEN T N
3 o 2 o
(S a
Yoo | E o

© I I I I I I I I © I I I I I I

0O 2 4 6 8 10 12 14 0.0 0.2 0.4 0.6 0.8 1.0
Sampled values (log scale) Number of claims (in 100%)

Figure 2: Plot of the empirical distribution functions of the four i.i.d. samples (left). Plot of the
empirical loss size index functions of the four i.i.d. samples (right).

Listing 3: R code for Exercise 5.2 (Figure 2).

### Empirical distribution functions
plot (log(gamma.sample [order (gamma.sample)]), 1:n/(n+1), xlim=c(0,ymax2), type="1", col="grey",
main="Empirical distribution function", xlab="Sampled values (log scale)",
ylab="Empirical distribution function", cex.lab=1.25, cex.main=1.25, cex.axis=1.25, lwd=2)
lines (log(weibull.sample [order (weibull.sample)]), 1:n/(n+1), xlim=c(0,ymax2), col="red", lwd=2)
lines (log(lognormal.sample [order (lognormal.sample)]), 1:n/(n+1), xlim=c(0,ymax2), col="blue",
lwd=2)
lines (log(pareto.sample [order (pareto.sample)]), 1:n/(n+1), xlim=c(0,ymax2), col="green", lwd=2)
legend ("topleft", 1lty=1, 1lwd=2, col=c("grey","red","blue","green"),
legend=c("Gamma","Weibull","Log-normal","Pareto"))

### Empirical loss size index functions

plot(1:n/n, cumsum(gamma.sample[order (gamma.sample)])/sum(gamma.sample), type="1", col="grey",
main="Empirical loss size index function", xlab="Number of claims (in 100%)",
ylab="Empirical loss size index function", cex.lab=1.25, cex.main=1.25, cex.axis=1.25,
lwd=2)

lines(1:n/n, cumsum(weibull.sample[order (weibull.sample)])/sum(weibull.sample), type="1",
col="red", 1lwd=2)

lines(1:n/n, cumsum(lognormal.sample[order(lognormal.sample)])/sum(lognormal.sample), type="1",
col="blue", lwd=2)

lines(1:n/n, cumsum(pareto.sample[order (pareto.sample)])/sum(pareto.sample), type="1",
col="green", lwd=2)

legend ("topleft", 1lty=1, lwd=2, col=c("grey","red","blue","green"),
legend=c("Gamma","Weibull","Log-normal","Pareto"))

In Figure 3 (generated by the R code given in Listing 4) we show the log-log plots (left) and the plot
of the empirical mean excess functions (right) of the generated i.i.d. samples. These two plots can
be used for studying the tails of the distributions. We see in both plots that the gamma distribution
is the most light-tailed distribution. The Weibull distribution and the log-normal distribution have
a similar tail behaviour, with slightly heavier tails of the log-normal distribution. Note that this
similar tail behaviour is due to the value of the parameter 7 of the Weibull distribution being smaller
than 1. With a value 7 > 1 the distribution gets (even) more light-tailed. The most heavy-tailed
distribution among the four distributions we analyzed here is the Pareto distribution.
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Listing 4: R code for Exercise 5.2 (Figure 3).

### Log-log plots
plot (log(gamma.sample [order (gamma.sample)]), log(i-1:n/(n+1)), xlim=c(0,ymax2), type="1",
col="grey", main="Log-log plot", xlab="log(sampled values)",
ylab="log(l-empirical distribution function)", cex.lab=1.25, cex.main=1.25, cex.axis=1.25,
lwd=2)
lines (log(weibull.sample [order (weibull.sample)]), log(l-1:n/(n+1)), xlim=c(0,ymax2), type="1",
col="red", 1lwd=2)
lines(log(lognormal.sample [order (lognormal.sample)]), log(l-1:n/(n+1)), xlim=c(0,ymax2),
type="1", col="blue", lwd=2)
lines(log(pareto.sample[order(pareto.sample)]), log(i-1:n/(n+1)), xlim=c(0,ymax2), type="1",
col="green", lwd=2)
legend ("bottomleft", 1lty=1, lwd=2, col=c("grey","red","blue","green"),
legend=c("Gamma","Weibull","Log-normal","Pareto"))

### Empirical mean excess functions
mean.excess.function <- Vectorize(function(threshold, input.sample){
mean (input.sample [input.sample>threshold])-threshold
},"threshold")
xmax <- pareto.sample[order(pareto.sample)][n-1]
ymax3 <- max(pareto.sample)-xmax
plot (gamma.sample [order (gamma.sample)][-n],
mean.excess.function(gamma.sample [order (gamma.sample)] [-n], gamma.sample), pch=16,
col="grey", xlim=c(0,xmax), ylim=c(0,ymax3), main="Empirical mean excess function",
xlab="Threshold", ylab="Mean excess function", cex.lab=1.25, cex.main=1.25, cex.axis=1.25)
points (weibull.sample [order (weibull.sample)][-n],
mean.excess.function(weibull.sample[order (weibull.sample)][-n],weibull.sample), pch=16,
col="red", ylim=c(0,ymax3))
points(lognormal.sample [order (lognormal.sample)][-nl,
mean.excess.function(lognormal.sample[order (lognormal.sample)][-n],lognormal.sample),
pch=16, col="blue", ylim=c(0,ymax3))
points (pareto.sample [order (pareto.sample)][-n],
mean.excess.function(pareto.sample [order (pareto.sample)][-n],pareto.sample),pch=16,
col="green", ylim=c(0,ymax3))
legend ("topleft", pch=16, col=c("grey","red","blue","green"),
legend=c("Gamma","Weibull","Log-normal","Pareto"))

Log-log plot Empirical mean excess function
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Figure 3: Log-log plots of the four i.i.d. samples (left). Plot of the empirical mean excess functions
of the four i.i.d. samples (right).

Summarizing, we can say that although we fixed the mean and the standard deviation to be the
same, all of the four considered distributions behave differently. This implies that one has to
carefully select the appropriate claim size distribution.
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Solution 5.3 Hill Estimator

The Hill plot (on the left, generated by the R code of Listing 5) and the log-log plot (on the right,
generated by the R code of Listing 6) are given in Figure 4. Even though we sampled from a Pareto
distribution with tail index o = 2, it is not at all clear to see that the data comes from a Pareto
distribution. In the Hill plot we see that, first, the estimates of a seem more or less correct, but
starting from the 180 largest observations, the plot suggests a higher « or even another distribution.
In the log-log plot we see that for small-sized and medium-sized claims the fit seems to be fine. But
looking at the largest claims, we would conclude that our data is not as heavy-tailed as a true Pareto
distribution with threshold 8 = 10 and tail index a = 2 would suggest. We observe these problems
even though we sampled directly from a Pareto distribution. This indicates the difficulties one faces
when trying to fit such a distribution to a real data set, where we often have less observations than
in this example and the observations may be contaminated by other distributions.

Listing 5: R code for Exercise 5.3 (Hill plot).

hill.plot.function <- function(n, theta, alpha, seedl){
set.seed(seedl)
data.1l <- rgamma(n, shape=1, scale=1/alpha)
data <- theta * exp(data.1)
log.data.ordered <- log(datal[order(data, decreasing=FALSE)])
n.obs <- n:5
hill.estimator <- ((sum(log.data.ordered)-cumsum(log.data.ordered)
+log.data.ordered) [-((n-3):n)]/n.obs-log.data.ordered [-((n-3):n)]1)"(-1)
upper .bound <- hill.estimator+sqrt(n.obs”~2/((n.obs-1)"2*(n.obs-2))*hill.estimator"~2)
lower .bound <- hill.estimator-sqrt(n.obs”2/((n.obs-1)"2*(n.obs-2))*hill.estimator~2)
plot(hill.estimator, ylim=c(min(hill.estimator)-1,max(hill.estimator)+1), xaxt="n",
xlab="Number of observations", ylab="Pareto tail index parameter",
main="Hill plot for alpha", cex=0.5, cex.lab=1.25, cex.main=1.25, cex.axis=1.25)
axis (1, at=c(1,seq(from=n/10+1, to=n*9/10+1, by=n/10), n-5), c(seq(from=n, to=n/10,
by=-n/10), 5))
lines (upper.bound)
lines (lower.bound)
abline (h=alpha, col="blue", lwd=2)
legend ("topleft", col=c("blue","black"), 1lty=c(1,NA), pch=c(NA,1), lwd=c(2,NA),
legend=c("true tail index","estimated tail index"))

hill.plot.function(n=300,theta=10,alpha=2,seed1=100)

Hill plot for alpha Log-log plot
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Figure 4: Hill plot for determining the tail index « (left). Log-log plot for the observations and the
Pareto distribution (right).
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Listing 6: R code for Exercise 5.3 (Log-log plot).

log.log.plot.function <- function(n, theta, alpha, seedl){

set.seed(seedl)

data.l <- rgamma(n, shape=1, scale=1/alpha)

data <- theta*exp(data.l)

data.ordered <- datalorder(data, decreasing=FALSE)]

log.data.ordered <- log(data.ordered)

true.sf <- (data.ordered/theta)”(-alpha)

empirical.sf <- 1-(1:n)/(n+1)

plot (log.data.ordered, log(true.sf), xlab="log(claim size)",
ylab="log(1 - distribution function)",
ylim=c(min(log(true.sf),log(empirical.sf)) ,max(log(true.sf),log(empirical.sf))),
main="Log-log plot", cex.lab=1.25, cex.main=1.25, cex.axis=1.25, cex=0.5, col="blue")

lines (log.data.ordered,log(true.sf), col="blue")

points(log.data.ordered, log(empirical.sf), col="black", cex=0.5)

legend ("bottomleft", col=c("blue","black"), 1lty=c(1,NA), pch=c(1,1),

legend=c ("Pareto distribution","observations"))

}

log.log.plot.function(n=300,theta=10,alpha=2,seed1=100)

Solution 5.4 Pareto Distribution

The density g and the distribution function G of Y ~ Pareto(d, ) are defined by

o= S o= (5

respectively, for all x > 6.

(a) The survival function G = 1 — G of Y is given by

— €T —
G) =1-G@) = ()
for all x > 6. Hence, for all ¢ > 0 we have

lim L(xt) = lim 7(“/9)_ =t~

r—00 G(.Z‘) T—00 (x/@)*a

Thus, by definition, the survival function of Y is regularly varying at infinity with tail index
a.

(b) Let 8 < uy < ug. Then, the expected value of Y within the layer (u1,us] can be calculated as
[eS) U2y sy —(atl)
E[YI{U1<Y§u2}] = /9 zl{u1<wSu2}g(I) dr = / ;Eg (5) dx

— of L g (2)" aa.

In the case a # 1, we get

E[Y 1y, <y<u,}] = af {_ail (fg)—aﬂ] _ gai 1 {(uel)—aﬂ B (U;)—a+1:| ,

and if @ = 1, we get

Uo 1 Us
]E[Yl{u1<Y§u2}] = 9/ —dzr = Olog () .
Ul z

U1
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(¢) Let a > 1 and y > 0. Then, the expected value uy of Y is given by

(%

=0
Hy a—1

and, similarly as in part (b), we get

EYly<y] = EY 1ggay<yy] = 0 “ [(Z) - - (Z)Ml} = uy [1 - (g)aﬂ} .

a—1
Hence, for the loss size index function for level y > 6 we have

76) = BVl = 1= (5) 7 € 0

(d) Let @ > 1 and w > 6. The mean excess function of ¥ above u can be calculated as

EVlgysay) 0 EYlgysyy]

() = EIY —ulY > = BY|Y >u] —u = o208 —u = =i~

where for E[Y 14y~,}] we have, similarly as in part (b),

EYlysuyl = EY ljucy<ocy] = af {1 (w)_MTO - (g)‘““

a—1\4 a—1 \4
o —
= G(u).
UG
Thus, we get
(u) o 1
e(u) = u—u = u.
a—1 a—1
Note that the mean excess function v — e(u) has slope ﬁ > 0.
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Solution 6.1 Goodness-of-Fit Test

(a) Let Y be a random variable following a Pareto distribution with threshold § = 200 and tail
index o« = 1.25. Then, the distribution function G of Y is given by

1 (5) "1 ()

for all x > 6. For example for the interval Is we then have
PlY € I,] = P[239 <Y < 301] = G(301) — G(239) = 0.2.
By analogous calculations for the other four intervals, we get
PYel )] =PYelh) =PYelz] =PY el =PYel;] = 0.2

Let Oy, denote the actual number of observations and Ej the expected number of observations
in interval Iy, for all k£ € {1,...,5}. The test statistic

5
(O — Ep)?
X72“5 = Z E
k=1 k

of the y2-goodness-of-fit test using K = 5 intervals and n observations converges to a y?-
distribution with K —1 = 5 — 1 = 4 degrees of freedom, as n — co. As we have n = 20
observations in our data, we can calculate E}, as

E, =20-PlY €] = 20-0.2 ~ 4,

for all k =1,...,5. The values of the actual numbers of observations Oy and the expected
numbers of observations E}, in the five intervals k = 1,...,5 as well as their squared differences
(Or, — Ey)? are summarized in Table 1.

k 1 2 3 4 5

Oy, 4 0 8 6 2

Ey, 4 4 4 4 4
(Or—Ex)?2 |0 16 16 4 4

Table 1: Actual and expected numbers of observations with squared differences.

With the numbers in Table 1, the test statistic of the y2-goodness-of-fit test using 5 intervals
in the case of our n = 20 observations is given by

5
On—Ep)? 0 16 16 4 4

x2S O = B)7 0 16 16 4 4,
20,5 kz_l Ej, iTT T

Let a = 5%. Then, the (1 — a)-quantile of the y?-distribution with 4 degrees of freedom is

given by approximately 9.49. Since this is smaller than X 2207 5, we can reject the null hypothesis

of having a Pareto distribution with threshold 8 = 200 and tail index o = 1.25 as claim size

distribution at significance level of 5%.
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(b) We assume that we have n i.i.d. observations Y7, ...,Y, from the null hypothesis distribution
and that we work with K = 2 disjoint intervals I; and Is. We define

p = ]P)[Yl S Il]
and
Xi = Lvienys

for all ¢ = 1,...,n. This implies that X1,..., X, L Bernoulli(p). Thus, we have

P EEX]=p and o E /Var(Xy) = Vo1 - p).

Moreover, we can write

01:2Xi and ngnfOlzn—ZXi
=1 1=1
as well as

n

n—ZXZ-] =n—np = n(l—p).

E, = ElZXi] =np and E,=E
i=1 =1

Therefore, we get

2
X2, =% (Or — Ex)* _ (01 —np)?® n [n =01 —n(1 - p))?
c e B np n(1—p)

= (01— |+ | = (O

Let Z ~ N(0,1) and x? follow a y?-square distribution with one degree of freedom. According
to the central limit theorem, see equation (1.2) of the lecture notes (version of March 20,

2019), we have
D Xi —np

Vno
(d

As 22 @ X3, see Exercise 1.4, we can conclude that

np(l —p)

= Z, asn— .

d
XZ’Z — 72 @ X3, asmn — oo.

Solution 6.2 Log-Normal Distribution and Deductible

(a) Let X ~ N (p,0?). Then, the moment generating function Mx of X is given by

Mx(r) = Efesp{rX}] = exp {ru+ o b

for all » € R, see Exercise 1.3. Since Y7 has a log-normal distribution with mean parameter p
and variance parameter o2, we have

Y, @ exp{X}.
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Hence, the expectation, the variance and the coefficient of variation of Y7 can be calculated as

EM] = E[exp{X}] = E[exp{1-X}] = Mx(1) = exp {u+ ”2}

Var(¥i) = E[Y7] — EW]° = E[exp{2X}] - Mx (1) = Mx(2) - Mx(1)®

402 o? 9 9
exp 2,u+7 — exp 2u+27 = eXp{Qquo }(exp{a }71) and

Veo(¥7) Var(Y1)  exp{u+0°/2} \/exp{o?} —1 _ Jep (o — 1.

E[Y3] exp{p+0?%/2}

(b) From part (a) we know that

o = /log[Vco(Y1)2 + 1] and

0.2

p = logE[Yq] — =

Since E[Y;] = 3’000 and Veo(Y7) = 4, we get

o = 4/log(42 +1) = 1.68 and
1.68)
1~ log 3’000 — ( 3 ) ~ 6.59.

(i) The claim frequency A is given by A = E[N]/v. With the introduction of the deductible
d = 500, the number of claims changes to

N
Noew — Zl{Yl>d}
1=1

Using the independence of N and Y7,Ys, ..., we get

E[N""] = E [Z 1{Yi>d}] = E[N]E[1{y,>0)] = E[N]P[Y; > d].

i=1

Let ® denote the distribution function of a standard Gaussian distribution. Since log Y;
has a Gaussian distribution with mean p and variance o2, we have

logY1 — i < logd—,u] C1-& (logd—,u>

o - o o

PY1 >d =1-P[Y; <d] = 1—]P’{
Hence, the new claim frequency A"V is given by
o

AV — E[N"V] /v = E[N]P[Y; > d]/v = AP[Y; >d] = A {1 .y (k’gd_”ﬂ .

Inserting the values of d, u and o, we get

log 500 — 6.59
HEW: ~ 1-( =——— ~ 0.59 - \.
o a oo (B0 gy

Note that the introduction of this deductible reduces the administrative burden a lot,
because we expect that 41% of the claims disappear.
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(if) With the introduction of the deductible d = 500, the claim sizes change to
YO = Y, —d|Y; > d.
Thus, the new expected claim size is given by
E[YP*] = By, — d)Y; > d] = e(d),

where e(d) is the mean excess function of Y7 above d. According to page 67 of the lecture
notes (version of March 20, 2019), e(d) is given by

1-® (logdfufo'g)
1-® (logdf,u)

Inserting the values of d, u, o and E[Y7], we get

e(d) = E[¥] —d

log 500—6.59—1.68°
1.68

1-®
E[Y] ~ 3°000 ( ) — 500 ~ 4456 ~ 1.49-E[Y].

_ log 500—6.59
1 o ( 1.68 )

(iii) According to Proposition 2.2 of the lecture notes (version of March 20, 2019), the
expected total claim amount E[S] is given by

E[S] = E[N]E[Y3].
With the introduction of the deductible d = 500, the total claim amount S changes to
S"eW which can be written as

Nmew

gnew Z Y—Z_new'

i=1
Hence, the expected total claim amount changes to
E[S™V] = E[N"VIE[Y*Y] = E[N]P[Y; > dle(d) ~ 0.59-E[N]-1.49 - E[Y]]
~ 0.87-E[5].
In particular, the insurance company can grant a discount of roughly 13% on the pure

risk premium. Note that also the administrative expenses on claims handling will reduce
substantially because we only have 59% of the original claims, see the result in (i).

Solution 6.3 Kolmogorov-Smirnov Test

The distribution function Gy of a Weibull distribution with shape parameter 7 = % and scale
parameter ¢ = 1 is given by

Gulo) = 1 - exp { 7).

for all y > 0. Since G is continuous, we are indeed allowed to apply a Kolmogorov-Smirnov test.
If z = (—logu)? for some u € (0, 1), we have

Go(z) = 1—exp{— [(—logu)ﬂl/z} =1—exp{logu} = 1—u.

Hence, if we evaluate G at our data points z1,..., x5, we get
3 6 30
Go(z1) = 10 Go(r2) = 10 Go(z3) = 10’ Go(za) = 10 Go(zs) = 0
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We write én for the empirical distribution function of a sample with n data points. The Kolmogorov-
Smirnov test statistic D,, is then defined as

~

D, = sup |G (y) — Go(y)|,
yeR

and /nD,, converges to the Kolmogorov distribution K, as n — oo. The empirical distribution
function G5 of the sample x1,..., x5 is given by

0 ify <y,

1/5  ifxy <y < o,
P~ B 2/5 ifx2§y<x3,
Gs(y) = 3/6 ifxz <y <y,

4/5 ifzy <y < zs,
1 ify > xs.

Since Gy is continuous and strictly increasing with range [0,1) and @5 is piecewise constant and
attains both the values 0 and 1, it is sufficient to consider the discontinuities of G5 to determine
the Kolmogorov-Smirnov test statistic Ds for our n = 5 data points. We define

Jls=) = lmf(r),

for all s € R, where the function f stands for Go and (/55. Since Gy is continuous, we have
Go(s—) = Gy(s) for all s € R. The values of Gy and G5 and their differences (in absolute value)
are summarized in Table 2.

Ly Lj— €T1— Ea! T2— €2 r3— €3 Ty— Ty xT5— T5
G5(-) 0 8/40 8/40 16/40 16/40 24/40 24/40 32/40 32/40 1
Go(") 2/40 2/40 3/40 3/40 5/40 5/40 6/40  6/40 30/40 30/40

|G5(-)—G0(-)| 2/40 6/40 5/40 13/40 11/40 19/40 18/40 26/40 2/40 10/40

Table 2: Values of Gy and G5 and their differences (in absolute value).

From Table 2 we see for the Kolmogorov-Smirnov test statistic D5 that

Ds = sup |Gs(y) — Go(y)| = 26/40 = 0.65.
yeR

Let ¢ = 5%. By writing K (1 — ¢) for the (1 — ¢)-quantile of the Kolmogorov distribution, we
have K (1 — q) = 1.36, see page 81 of the lecture notes (version of March 20, 2019). Since

K<(1 -
K70 -9) L 061 < 065 = Ds,
V5
we can reject the null hypothesis (at significance level of 5%) that the data x1,...,zs comes from a

Weibull distribution with shape parameter 7 = % and scale parameter ¢ = 1.

Solution 6.4 Akaike Information Criterion and Bayesian Information Criterion

(a) By definition, the MLEs (ﬁMLE,EMLE) maximize the log-likelihood function ¢y . In particular,
we have
by (BB EMEE) >ty (v,0),

for all (v,¢) € Ry x Ry.
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If we write d™™ and d™MTF for the number of estimated parameters in the method of moments
model and in the MLE model, respectively, we have dMM = ¢MLE — 2 The AIC value AICMM
of the method of moments model and the AIC value AICMY of the MLE model are then
given by

AICMM = —20y (MM EMM) 4 2¢MM = —2.1264.013 +2-2 = —2'524.026 and
AICMEE = oy (RMEE GMLE) 4 ogMLE — _2.17264.171 + 22 = —2'524.342.

According to the AIC, the model with the smallest AIC value should be preferred. Since
AICMM > ATCMEE | we choose the MLE fit.

If we write d%*™ and d®*P for the number of estimated parameters in the gamma model and in
the exponential model, respectively, we have d®*™ = 2 and d**P = 1. The AIC value AIC®*™
of the gamma model and the AIC value AIC®® of the exponential model are then given by

AICE™ = —208™ (FMEE GMEE) 4 ogeem — —2.1264.171 +2-2 = —2'524.342 and
AICTP = 209 (BMF) + 24P = —2.1'264.169 +2- 1 = —2'526.338.

Since AIC®™ > AIC**P we choose the exponential model.
The BIC value BIC®™ of the gamma model and the BIC value BIC**® of the exponential
model are given by
BICE™™ = —208™ (FMEE GMEE) 4 g8 . logn = —2-17264.171 + 2 -1og 1’000 ~ —2'514.53
and

BIC™® = —209® (M) 4+ d™P - logn = —2-1'264.169 + log 1000 ~ —2'521.43.
According to the BIC, the model with the smallest BIC value should be preferred. Since

BIC®™ > BIC*P | we choose the exponential model.

Note that the gamma model gives the better in-sample fit than the exponential model. But
if we adjust this in-sample fit by the number of parameters used, we conclude that the
exponential model probably has the better out-of-sample performance (better predictive
power).
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Solution 7.1 Re-Insurance Covers and Leverage Effect

(a) Under the assumption that P[Y" > d] > 0 and that E[Y'|Y > d] exists, we can generally write

E[(Y —d)¢] = E[(Y —d)lyy>qy] = EY Lyysay] — E[dlysay]

- WP[Y >d] —dPlY >d] = PlY > d|(E[Y|Y > d] —d),

see also formula (3.11) of the lecture notes (version of March 20, 2019). Now we explicitly use
that a gamma distribution with shape parameter equal to 1 is an exponential distribution.
The characteristic property of an exponential distribution is the so-called memorylessness

property
PY >t+s]Y >t] = P[Y > g,

for all t,s > 0. In particular, this property leads to (see below for the calculation)
E[Y|Y > d] = E[Y] +d, (1)

which, in turn, implies for our loss Y ~ I'(1, 1) that

E[(Y — d)4] = P[Y > dE[Y].

We check equation (1). Indeed, we have

E[Y1gysal 1 * 1 Yy
E[Y|Y >d = - PR S I U
YIY>d = 557 [Y>d]/ YHv>dy 150 exp { 400} Y

- exp{—}/ P 400}dy
= exp{400}/0 (u er)ﬁexp{ 41(;0}6Xp{4£0} du

< 1 <1 U
- — dutd | —— {——}d
/0 %100 eXp{ 400} ut /O 400 P\ 2000

= E[Y] +d,

where in the fourth equality we used the substitution u =y — d.

(b) By looking at the graphs in Figure 1 on the exercise sheet, we find the following re-insurance
covers:

(i
(ii) min{Y,400},

) (Y —200)4,
i)

(iii) min{Y;200} + (Y —400)..
)

(¢) (i) Using part (a), we get

E[(Y — 200).] = P[Y > 200|E[Y] = exp{—igg}éloo _ \/% ~ 243,
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(ii) First, we write

E[min{Y,400}] = E[min{Y,400}1y<400}] + E[min{Y,400}1{y > 400}]
Y1y <a00y) + E[400 - 1¢y 5400y }]

= E[Y] - E[Y1{y>400y] + E[400 - 11y ~400) }]

= E[Y] - E[(Y — 400)1;y>400}]

— B[Y] B[~ 400).],

Il
=

which holds true as E[Y] exists, see also page 89 the lecture notes (version of March 20,
2019). Using part (a), we then get

E[min{Y, 400}] = E[Y] — P[Y > 400]E[Y] = E[Y](1 — P[Y > 400])

400
400 (1 — exp {—480}) = 400(1 — exp{—1}) ~ 253.

(iii) Using the above calculation in (ii) as well as part (a), we have

E[min{Y, 200} + (Y — 400),] = E[Y] — E[(Y — 200),] + E[(Y — 400).]
= E[Y] — P[Y > 200]E[Y] + P[Y > 400]E[Y]
E[Y]

[Y](1 = P[Y > 200] + P[Y > 400])

400 (1 — exp {—;} + exp{—1}>

~ 305.

(d) As Yy ~ I'(1, 1#5), formula (3.5) of the lecture notes (version of March 20, 2019) implies

—
=

1
i Yasiyy~r(1,— ).
1= (1+49Yo (’400(1+i)>

Using part (a), we get

E[(Y; — d),] = P[Y; > d|E[Yi] = exp {_400(‘11%} 400(1 + 4)

and
E[(Yo — )] = P[Yp > dE[Yp] = exp{—ﬁjo}zm

which leads to

d
_ exp { — -
E[(Y: — d)-] _ { 200(1+ )} _ eXp{4gO <1 1 )} .

(1+9E[(Yo — d)+] exp{—;%} L+

since 7 > 0. We conclude that

E[(Yi —d)4] > (1+0)E[(Yo — d)].
The reason for this (strict) inequality, which is called leverage effect, is that not only the

claim sizes are growing under inflation, but also the number of claims that exceed threshold d
increases under inflation, as we do not adapt threshold d to inflation.
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Solution 7.2 Inflation and Deductible

Let Y be a random variable following a Pareto distribution with threshold # > 0 and tail index
«a > 1. Since the insurance company only has to pay the part that exceeds the deductible 6, this
year’s average claim payment z is

«a 1

c=E[(Y -0),] =ElY]-0= —0-0=—0.

For the total claim size Y of a claim next year we have

y @ (14+ 7)Y ~ Pareto([1 + r]d, a).
Thus, the mean excess function ez (u) of Y above u > (14 r)0 is given by
1

ey (u) = L

see also Exercise 5.4. Let pf for some p > 0 denote the increase of the deductible that is needed
such that the average claim payment remains unchanged. With the new deductible (1 + p)6, next
year’s average claim payment is given by

F=E {(f/—[l—l—p}@) ] .
+
The goal is to find p > 0 such that z = Z. Assuming p < r, we have

F=E {(17— [1+p}9)+] >E [(f/— [1+r]9)

= (1+7’)E[(Y79)+] =(14+r)z> z

J =E[([1+7]Y —[147]0),]

i.e. for p < r it is not possible to get z = z. Hence, we can deduce that p > r, i.e. the percentage
increase in the deductible has to be bigger than the inflation. Assuming p > r, we can calculate

F=F [(ff 1 +p]9) .1{9,(1+p>e>o}} =E [ff —a +p)6” Y>(@ +p)9} P [17 > (1+p)f

el -2 [7 > 0] = o [G22]
- ﬁou +1) 1+ p) 7 = 2 (L) (14 p) T
We have

2=z = (1+r)*1+p) ot =1 = p=(1+7r)aT-1>r

We conclude that if we want the average claim payment to remain unchanged, we have to increase
the deductible 6 by the amount

Solution 7.3 Normal Approximation

AsY ~T(y=100,c = {5), we have

0 100
E = - = — = 1’
Y] = - 1710 000 and
y(vy+1)  100-101
E[Y?] = = = 1°010°000.
Y] 2 1/100 0107000
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For the total claim amount S we can use Proposition 2.11 of the lecture notes (version of March 20,
2019) to get

E[S] = AE[Y] = 1°000 - 1°000 = 1°000°000 and
Var(S) = AE[Y?] = 1°000 - 1'010°000 = 1'010°000°000.

Let Fs denote the distribution function of S. Then, since Fy is continuous and strictly increasing
(above the level exp{—Xv} = P[S = 0]), the quantiles ¢g.95 and gg.g9 can be calculated as

qo.95 — F§1(095) and qo.99 — F§1(099)
According to Section 4.1.1 of the lecture notes (version of March 20, 2019), the normal approximation
is given by
— WE[Y
Fo(a) ~ @ [ ZZAVEMT)
ME[Y?]

for all x € R, where ® is the standard Gaussian distribution function. For all o € (0,1) we then
have

Fi'(a) = WE[Y] + AE[Y2] - & (a) = 1°000 - 1000 + v/1°000 - 1°010°000 - &~ (av)
~ 1°000°000 + 31°'780.5 - @~ ! (a).

In particular, we get

q0.95 = F51(0.95) =~ 1°000°000 + 31°780.5 - ®~1(0.95) = 1°000°000 + 31°780.5 - 1.645 = 17052274
and

qo.99 = FS_1(0.99) ~ 1°000°000 + 31°780.5 - &~ *(0.99) ~ 1°000°000 + 31°780.5 - 2.326 ~ 1°073’932.

Note that the normal approximation also allows for negative claims S, which under our model
assumptions is excluded. The probability for negative claims S in the normal approximation can
be calculated as

0 — ME[Y] 17000°000 o1
Fs(O) r o ——x | = O ——~—— ) =~ ®(-31.5) = 1.27-10
5(0) < )\UJE[YQ]> ( 31’780.5) (=31.5) )

which of course is positive, but very close to 0.

Solution 7.4 Translated Gamma and Translated Log-Normal Approximation

AsY ~T(y =100, c = {5), we have

ol 100
EY] =< = — =1
¥T=+ 1/10 000,
+1)  100-101
]EY2 — ’7(7 _ = 1°010°
[Y7] = /100 010°000 and
Yy +1)(y+2)  100-101-102
E[Y?] = = = 1°030°200°000.
(V3] 3 177000 030°200°000

Let My denote the moment generating function of Y. According to formula (1.3) of the lecture
notes (version of March 20, 2019), we have

dS

ME(0) =

My (r) L E[Y3].
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For the total claim amount S we can use Proposition 2.11 of the lecture notes (version of March 20,
2019) to get

E[S] = MWE[Y] = 1°000 - 1°000 = 1°000°000,
Var(S) = WE[Y?] = 1°000 - 1°010°000 = 1°010°000°000 and
Mg(r) = exp{A\v[My(r) — 1]},

where Mg denotes the moment generating function of S. In order to get the skewness ¢g of S, we
can use the third equation given in formulas (1.5) of the lecture notes (version of March 20, 2019):

3 3
¢ - Var(S)¥/? = %log Ms(r)| = /\v%[My(r) Sl = M) = ME[YY,
r=0 r=0

from which we can conclude that
)\UE[Y3] E[Y‘?’} 1°030°200°000

— - ~ 0.0321.
(MWE[Y2])3/2 /XE[Y2]3/2  /1°000(1°010°000)3/2

Let Fg denote the distribution function of S. Then, since Fg is continuous and strictly increasing
(above the level exp{—Xv} = P[S = 0]), the quantiles ¢g.95 and gg.g9 can be calculated as

s =

Q95 = Fg'(0.95)  and  goo9 = Fg'(0.99).

(a) According to Section 4.1.2 of the lecture notes (version of March 20, 2019), in the translated
gamma approximation we model S by the random variable

X =k+7

where k € R and Z ~ T'(7,¢). The three parameters k,7 and ¢ can be determined by solving
the equations

E[X] = E[S], Var(X) = Var(S) and Sx = Ss, (2)

where ¢x is the skewness parameter of X. Since Z ~ I'(7,¢), we can use the results given in
Section 3.2.1 of the lecture notes (version of March 20, 2019) to calculate

E[X] = B[k +2] = k+E[Z] = k+2,

Var(X) = Var(k+ Z) = Var(Z) = 612 and
_E[X-EX])’]  E[k+Z-Ek+Z2)’] E[Z-E[Z)’] 2
T T Ve (X2 T T Vark+ 22 Var(2p2 YT 5
Using the equations given in (2), we get
2 4
—= =G = 7= ~ 3883,
\ﬁ S
J_ T S B
= = Var(S) <<= ¢= Var(s) ~ 0.002 and

k+% — E[S] < k=E[] —% ~ —980°392.

If we write Fy for the distribution function of Z ~ I'(¥ ~ 3’883, ¢ = 0.002), we get using the
translated gamma approximation

Fs(z) =P[S<z] ®» PX <z] =Pk+2Z<z] =PZ<z—k] = Fz(xz—k),
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for all z € R. Now, for all « € (0,1), we have
Fgl(a) ~ k+F;' ().

In particular, we get

¢

Q.05 = F3'(0.95) = k+ F;1(0.95) ~ —980°392 + 2'032'955 = 1°052'563

and
qo.909 = Fs_1(0.99) . k+FZ_1(0.99) ~ —980’392 + 2’055’074 = 1°074°682.

Note that since k£ < 0, the translated gamma approximation in this example also allows
for negative claims S, which under our model assumptions is excluded. The probability for
negative claims S can be calculated as

Fs(0) =~ Fz(0— k) ~ Fz(980'392) ~ 4.87-1073%,
which is basically 0.

(b) According to Section 4.1.2 of the lecture notes (version of March 20, 2019), in the translated
log-normal approximation we model S by the random variable

X =k+2,

where k € R and Z ~ LN(u,0?). Similarly as in part (b), the three parameters k, 4 and o?
can be determined by solving the equations

E[X] = E[9], Var(X) = Var(S) and Sx = Ss. (3)

Since Z ~ LN(u, 0%), we can use the results given in Section 3.2.3 of the lecture notes (version
of March 20, 2019) to calculate

EX] = Ek+Z] = k+E[Z] = k+exp{u+0?/2},
Var(X) = Var(k+ Z) = Var(Z) = exp{2u+0°} (exp {0} —1) and
Sx = Sz = (exp {02} + 2) (exp {02} — 1)1/2.

Using the third equation in (3), we get

(exp {02} +2) (exp {02} — 1)"/% = ¢5 = 0.0321 = o7 ~ 0.00011444,
which was found using a root search algorithm. Using the second equation in (3), we get

1

exp {2,u + 02} (exp {02} — 1) =Var(S) < u= 3 (log {(exp {02} — 1)71 Var(S)} — 02) ,

which implies
wo~ 14.90425.

Finally, using the first equation in (3), we get
k+exp{n+o°/2} = E[S] <= k=E[S]—exp{u+0?/2} ~ —1970°704.
If we write Fyy for the distribution function of
W = logZ ~ N(u~ 14.90425, 0% ~ 0.00011444),
we get using the translated log-normal approximation

Fs(z) = P[S<z] » PIX <z] = Plk+ Z <z] = PllogZ <log(x — k)] = Fw(log[z — k),
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for all x > k, and Fs(x) =0 for all < k. For all « € (0,1) we then have
Fi'(a) =~ k+exp {F;'(a)}.
In particular, we get
Q.05 = F5'(0.95) ~ k+exp {Fy;(0.95)} ~ —1'970"704 + 3'023'266 = 1’052'562
and
Qo909 = F5'(0.99) ~ k+exp {Fy;'(0.99)} ~ —1'970'704 + 3°045'387 = 1'074'684.

Note that since k < 0, the translated log-normal approximation in this example also allows
for negative claims .S, which under our model assumptions is excluded. The probability for
negative claims S can be calculated as

Fs(0) = Fy(logl0 — k]) ~ Fy (log1’970’704) ~ 3.22-1073%2,
which is basically 0.

We observe that with all the three approximations applied in Exercise 7.3 and in parts (a)
and (b) above we get almost the same results. In particular, the normal approximation does
not provide estimates that deviate significantly from the ones we get using the translated
gamma and the translated log-normal approximations. This is due to the fact that Av = 1’000
is large enough and the gamma distribution assumed for the claim sizes is not a heavy tailed
distribution. Moreover, the skewness ¢g = 0.0321 of S is rather small, hence the normal
approximation is a valid model in this example. Note that in all the three approximations
we allow for negative claims S, which actually should not be possible under our model
assumptions. However, the probability to observe a negative claim S is vanishingly small in
all the three approximations.
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Solution 8.1 Panjer Algorithm
For the expected yearly claim amount 7wy we have

w0 = E[S] = E[N]E[Yi] = 1-E[k+ 2] = k+E[Z] = k+exp{u+022} ~ 4124,

Let Yf denote the discretized claim sizes using a span of s = 10, where we put all the probability
mass to the upper end of the intervals. Note that k = 10s. If we write g; = P[Y;" = sl] for all [ € N,
then we have

g1 =92 =" =g =0,
since P[Y;" < 10s] = P[k + Z < 10s] = P[Z < 0] = 0. For all I > 11 we get

g = PVt =sl] = P[Y;" = k+s(1—10)] = Plk+s(—11) < ¥; <k + s(I — 10)]
= P[Y; < k+s(l—10)] = P[Y; < k + s(l — 11)] = P[Z < s(I — 10)] - P[Z < s(I — 11))]

o <log[s<z ~10)] - u) e (log[su —11)] - u) |

g g

where @ is the distribution function of the standard Gaussian distribution and where we define
log0 = —oo. From now on we replace the original claim sizes Y; with the discretized claim sizes
Y;T, but, by a slight abuse of notation, we still write S for the yearly claim amount.

Note that N ~ Poi(1) has a Panjer distribution with parameters a = 0 and b = 1, see Corollary 4.8
of the lecture notes (version of March 20, 2019). Applying the Panjer algorithm given in Theorem
4.9 of the lecture notes (version of March 20, 2019), we have for r € Ny

def. _ _ P[N = 0], for r =0,
fr = P[S=sr] = { Sieitafro, forr>o0.

Since the yearly amount that the client has to pay by himself is given by

M
Sins = min{S,d} + min{a - (S —d)y, M} = min{S,d} + a - min {(S —d)y, a} ,

M/a = 7000 and the maximal possible franchise is 2’500, we have to apply the Panjer algorithm
until we reach P[S = 9’500] = fg50. Here we limit ourselves to determine the values of f,..., fi2
to illustrate how the algorithm works. We have

fo=PN=0] =e ! ~037

and
fi=fe="= fin=0,
since g1 = g2 =+ =gi10 =0. For r = 11 and r = 12 we get
SN logs — p log0 — p
o = 3 L= s = o (2252 0 (02| <
o o
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and

12

_ l _ log2s — logs — 1 _7
fr2 =) izt = gi2fo = {‘I’ (a) -9 (0 e~ 2.786-107".

=1

Using the discretized claim sizes, the yearly expected amount 7,5 paid by the customer is given by
: . M
Tins = E[Sins] = E[min{S,d}] + aE |min< (S —d)4+, — |,
o

where we have

d/s d/s d/s

Emin{S,d}] = Y fesr+d (1= f | =d+)_ fr(sr—d)
r=0 r=0 r=0

and
d/s+M/sa d/s+M/sa
M M
]E i — frng . - _
{mln{(S d), o H Z fr(sr—d) + . 1 Z Ir
r=d/s+1 r=0
M d/S+M/s(x d/s
:74’ Z fr<s7'd>2fr
r=d/s+1
Therefore, we get
d/s M d/s+M/sa d/s
71'ins:d+2fr(57"* +a 7+ Z fr<srd>2fr
r=0 r=d/s+1
d/s d/s+M/sa M
:d—&-M—l—ZfT(Sr—d—M)—I— Z afr<sr—d—a>.
r=0 r=d/s+1

Finally, if the customer has chosen franchise d, then the monthly pure risk premium = is given by

o — Tins
T= —"
12
d/s d/s+M/sa
1 2 M
== k+exp{u+a2}dM§ felsr—d=M)— > af, (srd)
(0%
r=0 r=d/s+1

In the end, we get the following monthly pure risk premiums 7 for the different franchises d:

franchise d 300 500 1°000 1’500 2’000 2’500
monthly pure risk premium = | 307 297 274 253 233 216

Table 1: Monthly pure risk premiums 7 for the different franchises d.

More generally, the monthly pure risk premium 7 as a function of the franchise d, which is allowed
to vary between 300 CHF and 2’500 CHF, is given in Figure 1. The R code used to calculate the
values in Table 1 and to generate Figure 1 is given in Listings 1 and 2. Note that these monthly
premiums only represent pure risk premiums. In order to get the premiums that the customer has
to pay in the end, we would need to add an appropriate risk-loading, which may vary between
different health insurance companies.
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Listing 1: R code for Exercise 8.1 (Function to calculate risk premium).

KK_premium <- function(lambda, mu, sigma2, span, shift){
M <- 9500
m <- floor (M/span)
kO <- shift/span
g_min <- array (0, dim=c(m+1,1)) ### mass put to the lower end of the interval
for (k in (k0+1):(m+1)){

g_min[k,1] <- pnorm(log((k-kO)*span), mean=mu, sd=sqrt(sigma2))-pnorm(log((k-kO-1)*span),

mean=mu, sd=sqrt(sigma2))

}

g_max <- array (0, dim=c(m+1,1)) ### mass is put to the upper end of the interval
g_max [2:(m+1) ,1] <- g_min[1:m,1]

f1 <- matrix (0, nrow=m+1, ncol=3) ### probability to get zero claims

f1[1,1] <- exp(-lambda*(l-g_min[1,1]))
£1[1,2] <- exp(-lambdax*(l-g_max[1,1]))

hl <- matrix(0, nrow=m, ncol=3) ### for values "1l*g_{1}" of the discretized claim sizes

for (i in 1:m){
hi[i,1] <- g_min[i+1,1]1*(i+1)
h1[i,2] <- g_max[i+1,1]1*(i+1)
}
for (r in 1:m){ ### Panjer algorithm (a=0 and b=lambda*v, which is just lambda here)
f1[r+1,1] <- lambda/r*(t(f1[1:r,1])%*%h1[r:1,1])
f1lr+1,2] <- lambda/r*(t(£f1[1:r,2]1)%*%h1[r:1,2])
f1[r+1,3] <- rxspan

}

ml <- 2500 ### maximal franchise

m0 <- 300 ### minimal franchise

il <- floor(ml/span+1) ### number of iterations to mil
i0 <- floor(m0O/span+1) ### number of iterations to mO

franchise <- array(NA, c(i1,3))
for (i in i0:i1){
franchise[i,1] <- f1[i,b3] ### this represents the franchise
franchise[i,2] <- sum(f1[1:i,1]1*£f1[1:1,3]1)+£f1[1i,3]1*(1-sum(f1[1:1,1]))
franchise[i,2] <- franchise[i,2]+sum(f1[(i+1):floor(i+7000/span),1]
*f1[2:floor (7000/span+1) ,3]1)%*0.1
+700%(1-sum(f1[1:floor (i+7000/span) ,1]))
franchise[i,3] <- sum(f1[1:i,2]*f1[1:1i,3])+f1[i,3]*(1-sum(f1[1:i,2]))
franchise[i,3] <- franchise[i,3]+sum(f1[(i+1):floor(i+7000/span),2]

*f1[2:floor (7000/span+1) ,3]1)*0.1+700*(1-sum(f1[1:floor (i+7000/span),2]))

¥
price <- array(NA, c(il, 3))
pricel[,1] <- franchisel[,1] ### this represents the franchise

price[,2:3] <- (lambda*(exp(mu+sigma2/2)+shift)-franchise[,2:3])/12
price

Monthly pure risk premium

N

300
!

280
!

Monthly pure risk premium
240 260
| |

220
!

N

\ \ \ \ \
500 1000 1500 2000 2500

Franchise

Figure 1: Plot of the monthly pure risk premium 7 as a function of the franchise d.
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Listing 2: R code for Exercise 8.1 (Risk premium).

require (stats)
require (MASS)

### Run the function KK_premium

lambda <- 1

mu <- 7.8

sigma2 <- 1

span <- 10

shift <- 100

price <- KK_premium(lambda, mu, sigma2, span, shift)

### Plot the monthly pure risk premium as a function of the franchise
plot (x=pricel[,1], y=pricel[,2], 1lwd=2, col="blue", type=’1’, ylab="Monthly pure risk premium",
xlab="Franchise", main="Monthly pure risk premium", cex.lab=1.25, cex.main=1.25,
cex.axis=1.25)
points (x=c (300,500, 1000, 1500, 2000, 2500),
y=price[c (300,500, 1000, 1500, 2000, 2500)/span+1,3], pch=19, col="orange")
lines (x=c(300,300), y=c(0,price[300/span+1,3]),1ty=3, 1lwd=1.5, col="darkgray")
lines (x=c(500,500), y=c(0,price[500/span+1,3]),1ty=3, 1lwd=1.5, col="darkgray")
lines (x=c(1000,1000), y=c(0,price[1000/span+1,3]),1ty=3, lwd=1.5, col="darkgray")
lines (x=c(1500,1500), y=c(0,price[1500/span+1,3]),1ty=3, lwd=1.5, col="darkgray")
lines (x=c(2000,2000), y=c(0,price[2000/span+1,3]),1ty=3, lwd=1.5, col="darkgray")
lines (x=c(2500,2500), y=c(0,price[2500/span+1,3]),1ty=3, lwd=1.5, col="darkgray")

### Give the monthly pure risk premiums for the six franchises listed on the exercise sheet
round (price[floor (c (300, 500, 1000, 1500, 2000, 2500)/span+1),2])
round (price [floor (c (300, 500, 1000, 1500, 2000, 2500)/span+1),3])

Solution 8.2 Monte Carlo Simulations

(a) We assume that for this comparably simple problem with no heavy tails 100°000 Monte Carlo
simulations are enough to provide an empirical distribution function of S which is close to
the true distribution function of S. The R codes used for part (a) are given in Listings 3 - 6.

Listing 3: R code for Exercise 8.2 (a) (Monte Carlo simulations).

compound.poisson.distribution <- Vectorize(function(n, lambdav, shape, rate){
number.of.claims <- rpois(n=n, lambda=lambdav)
sum (rgamma (n=number.of .claims, shape=shape, rate=rate))

},"a")

n <- 100000

lambdav <- 1000

shape <- 100

rate <- 1/10

set.seed (100)

claims <- compound.poisson.distribution(rep(1,n), lambdav, shape, rate)

- Empirical distribution function c Empirical distribution function - Empirical distribution function
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Figure 2: Comparison of the empirical distribution function of S resulting from 100’000 Monte
Carlo simulations to the approximate distribution functions when using the normal (left), the
translated gamma (middle) and the translated log-normal (right) approximation.
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In Figure 2 we compare the empirical distribution function of S resulting from 100’000
Monte Carlo simulations to the approximate distribution functions when using the normal
(left), the translated gamma (middle) and the translated log-normal (right) approximation.
From these plots we cannot spot any differences between the various distribution functions.
In Figure 3 we consider the log-log plot of the 100’000 Monte Carlo simulations of S and
compare it to the normal (left), the translated gamma (middle) and the translated log-normal
(right) approximation. We observe that all three approximations have a rather good fit to
the tail of the distribution of S, but the translated gamma and the translated log-normal
approximation seem slightly more accurate than the normal approximation. We conclude
that in the absence of heavy tailed distributions the translated gamma and the translated
log-normal approximation are very convincing in this example. Moreover, the skewness of .S is
small enough (¢s &~ 0.0321, see Exercise 7.4) and the expected number of claims large enough
(Av = 1°000, see Exercise 7.3) for the normal approximation to be a valid approximation, too.

.5 Log-log plot ,5 Log-log plot _5 Log-log plot

S B S

S o 1 S o S o

c _ c c

S S S

ERS g7 271

@ A a o o A

© © ©
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kS S 9

R — 5 1= R —

GE) ‘T‘ 11— nMo[i?rtlzlca:%?ox. % ﬁ 4 — {\:I:rz‘stﬁ ;:aar;:?na g ﬂ 4 — {\faolys‘ﬁlggr—lgormal
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Figure 3: Log-log plot of the 100’000 Monte Carlo simulations of S compared to the normal (left),
the translated gamma (middle) and the translated log-normal (right) approximation.

Listing 4: R code for Exercise 8.2 (a) (Normal approximation).

mu <- lambdav*shape/rate
sigma <- sqrt(lambdav*shape*(shape+1)/(rate~2))
par (mar=c(5.1, 4.4, 4.1, 2.1))

plot(claims [order(claims)], 1:n/(n+1), xlim=c(min(claims),max(claims)), type="1", col="red",
main="Empirical distribution function", xlab="Sampled values",
ylab="Empirical distribution function", cex.lab=1.5, cex.main=1.5, cex.axis=1.5, lwd=2)

lines(claims [order (claims)], pnorm((claims[order(claims)]),mu,sigma))
legend ("bottomright", 1lty=1, 1lwd=2, col=c("red","black"),
legend=c("Monte Carlo","normal approx. "), cex=1)
plot (log(claims [order(claims)]), log(l-1:n/(n+1)), xlim=c(min(log(claims)),max(log(claims))),
ylim=c(min(log(1-n/(n+1)),log(i-pnorm((claims[order(claims)]) ,mu,sigma))),0), type="1",
col="red", main="Log-log plot", xlab="log(sampled values)",
ylab="log(l-empirical distribution function)", cex.lab=1.5, cex.main=1.5, cex.axis=1.5,
lwd=2)
lines (log(claims [order(claims)]), log(l-pnorm((claims[order(claims)]) ,mu,sigma)), col="black")
legend ("bottomleft", 1lty=1, 1lwd=2, col=c("red","black"),
legend=c("Monte Carlo","normal approx. "), cex=1)

(b) Replicating 10’000 Monte Carlo simulations 100 times already requires some time. This is
also the reason why we chose 10’000 as maximum number of simulations and not 100’000 as in
part (a). Note that every single time we use Monte Carlo simulations to derive quantities like
for example the quantiles gg.g5 and ¢g.99, we get different results. This is something one needs
to be aware of, and it is in contrast to the normal, the translated gamma and the translated
log-normal approximation. In Figure 4 we show the densities of the 100 quantiles gg.95 (left)
and ¢o.g9 (right) resulting from Listing 7 where we replicate the n € {100,1°000,10°000}
Monte Carlo simulations 100 times. We see that increasing the number of simulations n for
every replication, the uncertainty regarding the quantiles qg.95 and gg.g99 is reduced.
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Listing 5: R code for Exercise 8.2 (a) (Translated gamma approximation).

skews <- (lambdav*shape*(shape+1)*(shape+2)/rate”3)/(lambdav*shapex*(shape+1)/rate”~2)~(3/2)
shape2 <- 4/skews”2

rate2 <- sqrt(shape2/(lambdav*shape*(shape+1)/rate~2))

k <- lambdav*shape/rate-shape2/rate2

plot(claims [order (claims)], 1:n/(n+1), xlim=c(min(claims),max(claims)), type="1", col="red",
main="Empirical distribution function", xlab="Sampled values",
ylab="Empirical distribution function", cex.lab=1.5, cex.main=1.5, cex.axis=1.5, lwd=2)

lines(claims [order (claims)], pgamma((claims[order(claims)])-k,shape=shape2,rate=rate2))
legend ("bottomright", 1lty=1, lwd=2, col=c("red","black"),
legend=c("Monte Carlo","transl. gamma "), cex=1)
plot (log(claims [order(claims)]), log(l-1:n/(n+1)), xlim=c(min(log(claims)),max(log(claims))),
ylim=c(min(log(1-n/(n+1)),log(l-pgamma((claims [order (claims)])-k,shape=shape2,
rate=rate2))),0), type="1", col="red", main="Log-log plot", xlab="log(sampled values)",
ylab="log(l-empirical distribution function)", cex.lab=1.5, cex.main=1.5, cex.axis=1.5,
lwd=2)
lines (log(claims [order(claims)]), log(l-pgamma((claims[order(claims)])-k,shape=shape2,
rate=rate2)))
legend ("bottomleft", 1lty=1, lwd=2, col=c("red","black"),
legend=c("Monte Carlo","transl. gamma "), cex=1)

Listing 6: R code for Exercise 8.2 (a) (Translated log-normal approximation).

sigma.squared <- 0.00011444
mu2 <- 1/2*(log((exp(sigma.squared)-1)"(-1)*lambdav*shape*(shape+1l)/rate”2)-sigma.squared)
k2 <- lambdavx*shape/rate-exp(mu2+sigma.squared/2)

plot (claims [order(claims)], 1:n/(n+1), xlim=c(min(claims),max(claims)), type="1", col="red",
main="Empirical distribution function", xlab="Sampled values",
ylab="Empirical distribution function", cex.lab=1.5, cex.main=1.5, cex.axis=1.5, lwd=2)

lines (claims [order (claims)], pnorm(log((claims[order (claims)])-k2),mu2,sqrt(sigma.squared)))
legend ("bottomright", 1lty=1, lwd=2, col=c("red","black"),
legend=c ("Monte Carlo","transl. log-normal "), cex=1)
plot (log(claims [order(claims)]), log(l-1:n/(n+1)), xlim=c(min(log(claims)) ,max(log(claims))),
ylim=c(min(log(1-n/(n+1)),log(l-pnorm(log((claims [order(claims)])-k2) ,mu2,
sqrt (sigma.squared)))),0), type="1", col="red", main="Log-log plot",
xlab="log(sampled values)", ylab="log(l-empirical distribution function)", cex.lab=1.5,
cex.main=1.5, cex.axis=1.5, lwd=2)
lines (log(claims [order(claims)]), log(l-pnorm(log((claims[order(claims)])-k2),mu2,
sqrt (sigma.squared))))
legend ("bottomleft", 1lty=1, lwd=2, col=c("red","black"),

legend=c("Monte Carlo","transl. log-normal "), cex=1)
Density of 0.95—-quantiles of S Density of 0.99—-quantiles of S
o
™
— n=100 8 — n=100
- — n=1'000 < — n=1'000
< | — n=10000 © | — n=10000
C|> o
n N
()
< S 4
= 2 9
0 N n O
5 5 o]
<
o o o g
& ] g 1
I3 A QS /
B o
o
o
2 S Jﬁ
gy — S 1= =
o T T T T 1 o T T T T T 1

0

1030000 1050000 1070000 .1040000 1080000 1120000

0.95-quantiles of S (Monte Carlo) 0.99—quantiles of S (Monte Carlo)

Figure 4: Densities of the 100 quantiles gg.g95 (left) and gg.99 (right) resulting from replicating the

n € {100, 1’000, 10’000} Monte Carlo simulations 100 times.
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Listing 7: R code for Exercise 8.2 (b) (Quantiles).

### Monte Carlo simulations
k <- 100

n <- ¢(100,1000,10000)
set.seed (100)

claims.l <- array(compound.poisson.distribution(n=rep(1,k*n[1]), lambdav=1000,
rate=1/10), dim=c(n[1],k))

set.seed (200)

claims .2 <- array(compound.poisson.distribution(n=rep(1l,k*n[2]), lambdav=1000,
rate=1/10), dim=c(n[2],k))

set.seed (300)

claims .3 <- array(compound.poisson.distribution(n=rep(1,k*n[3]), lambdav=1000,

rate=1/10), dim=c(nl[3],k))
### Function calculating alpha-quantiles of S on the basis of Monte
quantiles.monte.carlo <- function(claims, alpha){

n <- nrow(claims)

claims.sorted <- apply(claims, 2, sort)

quantiles.alpha <- claims.sorted[floor(alpha*n)+1,]

shape=100,

shape=100,

shape=100,

Carlo simulations of §

}

### 0.95-quantiles

range (quantiles.1 <- quantiles.pmonte.carlo(claims=claims.1, alpha=0.95))
range (quantiles.2 <- quantiles.pmonte.carlo(claims=claims.2, alpha=0.95))
range (quantiles.3 <- quantiles.monte.carlo(claims=claims.3, alpha=0.95))

### Density

ymax <- max (density(quantiles.1)$y,
plot (density(quantiles.1),
xlab="0.95-quantiles of S (Monte Carlo)",

lwd=2)

lines (density(quantiles.2),
lines (density(quantiles.3),

legend ("topleft",
legend=c("n =

### 0.99-quantiles

density (quantiles.2)$y,
col="black", ylim=c(0,ymax),

col="blue", lwd=2)
col="red", 1lwd=2)
col=c("black", "blue", "red"), lwd=2,
100" ,"n = 1°000","n = 10°000"))

range (quantiles.1l <- quantiles
range (quantiles .2 <- quantiles
range (quantiles .3 <- quantiles

.monte.carlo(claims=claims.1,
.monte.carlo(claims=claims.2,
.monte.carlo(claims=claims.3,

density (quantiles.3)$y)

main="Density of 0.95-quantiles of S",
cex.lab=1.25,

cex.main=1.25, cex.axis=1.25,

lty=1,

alpha=0.99))
alpha=0.99))
alpha=0.99))

### Density

ymax <- max(density(quantiles.1)$y, density(quantiles.2)8$y,

plot (density(quantiles.1), col="black", ylim=c(0,ymax),
xlab="0.99-quantiles of S (Monte Carlo)", cex.lab=1.25,
lwd=2)

density(quantiles.3)$y)

cex.main=1.25,

main="Density of 0.99-quantiles of S",
cex.axis=1.25,

lines (density(quantiles.2), col="blue", lwd=2)

lines (density (quantiles.3), col="red", lwd=2)

legend ("topright", col=c("black", "blue", "red"), 1lwd=2, 1lty=1,

legend=c("n = 100","n = 1°000","n = 10°000"))
q0.95 40.99

Monte Carlo smallest largest smallest largest
n = 100 1°035°018  1°069°209 || 1°053’719 1°126°533
n = 1’000 1°047°186 1°057°829 || 1’066°770  1°084’902
n = 10’000 1°050°955  1°054°282 || 1°072°045 1°077°195
Approximations
normal 1°052°274 1°073’932
translated gamma 1°052’563 1°074°682
translated log-normal 1’°052’562 1°074°684

Table 2: Smallest and largest observed values of the quantiles gg.95 and gp.99 among the 100
replications of the n € {100,1°000, 10’000} Monte Carlo simulations together with the values of
the quantiles qg.95 and ¢g.99 resulting from the normal, the translated gamma and the translated
log-normal approximation.
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One can reach the same conclusions from Table 2, where we give the smallest and the
largest observed values of the quantiles gg.95 and ¢g.99 among the 100 replications of the
n € {100, 1°000, 10’000} Monte Carlo simulations. Moreover, we also give the values of the
quantiles ¢g.95 and qg.g9 resulting from the normal, the translated gamma and the translated
log-normal approximation, see Exercises 7.3 and 7.4. We see that the quantiles resulting
from the approximations are always between the smallest and the largest observed value
resulting from the Monte Carlo simulations. Of course, one can argue that we could choose
the number of simulations n large enough such that the results do not vary considerably
anymore. However, a too high number of simulations n will lead to an excessive computation
time. This is especially true if one considers heavy tailed distributions. Therefore, one is often
inclined to use other algorithms for compound distributions, such as the Panjer algorithm
and fast Fourier transforms.

Solution 8.3 Fast Fourier Transform

Assume that Y follows the claim size distribution given on the exercise sheet. Let Y denote the
discretized version of Y that takes values in Ng. More precisely, we shift the probability masses of
Y to the right and define

Py =00 =0 and P[Y =] :P[?gl}—ﬂ”[f’gl—l},

for all [ € N. By a slight abuse of notation, we still write S for the compound Poisson distribution
with discrete claim size distribution Y. In particular, also S takes values in Ny. We define

g =PY=I and fi =P[S=I],

for all | € Ng. We choose a threshold of n = 2°000°000, i.e. we determine the distribution function
of S up to n — 1. Note that n is chosen sufficiently high such that we approximately have

PlY >n—1] = 0. (1)

We define A = {0,...,n — 1} and calculate the discrete Fourier transform (§,).ca of (g1)ica by

n—1
R .zl
G, = Zglexp {2mn}, (2)
1=0
for all z € A. Due to (1), we approximately have

Y
g. ~ E [exp{%rizH = My (27Tii)7
n n

for all z € A, where My denotes the moment generating function of Y. Note that we use an
extended version of the moment generating function also allowing for complex numbers. If Mg
denotes the moment generating function of S, again extended to complex numbers, then, according
to Proposition 2.11 of the lecture notes (version of March 20, 2019), we have

Mg (27m'%) = exp {)\v |:My (Qm'E) - 1}} ~ exp{Iv (. — 1)}, (3)

n

for all z € A. The left hand side of equation (3) can be written as

[e%s) n—1 [e%s)
Mg (2771'%) =35 exp{?m'jf} =y (fl + wam) exp {2m'ff},
=0 =0

k=1
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for all z € A. Using the approximation
fom i frokm, (4)
k=1

for all [ € A, we compute the discrete Fourier transform (fz)zeA of (f1)iea by

n—1

for all z € A. Applying the inversion formula of the discrete Fourier transform, we finally calculate

n—1
1 A zl
= — P —2 ) — 5 5
fi nz§_jofexp{ = o)
for all I € A. Note that due to the approximation in (4), instead of f; we actually calculate

4> frikn > fis

k=1

for all [ € A. This error is called wrap around error (or aliasing error), and n should be chosen
large enough in order to keep this wrap around error small.

Distribution function Log-log plot
o
- ©
=
@ | 2 YA
s © e
'*§ 2 ¥
3 3 IS
E RS
2 ] E ®
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5] 1
a) - o) i
—— Monte Carlo B’ —— Monte Carlo
o | —— fast Fourier N _| — fast Fourier
© T T T T T T ! T T T T
900000 1000000 1100000 13.70 13.80 13.90
Total claim amount log(total claim amount)

Figure 5: Comparison of the distribution function (left) and the log-log plot (right) of S resulting
from the fast Fourier transform algorithm to the Monte Carlo simulations.

In R, the calculations in equations (2) and (5) can be done using the command fft. The corre-
sponding R code is given in Listing 8. In Figure 5 we compare the distribution function (left)
and the log-log plot (right) of S resulting from the fast Fourier transform algorithm to the Monte
Carlo simulations of Exercise 8.2. We see that we get a very good fit. In particular, the threshold
n = 2’000°000 seems to be high enough. For the 0.95-quantile gg.95 and the 0.99-quantile gg.99 we
get

qo.95 = 1'053°089 and qo.99 = 1°075°215.

We see that we get values which are very close to the ones derived in Exercises 7.3 and 7.4, where
we used the normal, the translated gamma and the translated log-normal approximation.
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Listing 8: R code for Exercise 8.3.

### Fast Fourier transfom

n <- 2000000

lambdav <- 1000

claim.size <- ¢(0, pgamma(1l:(n-1), shape=100, rate=1/10)-pgamma (0:(n-2), shape=100, rate=1/10))
claim.size.ft <- fft(claim.size)

total.claim.amount.ft <- exp(lambdav*(claim.size.ft-1))

total.claim.amount <- Re(fft(total.claim.amount.ft,inverse=TRUE)/length(total.claim.amount.ft))

### Monte Carlo simulations from Exercise 8.2
compound.poisson.distribution <- Vectorize(function(n, lambdav, shape, rate){
number.of.claims <- rpois(n=n, lambda=lambdav)
sum(rgamma (n = number.of.claims, shape=shape, rate=rate))
},"n")
m <- 100000
set.seed (100)
claim.amounts <- compound.poisson.distribution(n=rep(1,m), lambdav=1000, shape=100, rate=1/10)

### Calculate values of the distribution function of S using the fast Fourier transfrom
probabilities <- cumsum(total.claim.amount)[floor(claim.amounts[order(claim.amounts)])+1]

### Check the fast Fourier transform result
par(mar=c(5.1, 4.4, 4.1, 2.1))
plot(claim.amounts [order (claim.amounts)], 1:m/(m+1),
xlim=c(min(claim.amounts) ,max(claim.amounts)), type="1", col="red",
main="Distribution function", xlab="Total claim amount", ylab="Distribution function"
cex.lab=1.25, cex.main=1.25, cex.axis=1.25, lwd=2)
lines(claim.amounts [order (claim.amounts)], probabilities, lwd=1)
legend ("bottomright", 1lty=1, lwd=2, col=c("red","black"), legend=c("Monte Carlo","fast Fourier
"), cex=1)
plot (log(claim.amounts [order (claim.amounts)]), log(i-1:m/(m+1)),
xlim=c(min(log(claim.amounts)) ,max(log(claim.amounts))),
ylim=c(min(log(1-m/(m+1)),log(l-probabilities)),0), type="1", col="red",
main="Log-log plot", xlab="log(total claim amount)", ylab="log(l - distribution function)",
cex.lab=1.25, cex.main=1.25, cex.axis=1.25, lwd=2)
lines (log(claim.amounts [order(claim.amounts)]), log(l-probabilities), col="black", lwd=1)
legend ("bottomleft", 1lty=1, lwd=2, col=c("red","black"), legend=c("Monte Carlo","fast Fourier
"), cex=1)

### Determine the 0.95- and the 0.99-quantiles
which(cumsum(total.claim.amount) > 0.95)[1]-1
which(cumsum(total.claim.amount) > 0.99)[1]-1

Solution 8.4 Panjer Distribution
If we write p, = P[N = k], for all k£ € N, then, by definition of the Panjer distribution, we have

b
Pk = Pk—1 (CH- k) )

for all k£ € N. We can use this recursion to calculate E[N] and Var(N). Note that the range of N is
N, if a >0, and {0,1,...,n} for some n € N>q, if a < 0.

First, we consider the case where a < 0, i.e. where the range of N is {0,1,...,n}. According to the
proof of Lemma 4.7 of the lecture notes (version of March 20, 2019), we have

no _0tl (6)

a

For the expectation of N we get
kak—zkpk—zkpk 1 a—|— —azkpk 1+prk 1

— n—1 n—1 n—1
Z (k+Dpe+bY pr=aY kpr+(a+b) > pr=a(B[N]—np,)+ (a+b)(1-p,)
k=0 k=0 k=0 k=0

E[N]

=aE[N]+a+b+py(—an—a—1D).
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Using (6), we get
a+b

—an—a—b=a —a—b=0. (7)

Hence, the above expression for E[N] simplifies to
E[N] = aE[N]+ a + b,

from which we can conclude that
a+b

1—a’

E[N] =

In order to get the variance of N, we first calculate the second moment of N:
E[N?] — Zka’“ = Zkzpk Zk Phot (a+ ) =a Zk Pro1+ D kak .
=1

— n—1 n—1 n—1 n—1
Zk+1 Petb Y (k+D)pe =a Y Kpe+(Q2a+b) Y kpet(atbd) > p
k=0 k=0 k=0 k=0

E[N?] = n?p,) + (2a + 0)(E[N] = npn) + (a +)(1 = pn)
= E[N] + (2a + b) E[N] 4+ a + b+ pn[—an® — (2a + b)n — a — b].

/\

Using (6), we get

b\” b
—an®* — (2a+bn—a—-b = —a (a—l— ) +(2a+b)i—a—b
a a
_ @ +2b+ 0 2 +3ab 40 a®tab (8)
a a a

= 0.
Hence, the above expression for E[N?] simplifies to
E[N?] = aE[N?] + (2a + b) E[N] + a + b,
from which we get

(2a+b)E[N]+a+b  (2a+b)(a+b)+ (a+Db)(1—a)

21 _
EINT = T—a = 1= a)y
_ 2a®+3ab+b*+a—a®+b—ab  (a+b)*+a+b
B (1-a)? - (1-a?

Finally, the variance of N then is

+b)2+a+b (a+b)? a+b
Var(N) = E[N? —E[N}2 = & - = .
ar( ) [ ] [ } (1 _ a)2 (1 _ a)2 (1 _ a)2
In the case where a > 0, i.e. where the range of N is N, we can perform analogous calculations
with the only difference that the index of summation in all the sums involved goes up to oo instead
of stopping at n. As a consequence, the calculations in (7) and in (8) aren’t necessary anymore.
The formulas for E[N] and Var(N), however, remain the same.
The ratio of Var(N) to E[N] is given by

Var(N) a+b 1-a 1

E[N] (1-a2a+tb 1-a
Note that if a < 0, i.e. if N has a binomial distribution, we have Var(N) < E[N]. If a = 0, i.e. if
N has a a Poisson distribution, we have Var(N) = E[N]. Finally, in the case of a > 0, i.e. for a
negative-binomial distribution, we have Var(N) > E[N].
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Solution 9.1 Utility Indifference Price

(a) Suppose that there exist two utility indifference prices m1 = 71 (u, S, ¢g) and m = ma(u, .S, co)
with 71 # mo. By definition of a utility indifference price, we have

Elu(co + m — S)] = ulep) = Elu(co + m2 — 9)]. (1)
Without loss of generality, we assume that m; < mo. Then, we have
co+m—S <cp+my—3S8 a.s.,

which implies
u(cg +m —8) < ulco+m2 —5) a.s.,

since u is a utility function and, thus, strictly increasing by definition. Finally, by taking the
expectation, we get
Elu(co + m — 5)] < Elu(cg + 2 — 9)],

which is a contradiction to (1). We conclude that if the utility indifference price 7 exists, then
it is unique. Moreover, being a risk-averse utility function, u is strictly concave by definition.
Hence, we can apply Jensen’s inequality to get

u(cg) = Elu(eg +7—9)] < w(E[eg + 7 — S]) = u(co + 7 — E[S]).

Note that we used that S is non-deterministic and, thus, Jensen’s inequality is strict. Since u
is strictly increasing, this implies 7 — E[S] > 0, i.e.

7w > E[S].

(b) Note that

20
E[v] =1 = = =2
1 ¢ 0.01 000
and that 1 ]
E[Y@’} T — )
1 k  0.005 00

Since S7 and S5 both have a compound Poisson distribution, Proposition 2.11 of the lecture
notes (version of March 20, 2019) gives

1
E[Si] = A\viE [Yf”] = 5+ 20002000 = 2'000°000

and
1
E[So] = Apvo [YF)} — 1 10000200 = 200000,

We conclude that

E[S] = E[S; + S2] = E[S1] + E[S2] = 27200°000.
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(¢) The utility indifference price 7 = 7(u, S, ¢g) is defined through the equation
u(eg) = Elu(ep + 7 — 5)].
In this exercise we use the exponential utility function u given by
u(z) =1-— éexp {—az},

for all z € R, with o = 1.5-1075. Thus, we get

u(eg) = Elu(eg + 7 — 9)] 1- iexp{—aco} =E|1- éexp{—a(co +7—9)}

exp{—acp} = Elexp{—a(co+ 7 —95)}]
exp {ar} = E [exp {aS}]

1117

1
7 = —logE[exp {aS}].
«
Note that we can write S = S7 4+ S5 and use the independence of S; and S5 to get

T = llog]E[eXp {a(S1+ 52)}] = élog (E [exp {S1}] E [exp {aS2}])

QI~—2

(logE [exp {aS1}] + log E [exp {aS2}]) = é [log Mg, (o) + log Mg, (a)],

where Mg, and Mg, denote the moment generating functions of S; and S, respectively.
Moreover, since S7 and Sy both have a compound Poisson distribution, Proposition 2.11 of
the lecture notes (version of March 20, 2019) gives

™ = é (/\1711 [Myu)(a) - 1} + Aav2 |:My1(2)(a) - 1]) ’

1

where M, ) and M, (2 denote the moment generating functions of Yl(l) and Y1(2)7 respectively,
1 1

N 0.01 %
Mo = (£5) = (Go1s50)

K 0.005
My @ (@) = k—a  0005—15-10-6

In particular, since @ < ¢ and a < &, both My, 1) (a) and M, (2 (@) and, thus, also Mg, (@)
1 1

and are given by

and

and Mg, (o) exist. Inserting all the numerical values, we find the utility indifference price

2 1 0.01 20 1 0.005
=Z2.10(=.2 S —-1 — .10 -1
=310 (2 000 l<0.01 — 1.5-106) g 10000 {0.005— 1.5-10-6 D

= 2'203213.
Note that we have
—E 2203213 — 2°200°0 321
T [S] _ 03’213 00’000 _ 3 ~ 0.146%.
E[S] 2200°000 2200°000

Thus, the loading m — E[S] is given by approximately 0.146% of the pure risk premium.
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(d) The moment generating function My of X ~ N(u,0?) with u € R and 2 > 0 is given by

T202
Mx(r) = exp{m+ 5 }

for all » € R, see Exercise 1.3. Thus, if we assume Gaussian distributions for S7 and Ss, and
according to the calculations in part (c), we get

é llog M, (@) + log M, (a)] = é (aIE[Sl} + %2Var(5'1) + aE[Ss] + O;ZVar(Sg))
= E[$1] +E[S2] + 5 [Var($1) + Var(82)] = E[S] + 5 Var(S),

where in the last equation we used that S; and Sy are independent. We see that in this case
the utility indifference price is given according to a variance loading principle. Since here we
assume Gaussian distributions for S; and Sy with the same corresponding first two moments
as in the compound Poisson case in part (c), in order to calculate Var(S1) and Var(S3), we
again assume that S7 and Sy have compound Poisson distributions. Note that

2 1 20-21

c? 0.012

and that
2 2

@\’ _ 2 _ P,
E {(Yl ) ] =2 = Doom - S0000

Then, Proposition 2.11 of the lecture notes (version of March 20, 2019) gives
m\?| _ 1
Var(S1) = AviE (Yl ) =5 2’000 - 4’200°000 = 4’200°000°000

and
Var(Ss) = AavsE {(Yf”ﬂ - % -10°000 - 80°000 = 80°000°000,
which leads to
Var(S) = Var(Sy + S2) = Var(S1) + Var(S2) = 4280°000°000.
We conclude that the utility indifference price is given by

1.5-107¢

m = E[S] + %Var(S) = 2200°000 + — -4’280°000°000 = 2’203’210.
Note that we have
7w — E[S] 2’203’210 — 2’200°000 3’210
= = ~ 0.146%.
E[S] 2’200°000 2’200°000 0

Thus, as in part (c), the loading m — E[S] is given by approximately 0.146% of the pure risk
premium. The reason why we get the same results in (c) and in (d) is the Central Limit
Theorem. In particular, neither the gamma distribution nor the exponential distribution
are heavy-tailed distributions. Moreover, the skewness ¢g, of S; and also the skewness
s, of Sy are rather small (¢, = 0.034 and ¢g, ~ 0.067). Thus, the expected numbers of
claims A\jv; = Ayvy = 1’000 are large enough for the normal approximations to be valid
approximations for the compound Poisson distributions.
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(e) On the one hand, in part (c) we have shown that the utility indifference price 7 = w(u, .S, co)
is given by

T = é)\v [My, (o) — 1].
On the other hand, according to the calculations in part (c), we also have
T=T (u,g, co) = élog]E [exp{ag}] .
From this we can calculate

foon)

=1

Av
1 1 1
T = alog;IE = a;logE[exp{aYi}] = a)\vlogMYl(a)~

We then have
T>T <= My, (a)—1 > log My, (a).

We define
g(x) = x—1 and h(xz) = logz.

For x =1 we have g(1) =0 = h(1). Since g is linear and h is strictly concave, we get

g9(x) > h(z)

for all x # 1 in the domain of g and h. Since for the claim sizes we assume Y; > 0, P-a.s.,
and since a > 0, we have My, (a)) > 1. If follows that

MY1 (Oé) -1> 10g MY1 (OZ)

and, thus, w > 7. This does not come as a surprise: in the compound Poisson model we have
randomness in the number of claims and under risk aversion we do not like this uncertainty.
This leads to a higher price in the compound Poisson model and explains why = > 7.

Solution 9.2 Value-at-Risk and Expected Shortfall
(a) Since S ~ LN(u,0?) with g = 20 and 0% = 0.015, we have

2
E[S] = exp {u+ "2} ~ 488'817°614.

Let z denote the VaR of S — E[S] at security level 1 — ¢ = 99.5%. Then, since the distribution
function of a lognormal distribution is continuous and strictly increasing, z is defined via the
equation

PIS—E[S] <z =1—q.
By writing @ for the distribution function of a standard Gaussian distribution, we can calculate
z as follows

P[S-E[S]<2] =1—¢

& [bg(ZHE[SD—u] _ 1y
log(z +E[S]) = p+o-07'(1—q)

z=exp{p+to- @' (1-q)}—E[S]

» = exp{u} <eXp {o-® ' (1—q)} —exp {‘;}) .

[ A
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For 1 — q = 99.5% we have ®~!(1 — q) ~ 2.576, and
z =~ 176’299286.
In particular, mooc is then given by
Tooc = E[S] 4+ rcoc - 2 = 488’817°614 + 0.06 - 1767299286 ~ 499’395’571.

Note that we have

meoc —E[S] _ 499'395°571 — 488'817°614 _ 10'577°957
E[S] 488'817°614 T 488'817°614

~ 2.16%.

Thus, the loading 7coc — E[S] is given by approximately 2.16% of the pure risk premium.

For all u € (0,1), let VaR,, and ES,, denote the VaR risk measure and the expected shortfall
risk measure, respectively, at security level u. Note that actually in part (a) we have found
that

VaR, (S —E[S]) = exp{pu+oc- @' (u)} —E[S],

and that by a similar computation we get

VaR,(S) = exp{p+o-® (u)},
for all w € (0,1). In particular, we have

VaR, (S — E[S]) + E[S] = VaR,(9),

for all w € (0,1). Since the distribution function of S is continuous and strictly increasing,
according to Example 6.26 of the lecture notes (version of March 20, 2019), we have

ES;_,(S—E[S]) = E
~E
E

(S — E[S]| S — E[S] > VaRi_,(S — E[S))]
(S~ E[S]|S > VaRy_(S)]

[S|S > VaRi_4(5)] — E[S]
= ES;_,(S) - E[S].

By the definition of the mean excess function eg(-) of S, we can write

ES1_4(S) = E[S —VaRi_4(5)| S > VaR1_4(S5)] + VaR1_4(5)
= eg[VaRi_4(5)] + VaRi_4(95).
Moreover, according to the formula given in Chapter 3.2.3 of the lecture notes (version of

March 20, 2019), the mean excess function eg[VaR1_4(5)] above level VaR;_,(S) for the
log-normal distribution S is given by

g

1_® |:logVaRl,q(S’)f,u,fcf2

es[VaRy_y(S)] = E[S] } — VaRy_(S).

1-® |:logVaR1,q(S)—p,:|

o

Using the formula calculated above for VaR, (S) with u = 1 — ¢, we get

1_ |:logVaRl_q(S)—,u—a'2

o

} 1-® [wa-@*l(lqufa?}
= E[S] :
1-® [w] 1-® [Lﬂ—q)—u}

o o

ES1,(S) = E[S]

Mﬂlef@ﬂu?mﬂ)=Em;a—@@la—@—ﬂy
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In particular, we have found that

ES1-o(S ~EIS]) = <EIS] (1= @ [67/(1=¢) ~]) — E[S]

For 1 — g = 99% we get ®~1(1 — ¢) ~ 2.326, and
ESggy (S — E[S]) &~ 184’119°256.
Finally, mcoc is then given by
oo = E[S] 4+ rcoc - ESggy (S — E[S]) ~ 488’817°614 + 0.06 - 184’119’256 ~ 499’864°769.

Note that we have

meoc — E[S]  499°864'769 — 488'817°614  11°047°155
E[S] 488'817°614 T 488'817°614

~ 2.26%.

Thus, the loading mcoc — E[S] is given by approximately 2.26% of the pure risk premium. In
particular, the cost-of-capital price in this example is higher using the expected shortfall risk
measure at security level 99% than using the VaR risk measure at security level 99.5%.

In parts (a) and (b) we have seen that in this example
VaRgg 5% (5 — E[S]) < ESggy (S — E[S]).
Let 1 — g = 99%. Now the goal is to find u € [0, 1] such that
VaR, (S — E[S]) = ES1_4(S —E[5)]),

which is equivalent to
VaR,(S) = ES1_4(9).

From part (b) we know that
VaR,(S) = exp{p+o-® "(u)},
for all uw € (0,1), and that
1
ESi—() = CEIS] (1@ [071(1—g) —0]).
Hence, we can solve for u to get

log BE[S} (1-®[@~1(1-q) - am —u

g

u=7e ~ 99.62%.

We conclude that in this example the cost-of-capital price using the VaR risk measure at
security level 99.62% is approximately equal to the cost-of-capital price using the expected
shortfall risk measure at security level 99%.
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(d) Since S ~ LN(u,0?) with g = 20 and 62 = 0.015 and U and V are assumed to be independent,
we have

U~ N(o?), V~Npuo®) and U+V ~ N(2u,20%).
Let X ~ N (f1,5?) for some fi € R and 62 > 0. Then, VaR;_,(X) can be calculated as

X—[L<VaR1_q(X)—ﬂ} 1,

P[X <VaRy_(X)] = 1—¢q < P[

g g
P {VaRl_({(X) — /,1,:| —1_ q
g
< VaR; (X)) =ji+6-2'(1—q)

This implies that

VaRy_,(U) + VaR;_ (V) = p+0- (1 —q)+p+o- &1 —q)
=2u+20-d71(1—q)

and that
VaRi_,(U+V) = 2u+ V20 - &7 1(1—q).

Since

VaR; (U +V) > VaR;_,(U) + VaR;_,(V) <= & 1(1-¢q) > V20 1(1-9¢)
— o l1-¢9) <0
— 1—q< ok
one can see that in this example
VaRi_4(U+V) > VaRi_4(U) + VaR1_4(V)
for all 1 — g € (0,1), and that
VaRi1_,(U +V) < VaR1_4(U) + VaR1_4(V)

forall1 —q € (%,1).

Solution 9.3 Variance Loading Principle

(a) Let S1,S53, 55 denote the total claim amounts of the passenger cars, delivery vans and trucks,
respectively. Then, according to Proposition 2.11 of the lecture notes (version of March 20,
2019), we have

for all 7 € {1,2,3}. Using the data given in Table 2 on the exercise sheet, we get

E[S;] = 0.25-40-2’000 = 20’000,
E[S2] = 0.23-30-1'700 = 11’730 and
E[S5] = 0.19-10-4’000 = 7600.

If we write S for the total claim amount of the car fleet, we can conclude that

E[S] = E[Sy + S + S3] = E[S1] + E[S2] + E[S;5] = 39°330.
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(b) Again using Proposition 2.11 of the lectures notes (version of March 20, 2019), we get

Aivi B [(3/1@))1 = A\iy; (Var <Y1(i)> +E [Yl(i)r)

M E 1] i [Vco (Yl“))2 + 1} ,

Var[S;]

for all 7 € {1,2,3}. Using the data given in Table 2 on the exercise sheet, we find
Var(S1) = 0.25-40-2°000% - (2.5 + 1) = 290°000°000,
Var(Sy) = 0.23-30-1700% - (22 +1) = 99°705°000 and
Var(S3) = 0.19-10-4°000% - (3% + 1) = 304°000°000.

Since S7, .52 and S3 are independent by assumption, the variance of the total claim amount .S
of the car fleet is given by

Var(S) = Var(S; + S2 +S3) = Var(S;) + Var(S3) + Var(S;) = 693°705°000.

Using the variance loading principle with a = 3 - 1075, we get for the premium 7 of the car
fleet

7 = E[S] + aVar(S) = 39'330 + 3 - 107 - 693'705°000 ~ 397330 + 2'081 = 41’411.

Note that we have
m—E[S]  aVar(S) = 2081 5.3%
E[S]  E[S] 3933 "

Thus, the loading = — E[S] is given by 5.3% of the pure risk premium.

Solution 9.4 Esscher Premium

(a) Let a € (0,79) and Mg and Mg denote the first and second derivative of Mg, respectively.
According to the proof of Corollary 6.16 of the lecture notes (version of March 20, 2019), the
Esscher premium 7, can be written as

M)
« Ms(a).
Hence, the derivative of 7, can be calculated as
d__ dMg(a)  Mg(a) <M§(a)>2 _ E[S%exp{asS}] (E[S’exp{aS}])2
da © da Ms(a) Ms(a) Ms(a) Ms(a) Ms(a)
! s 1 o0 2
= V(o) /_Oox exp{ax}dF(z) — [Mg(a) /_ooxexp{agg} dF(gj):|

_ /ZIQ dF,(z) — szdFa(z)r,

where we define the distribution function F, by

Fu(s) = ﬁm) / ; exp{oz} dF (z),

for all s € R. Let X be a random variable with distribution function F,. Then, we get

4 = /Oo 2% dFy(z) — [/m chFa(x)r — E[X?] - E[X]? = Var(X) > 0.

— 00 — 00
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Hence, the Esscher premium 7w, is always non-decreasing in «. Moreover, if S is non-
deterministic, then also X is non-deterministic. Thus, in this case we get

d
Taa = Var(X) > 0.

In particular, if S is non-deterministic, then the Esscher premium 7, is strictly increasing in
a.

(b) Let a € (0,79). According to Corollary 6.16 of the lecture notes (version of March 20, 2019),
the Esscher premium 7, is given by

d
= —1
Ta = og Ms(r)

r=a

For small values of a, we can use a first-order Taylor approximation around 0 to get

_d : _My0) (M) [ML(0)]
To & - log M(r) i +a- -5 log Ms(r) o M:(O) T (Mi(()) - {Mi(o)} )

= E[S] + a (E[S?] — E[S]?) = E[S] + aVar(S).

We conclude that for small values of a, the Esscher premium 7, of S is approximately equal
to a premium resulting from a variance loading principle.

(¢) Since S ~ CompPoi(Av, G), we can use Proposition 2.11 of the lecture notes (version of March
20, 2019) to get
log Mg(r) = v [Mg(r) —1],

where Mg denotes the moment generating function of a random variable with distribution
function G. Since G is the distribution function of a gamma distribution with shape parameter
~v > 0 and scale parameter ¢ > 0, we have

et = ()

for all r < ¢. In particular, also Mg(r) is defined for all r < ¢, which implies that the Esscher
premium 7, exists for all « € (0, ¢).

Now let « € (0,¢). Then, the Esscher premium 7, can be calculated as

el el

—y—1 v+1
w2 (1-1) —n2 ()
& C \C—«

c
Note that since ¢ > ¢ — « and v+ 1 > 1, we have

1
( ¢ ) > 1,
C—

d
= log M,
ar 108 Ms ()

Ta

r=x

r=a

and, thus,
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Solution 10.1 Method of Bailey & Simon

In this exercise we work with two tariff criteria. The first criterion (vehicle type) has I = 3 risk
characteristics:

x1,1 (passenger car), xi2 (delivery van) and xi,3 (truck).
The second criterion (driver age) has J = 4 risk characteristics:
X2,1 (21 - 30 years), x2,2 (31 - 40 years), x2,3 (41 - 50 years) and x2.4 (51 - 60 years).

The claim amounts S; ; for the risk classes (4,7),1 <¢ < 3,1 < j <4, are given in Table 1 on the
exercise sheet. The multiplicative tariff structure leads to the model

E[Si ;] = vij X1 X255

forall 1 <i< 3,1 <j <4, where we set the number of policies v; ; = 1. Moreover, in order to get a
unique solution, we set ;1 = 1 and 1,1 = 1. Therefore, there remains to find the risk characteristics
X1,25 X1,35 X2,15 X2,2> X2,3, X2,4- Using the method of Bailey & Simon, these risk characteristics are
found by minimizing

1 J 2 3 4 2
2=y (Sij = vij hXx1iX25)” _ »y (Siy = X1 x2,5)°
i=1 j=1 Vi,j X110 X2, == X1,i X2,5
Let i € {2,3} (recall that we set X1,1 = 1). Then, X1, is found by the solution of
4 2
0 L 0 X2 — Z 9 (Sij —x1ix24)
Ox1,i = Oxui X1,i X2,j
4
_ Z —2(Si; — X1, X2,5)X1i X2, — (Sij — X1, X2,j)2
= X1 X2,5
4
_ Z =28, X1 X2, + 2XT, X5,; — 57 + 286 iX1.i X2, — X1.i X5,
= X3 X2,
4
-3 X1iX35 = 58
=1 Xii X2,j
4 4 g2
1 Si;
= X2~ —5— —=.
; Xii ; X2,j

Thus, for ¢ € {2,3} we get
4 ~ 1/2
~ (Zj_l SiQ,j/XZj)
X1, = | —=1 < .
Zj:l X2,j
By an analogous calculation, one finds

3 - 1/2
T2 = Zi:152‘2,j/X1,i
2 = 3 - )
Zi:lXLi
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for j € {1,2,3,4}. For solving these equations, one has to apply a root-finding algorithm like for
example the Newton-Raphson method. We get the following multiplicative tariff structure:

21-30y 31-40y 41-50y 51-60y | X1

passenger car | 2’176 1’751 1’491 1’493 1

delivery van | 2’079 1’674 17425 1’427 | 0.96
truck 2’456 1’977 1’684 1’686 | 1.13
X2,j 2'176 1’751 1’491 1’493

Table 1: Tariff structure resulting from the method of Bailey & Simon.

We see that the risk characteristics for the classes passenger car and delivery van are close to each
other, whereas for trucks we have a higher tariff. Moreover, an insured with age between 21 and
30 years gets a considerably higher tariff than an insured with a higher age. The smallest tariff is
assigned to insureds with age between 41 and 60 years. Note that we have

3 4

3 4
SO v n R Reg = 207320 > 21300 = 35S, 5,
i=1 j=1

i=1 j=1

which confirms the (systematic) positive bias of the method of Bailey & Simon shown in Lemma
7.2 of the lecture notes (version of March 20, 2019).

Solution 10.2 Method of Bailey & Jung

We use the same setup and the same notation as in the solution of Exercise 10.1. In order to get a
unique solution, we again set 4 =1 and x;,;1 = 1. Using the method of Bailey & Jung, which is
also called method of total marginal sums, the risk characteristics x1,2,x1,3, X2,1, X2,2; X2,3, X2,4 aTe
found by solving the equations

J J
Z%MXM X2, = ZSi,jy i€{2,3},

Jj=1 j=1

I I

S vignxiixes = Y Sig, je{1,2,3,4}.
i=1 i=1

Since I = 3,J = 4 and we work with v; ; = 1 and set u = 1, we get the equations

4 1
ZXl,i X2,j = ZSi,ja i€{2,3},
j=1 J=1

3 3
ZXl,i X2, = ZS@J, jE {1,2,3,4}.
=1 =1

Thus, for i € {2,3} (recall that we set ¥1,1 = 1) and j € {1,2,3,4}, we get

4 4
X1, = g Si,j/g X2, and,
= =

3 3
X2,j = ZSZJ/Z X1i-
i=1 i=1

Analogously to the method of Bailey & Simon, one has to solve this system of equations using a
root-finding algorithm.
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We get the following multiplicative tariff structure:

21-30y 31-40y 41-50y 51-60y | X1

passenger car | 2’170 1’749 1’490 1’490 1

delivery van | 2’076 1’673 17425 1’425 | 0.96
truck 2’454 1977 1685 1’685 | 1.13
X2,j 2'170 1’749 1’490 1’490

Table 2: Tariff structure resulting from the method of Bailey & Jung.

We see that the results are very close to those in Exercise 10.1, where we applied the method of
Bailey & Simon. However, now we have

L 3 4
szi,j X1, X2, = 21’300 = ZZS%}J”

i=1j=1 i=1j=1

which comes as no surprise as we fitted the risk characteristics such that the above equality holds
true.

Solution 10.3 Log-Linear Gaussian Regression Model

(a) In the log-linear Gaussian regression model we work with a stochastic model for the claim
amounts S, ; for the risk classes (¢,7),1 <4 < 3,1 < j <4, given in Table 1 on the exercise
sheet. We assume that

ef Sl j
Xij = log =L = log S ; ~ N(Bo + Buri + B2.5,07),

Vi, j

where B39, 314, 82,; € R and o2 > 0, for all risk classes (,7),1 <14 < 3,1 < j < 4. The risk
characteristics of the two tariff criteria vehicle type and driver age are now given by

B1,1 (passenger car), (12 (delivery van) and ;3 (truck),
and
B21 (21 - 30 years), [fa2 (31 - 40 years), fa3 (41 - 50 years) and fa4 (51 - 60 years).

In order to get a unique solution, we set 511 = f2,1 = 0. Simplifying notation, we write
X = (Xy,...,Xy)" with M =12 and

Xi=X11, Xo=X1p, X3=Xi3, Xu=Xi14, Xs5=2X91, X¢=Xop,

Xr=Xo3, Xg=Xo4, Xog=X31, Xio=Xsz2, Xi1=2X33 Xi2=X34.

Moreover, we define
B = (Bo, P12, B1,3, B2,2, o3, B2,4) € R,
with » = 5. Then, we assume that X has a multivariate Gaussian distribution
X ~ N(ZB,0%I),
where I € RM*M denotes the identity matrix and Z € RM*("+1) ig the so-called design
matrix that satisfies
E[X] = ZB.
For example for m = 1 we have
E[X,,] = E[X1] = E[X11] = Bo+ f1,1+ P21 = bo = (1,0,0,0,0,0) 3,

and for m =8

E[X,] = E[Xg] = E[X24] = Bo+ P12+ f2a = (1,1,0,0,0,1) B.
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Doing this for all m € {1,...,12}, we find the design matrix Z given in Table 3. Note that
we can also let R find the design matrix by itself, see Listing 1 given below.

intercept (Bo) | van (B1,2) truck (B1,3) | 31-40y (B2,2) 41-50y (B2,3) 51-60y (B2.4)
1 0 0 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
1 1 0 0 0 0
1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1
1 0 1 0 0 0
1 0 1 1 0 0
1 0 1 0 1 0
1 0 1 0 0 1

(b)

Updated: November 18, 2019

Table 3: Design matrix Z (1,1 = 2,1 = 0).

The R code used for parts (b), (¢) and (d) is given in Listing 1 below. According to formula
(7.11) of the lecture notes (version of March 20, 2019), the MLE of the parameter vector 3 is
given by
#MLE 10 27\=1r1—1rp1( _27\—1 1 eN—1 rzt
= [Z(e2) 2] 2" (02X = (2'2)"\ 7' X.
~MLE

Note that 8 does not depend on o2. Moreover, the design matrix Z has full column rank
and, thus, Z’Z is indeed invertible. We get the following tariff structure:

Bo ="7.688 | 21-30y 31-40y 41-50y 51-60y | B,
passenger car | 2’182 1’759 1’500 1’501 0
delivery van | 2’063 1’663 1’417 1’419 | -0.056
truck 2’444  1°970  1°680 1’682 | 0.113
Ba,; 0 -0.216  -0.375 -0.374

Table 4: Tariff structure resulting from the log-linear Gaussian regression model.

If we use the same parametrization as in Exercises 10.1 and 10.2, we get the following table:

exp{fo} =1 | 21-30y 31-40y 41-50y 51-60y | exp{Bi.}
passenger car | 2’182 1’759 1’500 1’501 1
delivery van | 2’063 1’663 1’417 1’419 0.95
truck 2’444 1’970 1’680 1’682 1.12
exp{f2,;} 27182 1’759 1’500 1’501

Table 5: Tariff structure with the same parametrization as in Exercises 10.1 and 10.2.

Note that the tariffs in Tables 4 and 5 do not change with the different parametrization.

We see that the results are very close to those found in Exercises 10.1 and 10.2, where we
applied the method of Bailey & Simon and the method of Bailey & Jung. The only differences
are that with the method of Bailey & Jung we get coinciding marginal totals and with
the log-linear Gaussian regression model we are in a stochastic framework which allows for
calculating parameter uncertainties and hypothesis testing, i.e we get standard errors and we
can make statements about the statistical significance of the parameters.
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According to the R output, we get the following p-values for the individual parameters:

BO 51,2 61,3 52,2 52,3 52,4
p-value [ ~0 0.2322 0.0366 0.0045 0.0003 0.0003

Table 6: Resulting p-values for the individual parameters.

For every parameter, R calculates the corresponding p-value by applying a t-test to the
null hypothesis that the parameter under consideration is equal to 0. While the p-values
for Bo, f1,3, B2,2, 82,3, B2,4 are smaller than 0.05 and, thus, these parameters are significantly

different from zero, the p-value for 31,2 (delivery van) is fairly high. Hence, we might question
if we really need the class delivery van. This is in line with the observations that the risk
characteristics for the classes passenger car and delivery van are close to each other, see Tables
1,2, 4 and 5.

In order to check whether there is statistical evidence that the classification into different
types of vehicles could be omitted, we define the null hypothesis of the reduced model:

Hy: B2 = B3 =0,

i.e. we set p = 2 parameters equal to 0. We can perform the same analysis as above to get the

~MLE
MLE By, of the reduced model Hy. In particular, let Zg, be the design matrix Z without
the second column van (f51,2) and the third column truck (51,3). Then, we have

~MLE
Br, = (ZuyZm) ' Z,X.

Now, for all m € {1,...,12} we define the fitted value )A(,f,‘j“ of the full model and the fitted
value XnIfU of the reduced model. In particular, we have

)?full _ |:ZBMLEi|
and
SHy ~MLE
Xm - |:ZH0/BH0 :|m7
where [-],, denotes the m-th element of the corresponding vector, for all m € {1,...,12}.

Moreover, we define the residual differences

M
full _ _ v full 2
SSE =" (X — X))

m=1
and
M N2
sste = % (Xm —X,’;{O) .
m=1

According to formula (7.17) of the lecture notes (version of March 20, 2019), the test statistic

SSHy — SSM M —r —1 Sio — SShl
T — err err — 3 err err
S5aT P 5551

has an F-distribution with degrees of freedom given by dfj =p=2and dfs =M —r —1=6.
We get
T ~ 8.336,

which corresponds to a p-value of approximately 1.85%. Thus, we can reject Hy at significance
level of 5%, i.e. there seems to be no statistical evidence that the classification into different
types of vehicles could be omitted.
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Listing 1: R code for Exercise 10.3.

### Load the observed claim amounts into a matrix

S <- matrix(c(2000,2200,2500,1800,1600,2000,1500,1400,1700,1600,1400,1600),

### Define the design matrix Z

Z <- matrix(c(rep(1,12),rep(0,4) ,rep(1,4),rep(0,12),rep(1,4),rep(c(0,1,0,0),3),

### Store design matrix Z and log(S_{i,j})

rep(c(0,0,1,0),3),rep(c(0,0,0,1),3)), nrow=12)

in one dataset

data <- as.data.frame(cbind(Z[,-1],matrix(log(t(S)) ,nrow=12)))
colnames (data) <- c("van", "truck", "X31_40y",

### Apply the regression model

linear .modell <- 1lm(formula = observation ~ van+truck+X31_40y+X41_50y+X51_60y,

summary (linear .modell)

### Fitted values
matrix (exp(fitted(linear.modell)), byrow=TRUE,

### We can also get the parameters by applying
solve (t(Z)%*%Z) %*% t(Z) %*% matrix(log(t(S)),

###
car
age
dat

We
<-
<-
<-

can also use R directly on the data (it
c("passenger car", "van", "truck")

"X41_50y",

nrow=3)

formula (7.11) of the lecture notes

nrow=12)

finds the design matrix internally)

c("X21_30y", "X31_40y", "X41_50y", "X51_60y")

expand.grid(car, age)

colnames (dat) <- c("car","age")
dat$observation <- as.vector (log(S))

linear.modell.direct <-

summary (linear .modell.direct)

### Apply the regression model under H_O,
linear.model2 <- 1lm(formula = observation ~ X31_40y+X41_50y+X51_60y,

test.stat <- 3*(sum((datal[,6]-fitted(linear.model2)) 2)-sum((datal[,6]-fitted(linear.modell))"~2))

lm(formula = observation

car+age, data=dat)

/sum((data[,6]-fitted(linear.modell))~2)
pf(test.stat, 2, 6, lower.tail=FALSE)

### We can also directly use anova to test H_O
anova(linear .modell,linear.model?2)

"X51_

60y",

calculate the test statistic F and the p-value

"observation")

Solution 10.4 Tweedie’s Compound Poisson Model

(a) We can write S as

where N ~ Poi(\v), Y1,Y3,. ..
distribution function of a gamma distribution, we have G(0) = 0 and, thus,

P[S =0] = P[N =0] = exp{—X\v}.
Let € (0,00). Then,

ii.d.

fs(x)

where we have

P[S < z]

n=0

IP[N:OHiP

Updated: November 18, 2019

i]P’[ng,N:n

~" G and N and (Y1,Yo,..

d

AA’PLS S;xL

dx

i=1

n=1

.) are independent. Since G is the

the density fs of S at x can be calculated as

] = > P[S<xz|N=n]PN =n]
n=0

P[S§x|N:0]P[N:0]+i]P’[S§x|N:n}]P’[N:n]
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ii.d

Since Y1,Ys,... ~ T'(v,c), we get

i Yi ~ F(nVa C)
i=1

By writing f,, for the density function of I'(n+y, ¢), for all n € N, we get

fs(m):d‘i<P[N=0]+ZP anx ) Zdi ZY<$ P[N = n]
= > fula) BN =] = 3 o expl e} exp{—Ao} )

— _ Y\ ny—1
exp{—(cz + M)} 321()\110 ) F(n’y)n!x
o0 1
— _ 1 Y\ ny—1
exp{ (cx + M) + log 321()\110 ) F(nfy)n!x 1 } ,

for all z € (0,00). Note that one can show that interchanging summation and differentiation
in the second equality above is indeed allowed. However, the proof is omitted here.

(b) Let X ~ fx belong to the exponential dispersion family with w, ¢,0,b(-) and ¢(-,-,-) as given
on the exercise sheet. Then, we have

1
)\v EEE
— = —av = = —x vy | — = —cx,
(725/71) y+1 ()\vv) v+l c
Ay c

for all z > 0, and

Moreover, since

(v +71)7+1 (Z)”‘l (1t

I

|
>
<
2
o

oY

|
>
1
o
\.Q

we have, for all x > 0,

c(x, p,w) = log <Z

Il
[a—
o
o
L
Ngk
—~
>
<
o
2
~—
[y
&
3
3
L
| E—
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By putting the above terms together, we get, for all = > 0,

260 — b(0)

Ix(x;0,0) = eXp{(b/w

elaou)

S yyn__ 1 ny—
Z(Avc ) F(nv)n!x 11}

n=1

= exp {—(cx + \v) + log

= fs(x),

and
0-6—10(0)

¢/w

We conclude that S indeed belongs to the exponential dispersion family. Note that with this
result at hand one might be tempted to estimate the shape parameter « of the claim size
distribution and to do a GLM analysis directly on the compound claim size S. However, there
are two reasons to rather perform a separate GLM analysis of the claim frequency and the
claim severity instead: First, claim frequency modelling is usually more stable than claim
severity modelling and often much of the differences between tariff cells are due to the claim
frequency. Second, a separate analysis of the claim frequency and the claim severity provides
more insights into the differences between the tariffs.

fx(0;0,9) = eXp{ + ¢(0, ¢, w)} = exp{—Xv} = P[S =0].
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Solution 11.1 Claim Frequency Modeling with GLM

(a) In this exercise we work with three tariff criteria. The first criterion (vehicle class) has 2 risk
characteristics:

B1,1 (weight over 60 kg and more than two gears) and ;2 (other).
The second criterion (vehicle age) also has 2 risk characteristics:
P21 (at most one year) and fa2 (more than one year).
The third criterion (geographic zone) has 3 risk characteristics:
Bs,1 (large cities), f32 (middle-sized towns) and [33 (smaller towns and countryside).

We write Ny, 1,1, for the numbers of claims, vy, ;, ;, for the volumes and ), ;, ;, for the claim
frequencies of the risk classes (I1,12,13),1 <13 <2,1 <y <2,1 <l3 < 3. We assume that all
Ni, 15,15 are independent with

Nll,lmls ~ POi(All,l27l3vl1,l2,l3),

and define
X _ Nl11127l3
l1,l2,l3 — :

Vly,la,l3

In particular, we have

Ny is
/\11,12713 =K |: 22 = E[thlz,ls] .

Viq,12,13
We model
I\ a1s) = 9(E[X, 1,05]) = Bo+ Briy + B, + B,

where 5y € R and where we use the log-link function, i.e. g(-) = log(-). In order to get a
unique solution, we set 51,1 = f2,1 = f3,1 = 0. Moreover, we define

B = (Bo, 1,2, P22, B3,2, B33) € R,

where r = 4. Similarly as in Exercise 10.3, we relabel the risk classes with the index
me{l,...,M}, where M =2-2-3 =12, define X = (Xy,...,X ) and the design matrix
Z € RM*(r+1) that satisfies

log E[X] = ZB,

where the logarithm is applied componentwise to E[X]. Let m € {1,...,12}. According to
Example 7.9 of the lecture notes (version of March 20, 2019), X,,, = N,,/v,, belongs to the
exponential dispersion family with cumulant function b(-) = exp{-}, 6,, = log Apn, W, = vy
and dispersion parameter ¢ = 1, i.e. we have

[ZB)m = logE[X,,] = logE [Nm} = log\,, = 0,

m
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where [Zf],, denotes the m-th element of the vector ZB. Summarizing, we assume that
X1,..., X are independent with

X ~ EDF(0,, = [ZB8]m, d = 1, W = v, () = exp{-}),

for all m € {1,...,M}. As b(-) = exp{-}, we also have b/(-) = exp{-}, where b’ denotes the
first derivative of b. In particular, the log-link function g(-) = log(-) is equal to the canonical
link function A(-) = (') ~!(-) = log(-) in the Poisson model. Therefore, we can use equation

~MLE
(7.26) of the lecture notes (version of March 20, 2019): the MLE B of B is the solution of
ZVY(ZB) = Z'Vexp{ZB} = Z'VX, (1)

where the weight matrix V' is given by V = diag(vy,...,var), see also Proposition 7.11 of
the lecture notes (version of March 20, 2019). Equation (1) has to be solved numerically.
We refer to Listing 1 for the application of this GLM model in R. The resulting MLEs of
the parameters By, 51,2, 82,2, 33,2, 33,3 are given in the first row of Table 1. We observe that
insureds with a vehicle with weight over 60 kg and more than two gears tend to cause more
claims than insureds with other vehicles. Analogously, if the vehicle is at most one year old,
we expect more claims than if it is older. Regarding the geographic zone, we see that driving
in middle-sized towns leads to fewer claims than driving in large cities. Moreover, driving in
smaller towns and countryside leads to even fewer claims than driving in middle-sized towns.
Similarly as the log-linear Gaussian regression model discussed in Exercise 10.3, the GLM
framework allows for calculating parameter uncertainties and hypothesis testing. According
to the R output, for the individual parameters we get the p-values listed in the second row of
Table 1. These p-values are all substantially smaller than 0.05 and, thus, all the parameters
are significantly different from zero.

Bo B2 B2,2 B3.2 B33
MLE -1.4351 -0.2371 -0.5019 -0.4036 -1.6571
p-value ~0 0.0009 ~0 ~0 ~0

Table 1: MLEs of the parameters B, 81,2, 32,2, 83,2, 83,3 and corresponding p-values.

Listing 1: R code for Exercise 11.1 (a).

### Determine the design matrix Z

class <- factor(c(rep(1,6),rep(2,6)))

age <- factor(c(rep(1,3),rep(2,3),rep(1,3),rep(2,3)))
zone <- factor(c(rep(1:3,4)))

volumes <- c¢(1,2,5,4,9,70,2,3,6,8,15,50)*100

counts <- c¢(25,15,15,60,90,210,45,45,30,80,120,90)

Z <- model.matrix(counts ~ class + age + zone)

### Store design matrix Z (without intercept term), counts and volumes in one dataset
data <- as.data.frame(cbind(Z[,-1],counts,volumes))

### Apply GLM

d.glm <- glm(counts ~ class2 + age2 + zone2 + zone3, data=data, offset=log(volumes),
family=poisson())

summary (d.glm)

(b) The plots of the observed and the fitted claim frequencies against the vehicle class, the vehicle
age and the geographic zone are given in Figure 1, the corresponding R code in Listing 2.
Note that the observed and the fitted marginal claim frequencies are always the same. This is
a direct consequence of equation (1) above, which ensures that the observed and the fitted
total marginal sums are the same (if we use the same volumes again), see also the remarks
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after Proposition 7.11 in the lecture notes (version of March 20, 2019). Moreover, in the
marginal plot for the vehicle class we do not see that insureds with a vehicle with weight
over 60 kg and more than two gears tend to cause more claims than insureds with other
vehicles, as we would have expected after the discussion at the end of part (a). The reason
for this peculiarity is that the MLE 3172 is driven by the risk cells with the biggest volumes
(v = 7’000 and v12 = 5°000). However, in these risk cells with the biggest volumes we observe
very low claim frequencies. This implies that these risk cells have a small impact on the mean
claim frequency. As a consequence, the resulting mean claim frequency is of similar size for
both vehicles with weight over 60 kg and more than two gears and for other vehicles. For the
other variables vehicle age and geographic zone we again see the same results as in part (a).

Claim frequencies Claim frequencies Claim frequencies
> 1 m observed o 7 m observed & 7 m observed
S o m fitted s N m fitted s N m fitted
S o S o S O
g o g o g o
= 8 | s 8 | E B
E o E o E o
K . o B o B
o < o < o <
c 94 c 94 c <
@ O ©c O c O
[} — [} — 5} —
= o =g - =3 -
o - o - o
o o o - )
weight > 60 kg, nr. of gears > 2 other at most one year two years or more large cities  medium towns  small towns
Vehicle class Vehicle age Geographic zone

Figure 1: Observed and fitted claim frequencies against the vehicle class, the vehicle age and the
geographical zone.

Listing 2: R code for Exercise 11.1 (b).

### Store features, observed numbers of claims and fitted numbers of claims in one dataset
data2 <- as.data.frame(cbind(class, age, zone, volumes, counts, fitted(d.glm)))
colnames (data2) [5:6] <- c("observed","fitted")

### Marginal claim frequencies for the two class categories

library (plyr)

class.comp <- ddply(data2, .(class), summarise, volumes=sum(volumes), observed=sum(observed),

fitted=sum(fitted))

par (mar=c(5.1, 4.6, 4.1, 2.1))

barplot (t(as.matrix(class.comp[,3:4]/class.comp[,2])), beside=TRUE,
names.arg=c("weight > 60 kg, nr. of gears > 2", "other"), main="Claim frequencies",
ylim=c(0,0.15), xlab="Vehicle class", ylab="Mean claim frequency", legend.text=FALSE,
col=1:2, cex.names=0.95, cex.lab=1.5, cex.main=1.5, cex.axis=1.5)

legend ("topright", legend=c("observed ", "fitted "), fill=1:2, cex=1.25)

### Marginal claim frequencies for the two age categories
age.comp <- ddply(data2, .(age), summarise, volumes=sum(volumes), observed=sum(observed),
fitted=sum(fitted))

barplot (t(as.matrix(age.comp[,3:4]/age.comp[,2])), beside=TRUE,
names.arg=c("at most one year", "two years or more"), main="Claim frequencies",
ylim=c(0,0.15), xlab="Vehicle age", ylab="Mean claim frequency", legend.text=FALSE,
col=1:2, cex.names=0.95, cex.lab=1.5, cex.main=1.5, cex.axis=1.5)

legend ("topright", legend=c("observed ", "fitted "), fill=1:2, cex=1.25)

### Marginal claim frequencies for the three zone categories
zone.comp <- ddply(data2, .(zone), summarise, volumes=sum(volumes), observed=sum(observed),
fitted=sum(fitted))

barplot (t(as.matrix (zone.comp[,3:4]/zone.comp[,2])), beside=TRUE,
names.arg=c("large cities", "medium towns", "small towns"), main="Claim frequencies",
ylim=c(0,0.15), xlab="Geographic zone", ylab="Mean claim frequency", legend.text=FALSE,
col=1:2, cex.names=0.95, cex.lab=1.5, cex.main=1.5, cex.axis=1.5)

legend ("topright", legend=c("observed ", "fitted "), fill=1:2, cex=1.25)
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(¢) The Tukey-Anscombe plot given in Figure 2 can be generated by the R code of Listing 3.
The plot looks rather fine in the sense that we do not observe any structure. However, we
remark that we only have 12 observations in this example and, thus, it is difficult to detect
possible patterns and to make a clear statement.

Tukey—Anscombe plot

Deviance residuals
-1

-2
o
o

-3

50 100 150

Fitted expected numbers of claims

Figure 2: Tukey-Anscombe plot.

Listing 3: R code for Exercise 11.1 (c).

### Deviance residuals
dev.red <- residuals.glm(d.glm)

### Tukey-Anscombe plot
par(mar=c(5.1, 4.4, 4.1, 2.1))
plot (data2$fitted, dev.red, main="Tukey-Anscombe plot",
xlab="Fitted expected numbers of claims", ylab="Deviance residuals",
ylim=c(-max (abs(dev.red)) ,max(abs(dev.red))), cex.lab=1.25, cex.main=1.25, cex.axis=1.25)
abline (h=0, col="red")

(d) We perform two tests in order to check if there is statistical evidence that the classification
into the geographic zones could be omitted. Note that in part (a) we have seen that we tend
to have considerably fewer claims for drivers in smaller towns and countryside than for drivers
in middle-sized towns. The same holds true for middle-sized towns and large cities. Thus, we
would expect that the classification into the three different geographic zones is reasonable.
Now we investigate this. The estimates of the expected values of X, are given by

~ ~ ~MLE

b = b(0) = exp{&m} = exp{[ZB ]m},

forall m =1,..., M, and we write i = (fi1,...,an)". According to page 196 of the lecture
notes (version of March 20, 2019), the scaled deviance statistics is given by

M
D*(X,71) = % S wn(Xonhl(Xm) = BB(Xm)] — Xno(Fim) + D[R]

M
2 Z Um, (Xm 1Og Xm - Xm, - Xm log ,am + ,Dﬂm) . (2)

m=1
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Moreover, since for the Poisson case we have ¢ = 1, the scaled deviance statistics D* (X, it)
and the deviance statistics D(X, pi) are the same. In order to check whether there is statistical
evidence that the classification into the geographic zones could be omitted, we define the null
hypothesis

Hy: 32 = B33 = 0.

Thus, in the reduced model we set the above p = 2 variables equal to 0. Then, we can

~MLE
recalculate By~ for this reduced model and define

=R ~MLE
K g, = exp {ZHOBHO } ;

where Zp, is the design matrix in the reduced model. According to formula (7.30) of the
lecture notes (version of March 20, 2019), the test statistic

F = l)()rviszo)'_'l)()(aiz) M—-r—-1 _ z l)()(aizfio)'_ l)()(,iZ)
D(X,p) P 2 D(X,n)

has approximately an F-distribution with degrees of freedom given by df; = p = 2 and
dfs =M —r—1=17. We get
F ~ 51.239,

which corresponds to a p-value of approximately 0.007%. Thus, we can reject Hy at significance
level of 5%. According to formula (7.31) of the lecture notes (version of March 20, 2019), a
second test statistic is given by

X? = D(X, g,) — D*(X, ).

The test statistic X2 has approximately a x2-distribution with df = p = 2 degrees of freedom.
We get
X? ~ 389.882,

which corresponds to a p-value of approximately 2.179 - 10~8%, which is basically 0. Thus,
we can reject Hy at significance level of 5%. Since we can reject Hy using both tests, we
can conclude that there seems to be no statistical evidence that the classification into the
geographic zones could be omitted. For the R code used in part (d) we refer to Listing 4.

Listing 4: R code for Exercise 11.1 (d).

### Deviance statistics of the full model
D.full <- d.glm$deviance

### Fit the reduced model
d.glm.2 <- glm(counts ~ class2 + age2, data=data, offset=log(volumes), family=poisson())
summary (d.glm.2)

### Deviance statistics of the reduced model

© 00Uk WN =

D.reduced <- d.glm.2$deviance

### Calculate the test statistic F
test.stat <- 7/2x(D.reduced-D.full)/D.full

### Calculation of the corresponding p-value
pf (test.stat, 2, 7, lower.tail=FALSE)

### Calculate the test statistic X72
X.2 <- D.reduced-D.full

### Calculation of the corresponding p-value
pchisq(X.2, 2, lower.tail=FALSE)
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Solution 11.2 Claim Frequency Modeling with Neural Networks

(a)

The Poisson deviance statistics calculated on the datasets trainset and testset with the R
code of Listing 5 are given in the first column of Table 2.

GLM NN (100 epochs) NN (1’000 epochs)
deviance statistics trainset | 1’314.7 709.7 111.6
deviance statistics testset | 1'454.3 1°070.2 1'523.5

Table 2: Deviance statistics.

Listing 5: R code for Exercise 11.2 (a).

### Apply GLM (on the training set)
d.glm <- glm(ClaimNb ~ VehPower+VehAge+DrivAge, data=trainset, offset=log(Exposure),

family=poisson())

summary (d.glm)

### Deviance statistics on training set

predtrain <- predict(d.glm, trainset, type="response")

obstrain <- trainset$ClaimNb

(Deviancetrain <- 2*sum(log((obstrain/predtrain) obstrain)-obstrain+predtrain))
d.glm$deviance ### check deviance statistics on training set

### Deviance statistics on test set

predtestGLM <- predict(d.glm, testset, type="response")

obstest <- testset$ClaimNb

(Deviancetest <- 2*sum(log((obstest/predtestGLM) obstest)-obstest+predtestGLM))

(b)

We fit the neural network for 100 gradient descent steps, see the R code given in Listing 6 and
use the resulting model to calculate the Poisson deviance statistics on the datasets trainset
and testset, see the second column of Table 2. We observe that the neural network leads to
smaller values of the deviance statistics on both the datasets trainset and testset. This
is an indication that the neural network model has better predictive power than the GLM
model. We remark that a simple GLM model like the one used in this exercise usually is
not able to cope with interactions between the tariff criteria, in contrast to neural network
models. This might explain the lower deviance statistics observed for the neural network
model on the data testset. However, we do not further investigate this here.

We perform the exact same fitting procedure as in part (b), with the only difference that
we use 1’000 gradient descent steps instead of only 100. The resulting Poisson deviance
statistics on the datasets trainset and testset are given in the third column of Table 2.
On the one hand, we see that the deviance statistics on the dataset trainset used during
training is smaller than for the GLM model of part (a) and the neural network model with
100 gradient descent steps of part (b). However, this “better” fit is deceiving. In fact, the
deviance statistics on the dataset testset is bigger than for the GLM model of part (a) and
the neural network model with 100 gradient descent steps of part (b). We emphasize that the
dataset testset has not been seen during training and, thus, is the correct dataset to analyze
the predictive power of a fitted model. We conclude that with 1’000 gradient descent steps
we are in the situation of overfitting to the training data trainset. Therefore, the number of
gradient descent steps has to be chosen carefully. Usually, one splits the available dataset
into a learning set and a validation set. The learning set is then used to perform the gradient
descent steps and to fit the model. The validation set can be used to track over-fitting to
the learning set. As long as the deviance statistics on the validation set decreases, we are
learning additional model structure. Once the deviance statistics on the validation set starts
to increase again, we reach the phase of over-fitting where we are not learning (true) model
structure anymore but rather peculiarities of the learning set, which is undesirable.
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Listing 6: R code for Exercise 11.2 (b) and (c¢) (Neural network model).

### Features, volumes, responses and initial estimate

Ztrain <- model.matrix(data=trainset, ClaimNb ~ VehPower+VehAge+DrivAge)
trainset [,6:30] <- as.data.frame(Ztrain[,-1])

Ztest <- model.matrix(data=testset, ClaimNb ~ VehPower+VehAge+DrivAge)
testset [,6:30] <- as.data.frame(Ztest[,-1])

featlearn <- data.matrix(trainset[,6:30])

feattest <- data.matrix(testset[,6:30])

vollearn <- as.vector(log(trainset$Exposure))

voltest <- as.vector(log(testset$Exposure))

resplearn <- as.vector(trainset$ClaimNb)

resptest <- as.vector(testset$ClaimNb)

lambda0 <- sum(trainset$ClaimNb)/sum(trainset$Exposure)

### Keras model
seedl <- 100
use_session_with_seed(seedl)
Design <- layer_input (shape=c(25), dtype="float32", name="Design")
LogVol <- layer_input(shape=c(1), dtype="float32", name="LogVol")
Network <- Design %>%
layer_dense (units=20, activation="tanh") %>/
layer_dense (units=10, activation="tanh") %>%
layer_dense (units=1, activation="linear", name="Network",
weights=1list (array(0,dim=c(10,1)), array(log(lambda0),dim=c(1))))
Response <- list(Network, LogVol) %>%
layer_add (name="Add") %>%
layer_dense (units=1, activation=k_exp, name="Response", trainable=FALSE,
weights=1list (array(1,dim=c(1,1)), array(0,dim=c(1))))
model <- keras_model (inputs=c(Design, LogVol), outputs=c(Response))
model %>% compile(optimizer=optimizer_nadam(), loss="poisson")

### Prepare features and responses for keras and fit the neural network model

xlearn = list(Design=featlearn, LogVol=vollearn)
ylearn = list(Response=resplearn)

xtest = list(Design=feattest, LogVol=voltest)
ytest = list (Response=resptest)

epochs <- 100 ### c) 1000
model %>% fit(x=xlearn, y=ylearn, epochs=epochs, verbose=1)

### Deviance statistics on training set

predtrain <- as.vector (model %>% predict(xlearn))

obstrain <- trainset$ClaimNb

(Deviancetrain <- 2*sum(log((obstrain/predtrain) obstrain)-obstrain+predtrain))

### Deviance statistics on test set

predtestNN <- as.vector(model %> predict(xtest))

obstest <- testset$ClaimNb

(Deviancetest <- 2xsum(log((obstest/predtestNN) obstest)-obstest+predtestNN))

Solution 11.3 Claim Severity Modeling with GLM

(a) In this exercise we work with three tariff criteria. The first criterion (area code) has 6 risk
characteristics:

Bi1 (A), Bi2(B), Bi3(C), Bia (D), Pfis5(E) and pi6 (F).

The second criterion (brand of the vehicle) has 11 risk characteristics:

Baq (B1), B22 (B10), ..., Ba6 (B14), B2z (B2), ..., B211 (B6).
The third criterion (diesel/fuel) has 2 risk characteristics:
P31 (diesel) and [32 (regular fuel).

Therefore, we consider risk classes (I1,12,103),1 <1y < 6,1 <1y < 11,1 <3 < 2. We write
ny,, for the numbers of claims in risk class (I1,l2,13) and we only consider risk classes with
(4)

INCREY

l2,l3
Ny is0s > 0. The ny, 4, 1, individual claim sizes in risk class (11, l2,13) are denoted by Y,
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i=1,...,1m 1,1,- We assume that all YZEZL 1, are independent with

Ylgl,)zz,l3 ~ (v, c1y,05,05),

where v > 0 is a global shape parameter and ¢;, 1,1, > 0 a risk-class dependent scale parameter.
The total claim amount Yj, 4, ;. in risk class (I1,l2,13) is then given by

Ty ,lg,l3

_ (1)
Yi oty = E : Yll,lg,l3 ~ F(’yn11712713,611’l2,l3).
i=1

For the average claim amount X, ;, s, in risk class (I1,l2,13) we have

Yi, 1,0

102,03

Xiy ol = ~ F(’Ynlhlz,lsvCl1,l27lsnl1,l27l3)'
Ny lz,15

We model
g (E [Xl17121l3]) = BO + Bl,h + ﬂQ,lz + /83,l37
where 8y € R and where we use the log-link function, i.e. g(-) = log(-), which leads to a

multiplicative structure. In order to get a unique solution, we set 811 = B21 = 3,1 = 0.
Moreover, we define

B = (BosBr2,---+ 516, P22, P11, 032) € R,

where r = 16. Similarly as in Exercises 10.3 and 11.1, we relabel the risk classes with the
index m € {1,..., M}, where M =6-11-2 =132, define X = (Xy,..., X )" and the design
matrix Z € RM*(+1) that satisfies

logE[X] = Z8,
where the logarithm is applied componentwise to E[X]. Let m € {1,..., M}. According to
Section 7.4.4 of the lecture notes (version of March 20, 2019), X,,, belongs to the exponential
dispersion family with cumulant function b(0) = —log(—0) for 8 < 0, 0,, = —cn /Y, Wi = N,
and dispersion parameter ¢ = 1/7, i.e. we have

CmTim Cm m

[ZB]m = logE[X;] = logﬂ = logl = log <_91> )

where [Zf],, denotes the m-th element of the vector Z3. Summarizing, we assume that
X1,..., X are independent with

Xm ~ EDF (0., = —exp{—[ZB|m}, ¢ = 1/7v, wm = nm, b(0) = —log(-0)),

for all m € {1,...,M}. As b(f) = —log(—0), we have b'(-) = —1/6, where b’ denotes the
first derivative of b. In particular, the log-link function g(-) = log(-) is not equal to the
canonical link function h(u) = (b')~1(u) = —1/p in the gamma model. Therefore, we cannot
use equation (7.26) of the lecture notes (version of March 20, 2019) in order to determine

~ML

the MLE 3 of B. However, according to Proposition 7.13 of the lecture notes (version of
~MLE

March 20, 2019), the MLE 3 of B is the solution of

Z'Voexpl{ZB} = Z'Vo X, (3)
where the weight matrix Vp is given by Vg = diag(—61n1,...,—0pmna). Note that assuming

a constant scale parameter «y for all risk cells m = 1,... M, the dispersion parameter ¢ = 1/
cancels from the weight matrix defined on page 195 of the lecture notes (version of March 20,
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2019). Equation (3) has to be solved numerically. We refer to Listing 7 for the R code used in
this exercise. The resulting MLEs of the parameters Sy, 523, 82,7, 03,2 that are (statistically)
significantly different from 0 (on a 10% level) are given in the first row of Table 3. We observe
that we expect higher claim sizes in regions B11 and B2, compared to the reference region B1.
Moreover, claim sizes tend to be higher if a car with regular fuel is involved compared to a
diesel car. We remark that the parameters corresponding to the individual categorical levels
of the covariate area code are not (statistically) significantly different from 0 (on a 10% level).
However, this does not mean that the covariate area code itself is not statistically significant,
see part (b).

Bo B2,3 Ba,7 B2
MLE 7.6116 0.528%8 0.1991 0.1846

p-value ~0 0.0585 0.0898 0.0321

Table 3: MLEs of the statistically significant parameters and corresponding p-values.

The estimates of the expected values of X,,, are given by
R ~ ~ ~MLE
Hm = b/(om) = _eml = exp{{Zﬁ :| }7

forall m=1,..., M, and we write i = (fi1, ..., ) . According to page 196 of the lecture
notes (version of March 20, 2019), the deviance statistics is given by

D(X,i) = 2 ) wn(Xnh(Xim) = bIh(Xm)] = Xunh(Him) + blh(Fim)])

M
=2 Z nm(_l —log X, + Xm/ﬁm + logﬁm)-

m=1

Estimating ¢ by
(Z _ D(Xa “)
b M-r—1
see page 197 of the lecture notes (version of March 20, 2019), we have for the scaled deviance
statistics
M

~ ~ 2 - ~
DY (X, ) = 2({x(X) = tx({i) = = > _ nn(—1 = 1og Xpn, + X /fim + 108 fim)-
D m=1

We perform two tests in order to check if there is statistical evidence that the area code could
be omitted as tariff criterion. We define the null hypothesis

Hy : 61,2 == ﬁ176 = 0.

Thus, in the reduced model we set the above p = 5 variables equal to 0. Then, we can

~MLE
recalculate By~ for this reduced model and define

N ~MLE
Ky, = €Xp {ZHOBHO } )

where Zp, is the design matrix in the reduced model. According to formula (7.30) of the
lecture notes (version of March 20, 2019), the test statistic

D(XvﬁHo)_D(Xaﬁ)M_r_l gD(Xvﬁ’HO)_D(Xaﬁ)

F p— — = —
D(X, ) p 5 D(X, )
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has approximately an F-distribution with degrees of freedom given by df; = p = 5 and
dfs = M —r —1=115. We get
F ~ 2.983,

which corresponds to a p-value of approximately 1.44%. Thus, using the F-test, we can reject
Hj at significance level of 5%. According to formula (7.31) of the lecture notes (version of
March 20, 2019), a second test statistic is given by

X2 = D*(XaﬁHO) _D*(X7//j')

The test statistic X2 has approximately a x2-distribution with df = p = 5 degrees of freedom.
We get
X? ~ 14.917,

which corresponds to a p-value of approximately 1.07%. Thus, also using the x2-test we can
reject Hy at significance level of 5%. We can conclude that there seems to be no statistical
evidence that the area code could be omitted as tariff criterion, even though the individual
categorical levels of the covariate area code are not (statistically) significantly different from
0 (on a 10% level), see part (a).

Listing 7: R code for Exercise 11.3.

### Apply GLM

d.glm <- glm(ClaimAmount ~ Area+VehBrand+VehGas, data=data, weights=ClaimNb,
family=Gamma (link="1log"))

summary (d.glm)

### Calculate the deviance statistics of the full model
D.full <- d.glm$deviance

### Fit the reduced model and calculate the deviance statistics

d.glm.2 <- glm(ClaimAmount ~ VehGas+VehBrand, data=data, weights=ClaimNb,
family=Gamma (1ink="1log"))

D.reduced <- d.glm.2$deviance

### Calculate the test statistic F and the corresponding p-value
round ((test.stat <- d.glm$df.residual/5*(D.reduced-D.full)/D.full),3)
pf(test.stat, 5, d.glm$df.residual, lower.tail=FALSE)

### Calculate the test statistic X72 and the corresponding p-value
phi.est <- d.glm$deviance/d.glm$df.residual

round ((X.2 <- D.reduced/phi.est-D.full/phi.est),3)

pchisq(X.2, 5, lower.tail=FALSE)

Solution 11.4 Neural Networks and Gradient Descent

(a) We model the regression function a : Z — R, with a a single hidden layer neural network
with 7; € N hidden neurons. Our feature space is Z C R™*! with ry = 1, i.e. we have input
dimension rg = 1. We assume that the first component of the covariates z = (1,2) € Z is
equal to 1 for modeling an intercept. We define the parameter vectors

B = (81081 € R,
forall j=1,...,7r;, and

Y = (57,0,....02) e RIHL
The hyperbolic tangent activation function is given by

e*r — 1

m, fOI“$€R.

¥(z) = tanh(z) =
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For covariates z = (1, z) € Z, the activations in the hidden layer are then given by

V(=) = (L@, a(),

where ) . ) )

V() = v ((B.2) = v (80 +512),
forall j =1,...,ry. Since the codomain of a(-) has to be R, we define a log-linear regression
approach as follows

a(z) = ag(z) = exp {(B?,qM(2))} = exp{ B £ 3520 b
j=1

with resulting network parameter
B =(B....80.87) e R

having dimension p = (ro + 1)r1 + 71 +1=(14+1)r;1 +r;1 +1=3r + 1.

As we assume independent Pareto distributions with threshold 6 > 0 and covariate-dependent
tail index a(z,,) > 0 for the data Y = (Y1,..., Yy ) with corresponding covariates z1, ..., 2z,
the joint log-likelihood function ¢y (8) is given by

M —apg(zm)—1
ag(zm) (Ym B
ty(B) = log H %) <0>
m=1

= Y,
= Z log ag(zm) —logl — [ag(zm) + 1] log Tm
m=1

In the saturated model we assume one parameter «,, per observation m. This parameter o,
is determined by maximizing the individual MLE for observation m, i.e. we have to maximize

(s} Ym
g(am) def log(ay,) —log 6 — (ay, + 1) log —

0
with respect to a,,, for allm =1,..., M. If we take the derivative with respect to a,,, we get
0] 1 Y,
Oglam) _ 1. “log 1m
ooy, A 0

forall m =1,..., M. This is equal to 0 if and only if

1
Q= , 4
" T (4)

for all m =1,..., M. For the second derivative of g(a.,) with respect to a., we get

0? 1

Poom) _ L _,

daz, a2,

for all m =1,..., M. That is, in the saturated model we have parameter & = (a1, ..., aar)

with a,,, given as in (4), for all m =1,..., M. For the log-likelihood of the saturated model
we then have

by (Y) = ilo #710 60— $+1 lo Y
i flogZ P77 \logZe &7

m=1 0g
M
Yo Yo
= Z —loglog — —logf — 1 — log —.
= 0 0
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Finally, the (scaled) deviance statistics is given by

M Y, Y,
Ly(B) =206y (Y)—ty(B)) =2 Z —log log Tm —1—logag(zm) + ag(zm) log 7m

m=1

A neural network model with a large number of hidden neurons is heavily over-parametrized.
Therefore, a maximum likelihood estimator would lead to overfitting of the model to the data
(in-sample). Thus, we are only interested in finding a sufficiently good approximation which
has also a good out-of-sample performance. We believe that such a ‘good’ parametrization
can be reached for example by the gradient descent method.

For the derivative of the hyperbolic tangent activation function v we have

Ip(x) ¥ =1 27(* +1) =2 (* —1)  4de¥
or  Ore2 +1 (€2 +1)2 T (e 1)
B (62w + 1)2 _ (e2w _ 1)2 B 9
- (e2* 4+ 1)2 = 1—=9¢().

In the gradient descent optimization algorithm the goal is to decrease a given loss function by
iteratively updating the model parameters. In our case we would like to decrease the (scaled)
deviance statistics Ly (3) derived in part (b) above. To this end, for a given 3, we move in
the direction of the maximal local decrease of the deviance statistics, i.e. in the direction of
the negative gradient VgLy (8) of the deviance statistics. We calculate

L aLy(B) & 1 Y] 0ap(zm)
VeLy(B) = 78,8 = 2m§:1 [_Oée(zm) + log 0} 78,8 ,

where we have

dop(zm) _ ag(zm)ﬂj(-z) (1 - [qj(l)(z)}Q) ’

98}
Oag(z 2
Dp(em) _ (2,5 (1 - [=)] ) -
B, 1
Oag(zm)
Qaalzn) _ o ()
9B
aag (Zm) (1)
2aptEn) — ap(2)" (=),
65](-2) B j
forallm=1,...,M and j =1,...,71. In one single step of the gradient descent optimization

algorithm we have the update

B — B—pVsLly(B),

where p > 0 is the so-called learning rate. Note that one should carefully choose an appropriate
stopping time of the algorithm in order to prevent from overfitting; and one should also
carefully choose p > 0 because the gradient descent steps lead to a decrease locally.
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Solution 12.1 (Inhomogeneous) Credibility Estimators for Claim Counts

First, we note that

1o % E[u(©;)] = E[0:X] = Ao = 0.088.

Then, we define

N;
Xi1 = ’1,
Vi1
for all i € {1,...,5}. We have
1 1
E[Xi1]0:] = E[Ni1|0i] = w(Oi)vin = u(O;)
Vi1 Vi1
e ©) _ a*(6)
1 1 n(O; o i
Var( z7l|@z) 'Ui271 Var( z,llez) U,il M(®z> V3,1 'Ui71 'Ui,l )
with

for all i € {1,...,5}. Moreover, since
E[1(0:)?] = Var(u(©:)) + E[u(6:)] = 72 + A < 0

and

O,
EIX2,10.] = Var(X,10) + BlX.lo? = 2O 4 ye,2
i1
we get
o; A
E[le] = E[]E[Xf,ﬂ@iﬂ =E [Mi ) +N(@i)2:| = Uio +77+ 2§ < o0,
i1 i,1

for all ¢ € {1,...,5}. In particular, Model Assumptions 8.12 of the lecture notes (version of March
20, 2019) for the Biithlmann-Straub model are satisfied. The (expected) volatility o2 within the
regions defined in formula (8.4) of the lecture notes (version of March 20, 2019) is given by

o? = E[o?(0;)] = E[u(©;)] = Ao = 0.088.

(a) Let ¢ € {1,...,5}. Then, according to Theorem 8.16 of the lecture notes (version of March
20, 2019), the inhomogeneous credibility estimator is given by

—
j——

w(©;) = ayr )AQ,LT + (1 — au7) po,

with credibility weight a; 7 and observation based estimator )A(i,l:T

Vi1 o 1
Q= ———7 and Xiir = —vin Xin = X1,
Vi1t == V5,1
Hence, we get

E—— Vi1 a? i1 0.088

= i T2 — % 0.00024
n(©i) = — Xi1 + — o = —gomg— X1 + —2008 0~ 0.088.

Vi1t 7z viit+ = Vi,1 + 560024 Vi, 1 T 5.00024
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The results for the five regions are summarized in the following table:

region 1 region 2 region 3 region 4 region 5
o T 99.3% 96.5% 99.7% 99.0% 92.0%
XiiT 7.8% 7.8% 7.4% 9.8% 7.5%
wo) | 8%  T9%  T4%  98%  T.6%

Table 1: Estimated credibility weights a; 7, observation based estimates )A(M:T and inhomogeneous

—
iy

credibility estimates p(©;) in regions i = 1,...,5.

Updated: December 2, 2019

Note that since the credibility coefficient x = 02/72 a2 367 is rather small compared to the
volumes vy 1,...,vs,1, the credibility weights aq r,..., a5 are fairly high. Moreover, the
observation based estimates are almost the same for the regions 1,2, 3 and 5, only )?471@ is
roughly 2% higher. As a result, only for the smallest two credibility weights as 7 and as
we see a Sli@ipwards deviation of the corresponding inhomogeneous credibility estimates

o

@ and ;@ from the observation based estimates )?271:71 and )?571@ towards pg = 8.8%.

If we decreased the volatility 72 between the risk classes, the credibility coefficient k = o2 /72
would increase and, thus, the credibility weights o 7, ..., a5 7 would decrease. Consequently,
the credibility estimates would move stronger towards pg = 8.8%.

Since the number of policies grows 5% in each region, next year’s numbers of policies

V1,2,...,Vs52 are given by
region 1 region 2 region 3 region 4 region 5
vi2 | 52’564 10642 127’376 36’797 4’402
Table 2: Next year’s numbers of policies in regions i = 1,...,5.

Similarly to part (a), we define

N,
X’L,Z = 1)27

Vi 2

for all 4 € {1,...,5}. According to the exercise sheet, next year’s numbers of claims stay

within the Bithlmann-Straub model framework assumed for this year’s numbers of claims.
Thus, according to formula (8.16) of the lecture notes (version of March 20, 2019), the mean
square error of prediction is given by, for all ¢ € {1,...,5},

N. 2
v
We get the following root mean square errors of prediction for the five regions:

o
= +(1_Oéi,T)7'2-
Vi, 2

=E

(1)

i,2

region 1 region 2 region 3 region 4 region 5
v/mean square errors of prediction | 0.185%  0.408%  0.119%  0.221%  0.627%
in % of the credibility estimates 2.4% 5.2% 1.6% 2.2% 8.3%

Table 3: Root mean square errors of prediction in regions i =1,...,5.

Note that we get the highest root mean square errors of prediction for regions 2 and 5,
i.e. exactly for those regions for which we also have the lowest volumes and, consequently, the
lowest credibility weights. Of course, this is due to formula (1).
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Solution 12.2 (Homogeneous) Credibility Estimators for Claim Sizes

We define

v _ Yu
it — )
Vit

for all i € {1,2,3,4} and t € {1,2}. Then, we have

1 1 91 CU; .
E[Xi0:] = —E[Yi:|0:] = %L Jevie = 1u(6;)
Vit Vit c
and o o 20
1 1 i)CU; i (o2 i
Var(X,,0;) = — Var(Yi,[©;) = Tu( 2 L MO _ 76
Uit Uit c CU; ¢ Vit
with o o
7o) = MO - O
for all i € {1,2,3,4} and t € {1,2}. Moreover, using that
O; =
BX, 101 = Var(X.,/61) + EIX; o = K22 1 o2 = O o2,
1, 2,1

we get

E[X}] = E[E[X?,|6]] = E [C(j +®?} < 0
it

by assumption, for all i € {1,2,3,4} and ¢ € {1,2}. In particular, Model Assumptions 8.12 of the
lecture notes (version of March 20, 2019) for the Bithlmann-Straub model are satisfied.

(a)

First, following Theorem 8.16 of the lecture notes (version of March 20, 2019), we define the
observation based estimator X; 1.7 as

T
S 1 Vi1 X1 + 02X 0 Yi1+Yio
Xitr = ——— Vi Xip = =
) T ) ) . + . X + X )
Zt:l Vit =1 Vi1 Vi, 2 Vi1 Vi, 2

for all i €{1,2,3,4}. Then, we need to estimate the structural parameters o2 = E[0?(0;)]

and 72 = Var(uu(01)). According to formula (8.14) of the lecture notes (version of March 20,
2019), 02 can be estimated by

I T
R 1 1 -
o2 = Z § 71 E Vit (X — Xipr)? ~ 1.3-10%.

In order to estimate 72, we define first the weighted sample mean X over all observations by

e Y; Y,
X ZZUHXMZM 7004,
Zz 12:& 1 Vit j=1 t=1 Zl 1 Vi1 T Vi

Then, following the lecture notes, we define 5%, Cw and PT as

I

. I , , N N2

’U% _ Z IUZ,I + Vj,2 (XLl;T _ X) ~ 93. 107’
I =y v + 0

s 1
I1-1 Z Vi1 + Vg2 Vi1 + Vg2

i D=1 Vi1 T U2 =101 + V52
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and
~2
9 Io%
o |V — =
Zizl Vi1t Vi2

Then, using formula (8.15) of the lecture notes (version of March 20, 2019), 72 is estimated by

t

) ~ 1.25-108.

73 = max {13,0} = 3 ~ 1.25-10°.

Now let i € {1,2,3,4}. According to Theorem 8.16 of the lecture notes (version of March 20,
2019), the homogeneous credibility estimator is given by

_——hom
j—

1(0;)

with credibility weight o; 7 and estimate fip

= air Xipr+ (1 - a;7) fir,

. 1

Vi1 + V2 i
T

~2 /=2
Vi1 + Vi2 + 03 /77

and

I
i = > airXiir ~ 14'538.

T
dim T o

The results for the four risk classes are summarized in the following table:

risk class 1 risk class 2 risk class 3 risk class 4
;T 95.4% 98.4% 82.5% 89.6%
Xi1r 10’493 1’907 18’375 29’197
_———_hom
1(0;) 10677 2’107 17702 27°665

Table 4: Estimated credibility weights a; 1, observation based estimates )A(m:T and homogeneous

credibility estimates u(0;)

Updated: December 2, 2019

_——_hom
j—

in risk classes i = 1,2, 3, 4.

Looking at the credibility weights oy 7,2 7, a3 7 and a4, we see that the estimated
credibility coefficient & = 62./72 ~ 104 has the biggest impact on risk classes 3 and 4, where
we have less volumes compared to risk classes 1 and 2. As a result, the smoothing of the
observation based estimates X1 1.7, X2.1.7, X3,1.:7 and Xy 1.7 towards fip ~ 14’538 is strongest
for risk classes 3 and 4.

Since the number of claims grows 5% in each risk class, next year’s numbers of claims

v1,3,...,04,3 are given by

risk class 4
479

risk class 3
262

risk class 2
3’468

risk class 1
1’167

V;,3

Table 5: Next year’s numbers of claims in risk classes i = 1,2, 3, 4.

Similarly to part (a), we define

Vi3’
for all ¢ € {1,2,3,4}. According to the exercise sheet, next year’s total claim sizes stay within

the Biihlmann-Straub model framework assumed for the previous year’s total claim sizes.
Thus, according to formula (8.17) of the lecture notes (version of March 20, 2019), the mean
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square error of prediction can be estimated by, for all i € {1,2, 3,4},

Y, _— hom) 2 _— hom) 2
E <l3 = 1(6;) > =E (Xm — () )

V5,3
/\2
o 1—q
T ~2 i,T
=T (=) (14— )
Vi3 D el QAT

We get the following estimated root mean square errors of prediction for the four risk classes:

(2)

risk class 1 risk class 2 risk class 3  risk class 4
v/mean square errors of prediction 4’108 2’392 8’508 6’360
in % of the credibility estimates 38.5% 113.5% 48.1% 23.0%

Table 6: Estimated root mean square errors of prediction in risk classes i = 1,2, 3, 4.

According to formula (2), the smaller the volumes in a particular risk class, the bigger the
corresponding estimated root mean square error of prediction. Moreover, note that these
estimated root mean square errors of prediction are rather high compared to the credibility
estimates, which indicates a high variability within the individual risk classes.

Solution 12.3 Degenerate MLE and the Poisson-Gamma Model

(a) We observe that Ny =0 for all ¢ = 1,...,T. In this case, the log-likelihood function £n () of
the data N = (Ny, ..., Nr) for the unknown parameter A > 0 is given by

T
By N
Z log <exp{ /\vt}( vi) > Zlog (exp{—Av:}) = =X Z Vg
As the volumes vy, ..., v are positive, we see that £ () increases as A decreases, i.e. here

we are in the situation of a degenerate Poisson model with MLE XT = 0. If we used this
degenerate model for premium calculations, we would get a pure risk premium of 0, as we do
not expect any claims. Of course, a model with zero pure risk premium does not make any
sense, i.e. we need to circumvent this degenerate case. This can be done for example with the
Poisson-gamma model considered in part (b).

(b) (i) The prior estimator Ay of the unknown parameter A is given by

1
Mo = E[A] = 2 =

%.
According to Theorem 8.2 of the lecture notes (version of March 20, 2019), we have
T T
A (53N 3o,
t=1 t=1

where we write N = (Ni,..., Ny). Therefore, the posterior estimator AB™' of the
unknown parameter A is given by

YHEY N 140 1
e+ v 50450 100

APst — E[A|N] =
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(i)

(iii)

According to Corollary 8.4 of the lecture notes (version of March 20, 2019), we can write

:\\g«OSt = QT :\\T + (1 - OZT) )\0

by setting
T
ar = 2= (),
C+Zt:1’Ut
In our case we get
o — 50 1
T R04+50 2
Indeed, we check
~ 1 1 1 1 ~
1— =_. 1—= ) = = — = qpost,
ar A+ ( ar) Ao 3 O—|—< 2) 50 100 AT

Similarly as in item (i), for the posterior estimator X%Ojtl, conditionally given data

(N13U1)7 RN (NT+1aUT+1)a we get

Spost _ 7EXa N 14l 2
T+1 c+ Sy, 504+60  110°

According to Corollary 8.6 of the lecture notes (version of March 20, 2019), we can write

~pos N7 ~bos
A%‘jitl = Brs1 'UT:11 + (1 = Bryr) AN
by setting
UT+41
Bry1 = ——77— € (0,1).
e+ Y v

In our case we get

gy = 101
T 50+60 11
Indeed, we check
Nriq et 11 1\ 1 11 2 st
1— Aot — (- =) = = S = \POSt
br+1 V11 +(1=Fre) A TR 11)100 ~ 110 110 110 _ 7T

(¢) Note that, by definition, a Poisson random variable requires a positive frequency parameter.
In case of a frequency parameter which is equal to 0, we are in the degenerate Poisson model,
see also part (a). However, if A ~ N(u,0?), then the probability that A is negative is given

by

P[A < 0] :]P’{A_N<—ﬂ —o(-2) >0,

g g g

where ® denotes the distribution function of a standard Gaussian distribution. As there
is a positive probability that the frequency parameter A is negative, we conclude that a
Poisson-normal model is not well-defined and, thus, not reasonable.
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Solution 12.4 Pareto-Gamma Model

(a) Let fy|a denote the density of Y[A and fa the density of A. Then, we have

Jyin@i, - yr|A =) =

and

fala) = FC(;) o rexp{—ca} - 1{a>0}

Let fa)y denote the density of A|Y. Then, for all & > 0 and y1,...,yr > 6, we have

fyialyr, - yr|A = @) fala)
.fOOO fY|A(y17 R 7yT|A = .’E) fA(fL') dx

T —a
T Yt ~y—1
X « — (0% eXpy—Ccx

T
= o T texp {—a Z log yet} exp{—ca}

t=1

= " T lexp{ —a lo &Jrc .

T
AY ~ F(’y—i—T,c—&—Zlog t).

t=1

Iayy(@Yi=y1,....Yr =yr) =

We conclude that

| <

(b) First, we observe that

~ T
Yo =EA =21  and R = EAY] = — L
c c+ g log
Then, we can write
Y+ T iy log ¥ T c

Ipost o
Ap = =

+ —_
c+ Zthl log % c+ Zthl log % Zthl log % ¢+ Z:{:l log % ¢

= QTXT + (1 — aT) )\0,
with . y
> i—1log

ap = —==1 >0
C+ZtT:1 log%

(¢) For the (conditional mean square error) uncertainty of the posterior estimator X%OSt =E[A]Y]

we have

v+ T

B[(a-3)’|v] - e[ - maw)?

Y} = Var (A]Y) =

1 ~ 1~
_ /\%OSt _ (1 o aT) E )\g_‘ost.

T t
¢+, log %

Updated: December 2, 2019
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(c + Zthl log %)
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(d) Analogously to Ab*'| the posterior estimator AL in the sub-model where we only have
observed (Y7,...,Yr_1) is given by

’):post _ v+ T-1
17T ST T og Y

Thus, we can write

Jpost _ v+ T _ logYTT 1 c—l—ZtT;lllog% y+T -1
r c+ Ethl log % c+ ZtT:l log % log % c+ Ethl log % c+ EtT:_ll log %
1 ~

_ _ post

- BT IOgY(;l +(1 BT) )‘T—]_)
with

5 log %
T = ——7 -
c+ 23:1 log %

Remark: Suppose we want to use the observations Y7,...,Yr_1 in order to estimate Y in a

Bayesian sense. Then, we have

I[‘E[Y—T|Y—17 N ,YTfl] =E [E [YT|Y1, N ,YTfl,A] |Y1, ey YTfl] a.s.
= ]E[]E [YT|A] ‘Yla"wYT—l] a.8.,
where in the second equality we used that, conditionally given A, Y7, ..., Y  are independent.

Now, by assumption,
Yr|A ~ Pareto(6, A).

In particular, E[Y7|A] < oo if and only if A > 1. However, according to part (a) (for T'— 1
instead of T observations), we have

-1y
t
A(Yy,...,. Y1) ~ T ('y—l—T— 1,c+ til log9> .

Since the range of a gamma distribution is the whole positive real line, this implies that
0<P [A < ].|Y1, - 7YT71] =P [E [YT|A] = OO|Y—17 Ce 7Y—T,1] a.s.

We conclude that
E[Yr|Y1,...,Yr_1] = o0 as.
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Solution 13.1 Chain-Ladder Algorithm

(a) According to formula (9.5) of the lecture notes (version of March 20, 2019), the CL factor f;
can be estimated by

I—j—1 I-j-1
o _ Zisi Cignn _ i Cij  Cign
’ il Ciy peril) D R SRS
forall j =0,...,J —1. Then, forall¢=2,...,Jand j =1,...,J withi+4j > I, C; ; can be
predicted by

)

j—1

ACL 7L

Cor =G ] #"
k=I—i

see formula (9.6) of the lecture notes (version of March 20, 2019). In particular, for the

prediction QC}; of the ultimate claim C; ; we have, for all i =2,...,1,
J—1
C = cCurm I - (1)
j=I—i
The estimates ]?OCL, ceey Affl and the prediction of the lower triangle D¢ are given in Table 1.
We see that f&F ~ 1.5, while ijL isclose to 1 forall j=1,...,J—1, i.e. we observe a rather

fast claims settlement in this example.

accident development year j

year i 0 1 2 3 4 5 6 7 8 9
1
2 10663318
3 10’646’884  10’662’008
4 9'734°574  9'744’764  9'758°606
5 9'837°277  9’847°906  9'8587214 9872218
6 10°005°044  10°056’528  10°067’393 10°077°931  10°092°247
7 9419776 9’485’469  9'534’279  9’544’580  9’554’571  9’5687143
8 8445°057 &570°389  8630°159  8'674’568  8'683'940  8'693°030  &705°378
9 8'243'496 8'432°051 8557190  8616’868 8661208  §'670’566  8'679'642  8'691'971
10 8’470'989  9’129'696 9’338'521 9’477°113  9’543°206  9'592’313  9’602’676  9'612'728  9°626’383

‘ f]CL H 1.493 1.078 1.023 1.015 1.007 1.005 1.001 1.001 1.001

Table 1: Estimates %CL, ceey ?}1 and prediction of the lower triangle Df.

(b) The CL reserves R at time t = I are given by

<

—1
5 CL ACL ZCL
R =Cif —Cig—i = Cijr— fim=1],

1
j=I—i

for all accident years ¢ = 2,...,I. Moreover, since C; j = C1 ;-1 is known, we have ’R?L =0.
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Summarizing, we get the following CL reserves REE:

accident year ¢ | 1 2 3 4 5 6 7 8 9 10
CL reserves REY | 0 15126 26’257 34’538 85'302 1567494 286’121 449’167 1°043'242  3'950’815

Table 2: CL reserves ﬁ?L for all accident years ¢ =1,...,1.

By aggregating the CL reserves over all accident years, we get the CL predictor RCL for the
outstanding loss liabilities of past exposure claims:
I
R =3 "R = 6047061,

i=1

Solution 13.2 Bornhuetter-Ferguson Algorithm

(a) Let Cy > 0 be some initial value for development period j = 0. Then, for all j =0,...,J —1
we define BT to be the proportion paid after the first j development periods according to
the estimated CL pattern from Exercise 13.1. In particular, we calculate

R : ﬁ
= =T
Co Hl 0 l l 0 l t 1=0 f
and
J—1
Q0L _ o Hl 0 l Hl 0 l _ 1
] “Y )
Co Hl 0 lCL Hl 0 lCL I=j fICL
forall j=1,...,J — 1. We get the following proportions:
development period j 0 1 2 3 4 5 6 7 8

proportion BJCL paid so far | 0.590 0.880 0.948 0.970 0.984 0.991 0.996 0.998 0.999

Table 3: Proportions BJCL paid after the first j development periods according to the estimated CL

pattern from Exercise 13.1.

According to formula (9.8) of the lecture notes (version of March 20, 2019), in the Bornhuetter-
Ferguson method the ultimate claim C; ; is predicted by

CPY = Ciq—i+ i (1 - }LLZ) ;

for all accident years ¢ = 2,...,I. Thus, the Bornhuetter-Ferguson reserves ﬁ?F are given by

SBF ABF ~ ACL
Ri" = Ciy —Cir—i = Wi (1 - I—i) )

for all accident years i = 2, ..., 1. Moreover, since Cy ; = C; ;1 is known, we have RPY = 0.
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Summarizing, we get the following BF reserves ﬁ?pz

accident year i 1 2 3 4 5 6 7 8 9 10

BF reserves REF | 0 16’124 26'998 37'575 95434 178°024 341’305 574°089 1'318'646 47768°384

Table 4: BF reserves ﬁ?F for all accident years i =1,...,1.

By aggregating the BF reserves over all accident years, we get the BF predictor RBF for the
outstanding loss liabilities of past exposure claims:

I
RPF = Y "RPF = 73567580
i=1
(b) Note that for accident year i = 1 we have
RO = 0 = REF.
Now let ¢ = 2,...,I. Then, we observe that
RV < REF,
This can be explained as follows: Equation (1) can be rewritten as

J—1 J—-1
Cﬂf =Cir— H fAJCL =Cir—i+Cir— H J?]CL -
iy

j=I—i j=I—i

J-1 J-1
1

Ciri+Ciri [] - 11 = | = Cir-i CzJ( ICLz)'
i j

j=I—i j=I—i

Comparing this to
CPY = Ciyi + i (1 - ?}z)

and noting that for the prior information f; we have fi; > C “j» we immediately see that
ey < CPY,
which of course implies that
REY = CC% — Oy ey < CBY — Oy = REF.

We conclude that choosing a prior information ji; which is bigger than the estimated CL
ultimate C’CL leads to more conservative, i.e. higher reserves in the Bornhuetter-Ferguson
method compared to the chain-ladder method.
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Solution 13.3 Over-Dispersed Poisson Model
(a) According to Theorem 9.11 of the lecture notes (version of March 20, 2019), the MLEs

pMLE s EYEE and AME ] AMEE of 4y, pup and Yo, ..., v are given by
1\ 1y 1
~MLE ACL ~SMLE
pi" =Cy and A = <1 - ACL) H o
i—1/ k=5 Jk
foralli=1,...,JTand j=1,...,J—1, where éLC} is the prediction of the ultimate claim C; ;
and J:"; the estimated CL factor f; from the chain-ladder model of Exercise 13.1. Moreover,
we have
e 1
W =11 o ad S (1 - FoL ) '
k=0 Jk J—-1
The values of the MLEs p)ME ... AMLE are given in Table 5, the values of the MLEs
AOILE . AMLE in Table 6.
accident year ¢ 1 2 3 4 )
MLE zMLE 11°148’124  10°663’318  10°662’008 9’758’606 9’872°218
accident year ¢ 6 7 8 9 10
MLE pMLE 10°092°247  9’568’143  8'705°378  8’691'971  9°626°383

Table 5: Values of the MLEs g)ME ... pMLE,

development year j 0 1 2 3 4 5 6 7 8 9
MLE '8 0.590 0.290 0.068 0.022 0.014 0.007 0.005 0.001 0.001 0.001

Table 6: Values of the MLEs A1LE, ... AYLE,

(b) According to Theorem 9.11 of the lecture notes (version of March 20, 2019), the ODP reserves

ROPP are given by

R?DP _ AMLE § : AMLE7

j=I—i+1
for all accident years i = 2,...,I. Moreover, since C; ; = C1 ;1 is known, we have R?DP =0.
Summarizing, we get the following ODP reserves RPPY:

accident year 7 1 2 3 4 5 [§ 7 8 9 10
ODP reserves RPPY | 0 15126 26'257 34’538 85’302 156’494 286’121 449’167 1°043'242  3'950°815

Table 7: ODP reserves ﬁ?DP for all accident years i =1,...,1.

We observe that ﬁiODP = ﬁch for all accident years i = 1,...,I, where ﬁZCL are the CL
reserves from Exercise 13.1. As a matter of fact, this observation holds true in general, see
Theorem 9.11 of the lecture notes (version of March 20, 2019). By aggregating the ODP
reserves over all accident years, we get the ODP predictor RODPP for _the outstanding loss
liabilities of past exposure claims (which is equal to the CL predictor R"):

I I
ROPP = S ROPP = 6047061 = > R = RO

i=1 i=1
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(¢) As the ODP model belongs to the family of GLM models, we can calculate the ODP reserves

also using the GLM machinery. In particular, we work with the two risk characteristics
accident year i, with parameters £;1,...,51,r, and development year j, with parameters
B2,0,- .., 02,4, where B1; corresponds to accident year i and 3, ; to development year j.
Compared to the parametrization on the exercise sheet, in order to apply GLM techniques,
we use the following re-parametrization. We assume that all X; ; are independent with

X .
—% ~ Poi(\ij/9),
o)
for all risk classes (4,7),1 <i < I,0<j<.J, where Ai,; denotes the mean parameter. Note

that we work with volumes which are constantly equal to 1. Moreover, in a Poisson GLM
model we would set ¢ = 1. Here we assume a general dispersion parameter ¢ > 0. We have

E[X;;] = ¢E {QSJ] = ¢ q;j = Aijs

and we model
g(Nij) = 9(E[Xi;]) = Bo+ Bri+ P2,

where By € R and where we use the log-link function, i.e. g(-) = log(-). In order to get a
unique solution, we set 811 = B2,0 = 0. We refer to Listing 1 for the application of this

over-dispersed Poisson GLM model in R.

Listing 1: R code for Exercise 13.3 (c).

### Load the required packages
library (readxl)
library (plyr)

### Download the data from the link indicated on the exercise sheet

### Store the data under the name "Exercisel3Data.xls" in the same folder as this R code
### Load the data

data <- read_excel ("Exercisel3Data.xls", sheet="Data_1", range="B22:K31", col_names=FALSE)

### ODP as GLM Model
data2 <- as.data.frame(data)
data2[,2:10] <- data2[,2:10]-data2[,1:9]

data2 <- stack(data2, select=c("X__1","X__2","X__3","X__4","X__5","X__6","X__7","X__8","X__

"X__10"))
data2[,2] <- rep(1:10)
data2[,3] <- rep(0:9,each=10)
colnames (data2) [2:3] <- c("AY","DY")
data2$AY <- as.factor(data2$AY)
data2$DY <- as.factor(data2$DY)
lower.ind <- is.na(data2[,1])
upper <- data2[is.na(data2[,1])==FALSE,]
lower <- data2[is.na(data2[,11),]
0DP <- glm(values ~ AY+DY, data=upper, family=quasipoisson())
lower[,1] <- predict (0ODP, newdata=lower, "response")
ODP.GLM.reserves <- rep(0,10)
ODP.GLM.reserves [1] <- 0
ODP.GLM.reserves [2:10] <- ddply(lower, .(AY), summarise, reserves=sum(values))[,2]
round (ODP.GLM.reserves)

### MLEs for the accident years
exp(c(0,0DP$coefficients [2:10])+0DP$coefficients [1])*sum(exp(c(0,0DP$coefficients [11:19])))

### MLEs for the development years
round (exp (c (0, 0DP$coefficients [11:19]))/sum(exp(c(0,0DP$coefficients[11:19]1))),3)

Running the R code of Listing 1, we can confirm that the ODP GLM model leads to
the same reserves as the CL method. In order to check the MLE parameters of Tables 5
and 6, we have to go back to the parametrization used on the exercise sheet. We write
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,B%\/ILE, A{v{lLE, . ,@fﬁLE, @YILE ’ﬂl LE for the resulting MLEs of the ODP GLM model. By
setting

= o (R ) Yo (7).

()

Vi =
Zk Oexp{MLE}

foralli=1,...,I, and

forall j =0,...,J, we get

NMLE _
A = exp

— o {RmE AMLE}zi: o {7e)

— Jiii

{AMLE + /\MLE _’_B\MLE}

In particular, we get back to the parametrization used on the exercise sheet. The values of
i, i=1,...,]and 5;, j =0,...,J, are calculated on lines 26 and 29 of Listing 1. We can
confirm that we get the same values as in Tables 5 and 6.

Solution 13.4 Mack’s Formula and Merz-Wiithrich (MW) Formula

(a) The R code used in this exercise is provided in Listing 2. We get the following results:

accident || CL reserves +/total msep in % of the +/CDR msep in % of the
year i 7€ZCL (Mack) reserves (MW) V/total msep
1 0 - - - -
2 15’126 267 1.8 % 267 100 %
3 267257 914 3.5 % 884 97 %
4 34’538 3’058 8.9 % 2948 96 %
5 85’302 7628 8.9 % 7018 92 %
6 156’494 33’341 21.3 % 32’470 97 %
7 286’121 73’467 25.7 % 66’178 90 %
8 449’167 85’398 19.0 % 50’296 59 %
9 1°043°242 134’337 12.9 % 104’311 78 %
10 3'950’815 410’817 10.4 % 385’773 94 %
total 6°047°061 462’960 7.7 % 4207220 91 %

Table 8: CL reserves 7/€ch , Mack’s square-rooted conditional mean square errors of prediction and
MW’s square-rooted conditional mean square errors of prediction for all accident years i = 1,...,1.

(b) Mack’s square-rooted conditional mean square errors of prediction give us confidence bounds
around the CL reserves. We see that for the total claims reserves the one standard deviation
confidence bounds are 7.7%. The biggest uncertainties can be found for accident years 6, 7
and 8, where the one standard deviation confidence bounds are roughly 20% or even higher.

(¢) MW’s square-rooted conditional mean square errors of prediction measure the contribution of
the next accounting year to the total (run-off) uncertainty given by Mack’s square-rooted
conditional mean square errors of prediction. For aggregated accident years, we see that 91%
of the total uncertainty is due to the next accounting year. This high value can be explained
by the fast claims settlement already discovered in Exercise 13.1, (a).

Updated: December 6, 2019 6/7



© 000U WN -

Non-Life Insurance: Mathematics and Statistics, D-MATH
HS 2019

Solution sheet 13

Listing 2: R code for Exercise 13.4 (a).

### Load the required packages
library (readxl)
library (ChainLadder)

### Download the data from the link indicated on the exercise sheet

### Store the data under the name "Exercisel3Data.xls" in the same folder as this R code

### Load the data
data <- read_excel ("Exercisel3Data.xls", sheet="Data_1", range="B22:K31",

### Bring the data in the appropriate triangular form and label the axes
tri <- as.triangle(as.matrix(data))
dimnames (tri)=1list (origin=1:nrow(tri),dev=1:ncol(tri))

### Calculate the CL reserves and the corresponding mseps
M <- MackChainLadder (tri, est.sigma="Mack")

### CL reserves and Mack’s square-rooted mseps (including illustrations)
M

plot (M)

plot (M, lattice=TRUE)

### CL reserves, MW’s square-rooted mseps and Mack’s square-rooted mseps
CDR (M)

### Mack’s square-rooted mseps in % of the reserves
round (CDR (M) [,3]/CDR(M) [,1],3)*100

### MW’s square-rooted mseps in % of Mack’s square-rooted mseps
round (CDR(M) [,2]/CDR(M) [,3],2)*100

### Full uncertainty picture
CDR(M, dev="all")

col_names=FALSE)
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