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Solution 1.1 Discrete Distribution

(a) Note that N only takes values in N>0 and that p ∈ (0, 1). Hence, we calculate

P[N ∈ R] =
∞∑

k=1
P[N = k] =

∞∑
k=1

(1− p)k−1p = p

∞∑
k=0

(1− p)k = p
1

1− (1− p) = 1,

from which we can conclude that the geometric distribution indeed defines a probability
distribution on R.

(b) For n ∈ N>0 we get

P[N ≥ n] =
∞∑

k=n

P[N = k] =
∞∑

k=n

(1− p)k−1p = (1− p)n−1p

∞∑
k=0

(1− p)k = (1− p)n−1,

where we used that p
∑∞

k=0(1− p)k = 1, as was shown in (a).

(c) The expectation of a discrete random variable that takes values in N>0 can be calculated (if
it exists) as

E[N ] =
∞∑

k=1
k · P[N = k].

Thus, we get

E[N ] =
∞∑

k=1
k(1− p)k−1p =

∞∑
k=0

(k + 1)(1− p)kp =
∞∑

k=0
k(1− p)kp+

∞∑
k=0

(1− p)kp

= (1− p)E[N ] + 1,

where we again used that p
∑∞

k=0(1− p)k = 1, as was shown in (a). We conclude that

E[N ] = 1
p
.

(d) Let r ∈ R. Then, we calculate

E[exp{rN}] =
∞∑

k=1
exp{rk} · P[N = k] =

∞∑
k=1

exp{rk}(1− p)k−1p

= p exp{r}
∞∑

k=1
[(1− p) exp{r}]k−1 = p exp{r}

∞∑
k=0

[(1− p) exp{r}]k.

Since (1− p) exp{r} is strictly positive, the sum on the right hand side converges if and only
if (1 − p) exp{r} < 1, which is equivalent to r < − log(1 − p). Hence, E[exp{rN}] exists if
and only if r < − log(1− p), and in this case we have

MN (r) = E[exp{rN}] = p exp{r} 1
1− (1− p) exp{r} = p exp{r}

1− (1− p) exp{r} .
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(e) For r < − log(1− p) we have

d

dr
MN (r) = d

dr

p exp{r}
1− (1− p) exp{r} = p exp{r}[1− (1− p) exp{r}] + p exp{r}(1− p) exp{r}

[1− (1− p) exp{r}]2

= p exp{r}
[1− (1− p) exp{r}]2 .

Hence, we get

d

dr
MN (r)

∣∣
r=0 = p exp{0}

[1− (1− p) exp{0}]2 = p

[1− (1− p)]2 = p

p2 = 1
p
.

We observe that d
drMN (r)

∣∣
r=0 = E[N ], which holds in general for all random variables for

which the moment generating function exists in an interval around 0.

Solution 1.2 Absolutely Continuous Distribution

(a) We calculate

P[Y ∈ R] =
∫ ∞
−∞

fY (x) dx =
∫ ∞

0
λ exp{−λx} dx = [− exp{−λx}]∞0 = [−0− (−1)] = 1,

from which we can conclude that the exponential distribution indeed defines a probability
distribution on R.

(b) For 0 < y1 < y2 we calculate

P[y1 ≤ Y ≤ y2] =
∫ y2

y1

fY (x) dx =
∫ y2

y1

λ exp{−λx} dx = [− exp{−λx}]y2
y1

= exp{−λy1} − exp{−λy2}.

(c) The expectation and the second moment of an absolutely continuous random variable can be
calculated (if they exist) as

E[Y ] =
∫ ∞
−∞

xfY (x) dx and E[Y 2] =
∫ ∞
−∞

x2fY (x) dx.

Thus, using partial integration, we get

E[Y ] =
∫ ∞

0
xλ exp{−λx} dx = [−x exp{−λx}]∞0 +

∫ ∞
0

exp{−λx} dx

= 0 +
[
− 1
λ

exp{−λx}
]∞

0
= 1

λ
.

The variance Var(Y ) can be calculated as

Var(Y ) = E[Y 2]− E[Y ]2 = E[Y 2]− 1
λ2 .

For the second moment E[Y 2] we get, again using partial integration,

E[Y 2] =
∫ ∞

0
x2λ exp{−λx} dx =

[
−x2 exp{−λx}

]∞
0 +

∫ ∞
0

2x exp{−λx} dx

= 0 + 2
λ
E[Y ] = 2

λ2 ,
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from which we can conclude that

Var(Y ) = 2
λ2 −

1
λ2 = 1

λ2 .

Note that for the exponential distribution both the expectation and the variance exist. The
reason is that exp{−λx} goes much faster to 0 than x or x2 go to infinity, for all λ > 0.

(d) Let r ∈ R. Then, we calculate

E[exp{rY }] =
∫ ∞

0
exp{rx}λ exp{−λx} dx =

∫ ∞
0

λ exp{(r − λ)x} dx.

The integral on the right hand side and therefore also E[exp{rY }] exist if and only if r < λ.
In this case we have

MY (r) = E[exp{rY }] = λ

r − λ
[exp{(r − λ)x}]∞0 = λ

r − λ
(0− 1) = λ

λ− r
,

and therefore
logMY (r) = log

(
λ

λ− r

)
.

(e) For r < λ we have

d2

dr2 logMY (r) = d2

dr2 log
(

λ

λ− r

)
= d2

dr2 [log(λ)− log(λ− r)] = d

dr

1
λ− r

= 1
(λ− r)2 .

Hence, we get
d2

dr2 logMY (r)|r=0 = 1
(λ− 0)2 = 1

λ2 .

We observe that d2

dr2 logMY (r)|r=0 = Var(Y ), which holds in general for all random variables
for which the moment generating function exists in an interval around 0.

Solution 1.3 Gaussian Distribution

(a) Let r ∈ R. Then, we calculate

MX(r) = E [exp {rX}] =
∫ ∞
−∞

exp{rx} 1√
2πσ

exp
{
−1

2
(x− µ)2

σ2

}
dx

=
∫ ∞
−∞

1√
2πσ

exp
{
−1

2
x2 − 2(µ+ rσ2)x+ µ2

σ2

}
dx

=
∫ ∞
−∞

1√
2πσ

exp
{
−1

2
x2 − 2(µ+ rσ2)x+ µ2 + 2rµσ2 + r2σ4 − 2rµσ2 − r2σ4

σ2

}
dx

= exp
{
rµ+ r2σ2

2

}∫ ∞
−∞

1√
2πσ

exp
{
−1

2
[x− (µ+ rσ2)]2

σ2

}
dx

= exp
{
rµ+ r2σ2

2

}
,

where the last equality holds true since we integrate the density of a normal distribution with
mean µ+ rσ2 and variance σ2.
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(b) The moment generating function Ma+bX of a+ bX can be calculated as

Ma+bX(r) = E [exp {r(a+ bX)}] = exp {ra}E [exp {rbX}] = exp {ra}MX(rb),

for all r ∈ R. Using the formula for the moment generating function of X given in part (a),
we get

Ma+bX(r) = exp {ra} exp
{
rbµ+ (rb)2σ2

2

}
= exp

{
r(a+ bµ) + r2b2σ2

2

}
,

which is equal to the moment generating function of a Gaussian random variable with
expectation a+ bµ and variance b2σ2. Since the moment generating function (if it exists in an
interval around 0) uniquely determines the distribution, see Lemma 1.2 of the lecture notes
(version of March 20, 2019), we conclude that

a+ bX ∼ N (a+ bµ, b2σ2).

(c) Using the independence of X1, . . . , Xn, the moment generating function MY of Y =
∑n

i=1 Xi

can be calculated as

MY (r) = E [exp {rY }] = E

[
exp

{
r

n∑
i=1

Xi

}]
=

n∏
i=1

E [exp {rXi}] =
n∏

i=1
MXi

(r)

=
n∏

i=1
exp

{
rµi + r2σ2

i

2

}
= exp

{
r

n∑
i=1

µi +
r2∑n

i=1 σ
2
i

2

}
,

for all r ∈ R. This is equal to the moment generating function of a Gaussian random variable
with expectation

∑n
i=1 µi and variance

∑n
i=1 σ

2
i . We conclude that

n∑
i=1

Xi ∼ N

(
n∑

i=1
µi,

n∑
i=1

σ2
i

)
.

Solution 1.4 χ2-Distribution

(a) Let r ∈ R. The moment generating function MXk
of Xk can be calculated as

MXk
(r) = E [exp{rXk}] =

∫ ∞
0

exp{rx} 1
2k/2Γ(k/2)

xk/2−1 exp{−x/2} dx

=
∫ ∞

0

1
2k/2Γ(k/2)

xk/2−1 exp{−x(1/2− r)} dx.

This integral (and consequently the moment generating function) exists if and only if r < 1/2.
Let r < 1/2. Then, we use the substitution

u = x(1/2− r), dx = 1
1/2− r du.

We get

MXk
(r) =

∫ ∞
0

1
2k/2Γ(k/2)

uk/2−1
(

1
1/2− r

)k/2−1
exp{−u} 1

1/2− r du

= 1
2k/2

1
(1/2− r)k/2

1
Γ(k/2)

∫ ∞
0

uk/2−1 exp{−u} du

= 1
(1− 2r)k/2 ,
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where in the last equality we used the definition of the gamma function

Γ(z) =
∫ ∞

0
uz−1 exp{−u} du, for z ∈ R.

(b) For all r < 1/2 the moment generating function MZ2 of Z2 is given by

MZ2(r) = E
[
exp

{
rZ2}] =

∫ ∞
−∞

exp
{
rx2} 1√

2π
exp

{
−x

2

2

}
dx

=
∫ ∞
−∞

1√
2π

exp
{
−x

2(1− 2r)
2

}
dx

= (1− 2r)−1/2
∫ ∞
−∞

1√
2π(1− 2r)−1/2

exp
{
− x2

2(1− 2r)−1

}
dx

= 1
(1− 2r)1/2

= MX1(r),

where the second to last equality holds true since we integrate the density of a normal
distribution with mean 0 and variance (1− 2r)−1 > 0. We conclude that Z2 (d)= X1.

(c) Using that Z1, . . . , Zk are i.i.d., the moment generating function MY of Y =
∑k

i=1 Z
2
i is given

by

MY (r) = E [exp {rY }] = E

[
exp

{
r

k∑
i=1

Z2
i

}]
=

k∏
i=1

E
[
exp

{
rZ2

i

}]
=
(
MZ2

1
(r)
)k

= 1
(1− 2r)k/2 = MXk

(r),

for all r < 1/2. We conclude that
∑k

i=1 Z
2
i

(d)= Xk.
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Solution 2.1 Maximum Likelihood and Hypothesis Test
(a) Since log Y1, . . . , log Y8 are independent random variables, the joint density fµ,σ2(x1, . . . , x8)

of log Y1, . . . , log Y8 is given by product of the marginal densities of log Y1, . . . , log Y8. We
have

fµ,σ2(x1, . . . , x8) =
8∏
i=1

1√
2πσ

exp
{
−1

2
(xi − µ)2

σ2

}
,

as log Y1, . . . , log Y8 are Gaussian random variables with mean µ and variance σ2.

(b) By taking the logarithm, we get

log fµ,σ2(x1, . . . , x8) =
8∑
i=1
− log

√
2π − log σ − 1

2
(xi − µ)2

σ2

= −8 log
√

2π − 8 log σ − 1
2σ2

8∑
i=1

(xi − µ)2.

(c) We have log fµ,σ2(x1, . . . , x8) < −8 log σ for all µ ∈ R. Hence, independently of the value
of µ, log fµ,σ2(x1, . . . , x8) → −∞ if σ2 → ∞. Moreover, since for example x1 6= x2, there
exists a c > 0 with

∑8
i=1(xi − µ)2 > c and thus log fµ,σ2(x1, . . . , x8) < −8 log σ − c

2σ2

for all µ ∈ R. Since c
2σ2 goes much faster to ∞ than 8 log σ goes to −∞ if σ2 → 0, we

have log fµ,σ2(x1, . . . , x8) → −∞ if σ2 → 0, independently of µ. Finally, if σ2 ∈ [c1, c2]
for some 0 < c1 < c2, we have log fµ,σ2(x1, . . . , x8) < −8 log c1 − 1

2c2

∑8
i=1(xi − µ)2. Hence,

independently of the value of σ2 in the interval [c1, c2], log fµ,σ2(x1, . . . , x8)→ −∞ if |µ| → ∞.
Since log fµ,σ2(x1, . . . , x8) is continuous in µ and σ2, we can conclude that it attains its global
maximum somewhere in R× R>0. Thus, µ̂ and σ̂2 as defined on the exercise sheet have to
satisfy the first order conditions

∂

∂µ
log fµ,σ2(x1, . . . , x8)|(µ,σ2)=(µ̂,σ̂2) = 0 and

∂

∂(σ2) log fµ,σ2(x1, . . . , x8)|(µ,σ2)=(µ̂,σ̂2) = 0.

We calculate
∂

∂µ
log fµ,σ2(x1, . . . , x8) = 1

σ2

8∑
i=1

(xi − µ),

which is equal to 0 if and only if µ = 1
8
∑8
i=1 xi. Moreover, we have

∂

∂(σ2) log fµ,σ2(x1, . . . , x8) = − 8
2σ2 + 1

2σ4

8∑
i=1

(xi − µ)2 = 1
2σ2

[
−8 + 1

σ2

8∑
i=1

(xi − µ)2

]
,

which is equal to 0 if and only if σ2 = 1
8
∑8
i=1(xi − µ)2. Since there is only tuple in R× R>0

that satisfies the first order conditions, we conclude that

µ̂ = 1
8

8∑
i=1

xi = 7 and σ̂2 = 1
8

8∑
i=1

(xi − µ̂)2 = 1
8

8∑
i=1

(xi − 7)2 = 7.
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Note that the MLE σ̂2 (considered as an estimator) is not unbiased. Indeed, if we replace
x1, . . . , x8 by independent Gaussian random variables X1, . . . , X8 with expectation µ ∈ R
and variance σ2 > 0, and write µ̂ for 1

8
∑8
i=1Xi, we can calculate

E[σ̂2] = E[σ̂2(X1, . . . , X8)] = E

[
1
8

8∑
i=1

(Xi − µ̂)2

]
= 1

8E
[ 8∑
i=1

(X2
i − 2Xiµ̂+ µ̂2)

]
.

By noting that
∑8
i=1Xi = 8µ̂ and that E[X2

1 ] = · · · = E[X2
8 ], we get

E[σ̂2] = 1
8E
[ 8∑
i=1

X2
i − 2 · 8 · µ̂2 + 8µ̂2

]
= E[X2

1 ]− E[µ̂2] = σ2 + E[X1]2 −Var(µ̂)− E[µ̂]2.

By inserting

Var(µ̂) = Var
(

1
8

8∑
i=1

Xi

)
=
(

1
8

)2 8∑
i=1

Var(Xi) = 1
8σ

2 and

E[µ̂]2 = E

[
1
8

8∑
i=1

Xi

]2

=
(

1
8

8∑
i=1

E[Xi]
)2

= E[X1]2,

we can conclude that

E[σ̂2] = σ2 + E[X1]2 − 1
8σ

2 − E[X1]2 = 7
8σ

2 6= σ2,

i.e. σ̂2 is not unbiased.

(d) Since the logarithms of the claim amounts are assumed to follow a Gaussian distribution
and the variance is unknown, we perform a t-test. Under H0, we have µ = 6. Thus, the test
statistic is given by

T = T (log Y1, . . . , log Y8) =
√

8
1
8
∑8
i=1 log Yi − 6
√
S2

,

where

S2 = 1
7

8∑
i=1

(
log Yi −

1
8

8∑
i=1

log Yi

)2

.

Note that S2 is an unbiased estimator for the variance σ2 of the logarithmic claim sizes.
Under H0, T follows a Student-t distribution with 7 degrees of freedom. With the data given
on the exercise sheet, the random variable S2 attains the value

1
7

8∑
i=1

(
xi −

1
8

8∑
i=1

xi

)2

= 1
7

8∑
i=1

(xi − 7)2 = 8.

Thus, for T we get the observation

T (x1, . . . , x8) =
√

8
1
8
∑8
i=1 xi − 6
√
S2

=
√

87− 6√
8

= 1.

The probability under H0 to observe a T that is at least as extreme as the observation 1 we
got above is

P[|T | ≥ 1] = P[T ≥ 1] + P[T ≤ −1] = 1− P[T ≤ 1] + 1− P[T ≤ 1] = 2− 2P[T ≤ 1],
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where we used the symmetry of the Student-t distribution around 0, i.e. P[T ≤ −1] =
1− P[T ≤ 1]. The probability P[T ≤ 1] is approximately 0.84, and the p-value is given by

P[|T | ≥ 1] = 2− 2P[T ≤ 1] ≈ 2− 2 · 0.84 = 0.32.

This p-value is fairly high, and we conclude that we can not reject the null hypothesis, for
example, at significance level of 5% or 1%.

Solution 2.2 Chebychev’s Inequality and Law of Large Numbers

(a) We have µ = E[X1] = 1’000 · 0.1 + 0 · 0.9 = 100.

(b) For n = 1 we get∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ = |X1 − 100| =
{

900, with probability 0.1,
100, with probability 0.9.

As both values 900 and 100 are bigger than 0.1µ = 10, we conclude that p(1) = 1. In
particular, if we only have n = 1 risk in our portfolio, then the corresponding claim amount
deviates from the mean claim size by at least 10% with probability equal to 1.

(c) For the n i.i.d. risks X1, . . . , Xn we define

S(n) =
n∑
i=1

Xi

1’000

to be the corresponding (random) number of bikes stolen. We note that S(n) has a binomial
distribution with parameters n and p = 0.1. In particular, we have

P[S(n) = k] =
(
n

k

)
pk (1− p)n−k,

for all k ∈ {0, . . . , n}. For n ∈ N we can now write

p(n) = P

[∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ 0.1µ
]

= 1− P

[∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ < 0.1µ
]

= 1− P

[
−0.1µ < 1

n

n∑
i=1

Xi − µ < 0.1µ
]

= 1− P

[
0.9nµ <

n∑
i=1

Xi < 1.1nµ
]

= 1− P

[
0.9nµ
1’000 <

n∑
i=1

Xi

1’000 <
1.1nµ
1’000

]
= 1− P

[
0.9nµ
1’000 < S(n) < 1.1nµ

1’000

]
.

For n = 1’000 we get

p(1’000) = 1− P
[

0.9 · 1’000 · 100
1’000 < S(1’000) < 1.1 · 1’000 · 100

1’000

]
= 1− P [90 < S(1’000) < 110]

= 1−
109∑
k=91

(
1’000
k

)
0.1k 0.91’000−k

≈ 0.32.

Thus, if we have n = 1’000 risks in our portfolio, then the sample mean of the claim amounts
deviates from the mean claim size by at least 10% with a probability of 0.32. In particular,
diversification led to a reduction of this probability.
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(d) As

E

[
1
n

n∑
i=1

Xi

]
= 1

n

n∑
i=1

E [Xi] = E[X1] = µ

and, using the independence of X1, . . . , Xn,

Var
(

1
n

n∑
i=1

Xi

)
= 1

n2

n∑
i=1

Var (Xi) = 1
n
Var(X1) = 1

n
E
[
(X1 − µ)2]

= 1
n

(
9002 · 0.1 + 1002 · 0.9

)
= 90’000

n
,

Chebychev’s inequality leads to

p(n) = P

[∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ 0.1µ
]
≤

Var
( 1
n

∑n
i=1Xi

)
(0.1µ)2

90’000
n(0.1µ)2 = 900

n
.

We have
900
n

< 0.01 ⇐⇒ n > 90’000.

This implies that Chebychev’s inequality guarantees that if we have more than 90’000 risks,
then the probability that the sample mean of the claim amounts deviates from the mean claim
size by at least 10% is smaller than 1%. However, we remark that Chebychev’s inequality is
very crude. In fact, the true minimum number n of risks such that p(n) < 0.01 is given by
n ≈ 6’000, approximately, while for n = 90’000 we basically have p(n) ≈ 0.

(e) We have that X1, X2, ... are i.i.d. and that E[|X1|] = E[X1] = µ < ∞. Thus, we can apply
the strong law of large numbers, and we get

lim
n→∞

1
n

n∑
i=1

Xi −→ E[X1] = µ = 100, P-a.s.

Solution 2.3 Central Limit Theorem

(a) Let σ2 be the variance of the claim sizes and x > 0. We have

P

[∣∣∣∣ 1n
n∑
i=1

Yi − µ
∣∣∣∣ < x√

n

]
= P

[
1
n

n∑
i=1

Yi − µ <
x√
n

]
− P

[
1
n

n∑
i=1

Yi − µ ≤ −
x√
n

]

= P
[√

n
1
n

∑n
i=1 Yi − µ
σ

<
x

σ

]
− P

[√
n

1
n

∑n
i=1 Yi − µ
σ

≤ −x
σ

]
= P

[
Zn <

x

σ

]
− P

[
Zn ≤ −

x

σ

]
,

where
Zn =

√
n

1
n

∑n
i=1 Yi − µ
σ

.

According to the Central Limit Theorem, Zn converges in distribution to a standard Gaussian
random variable. Hence, if we write Φ for the distribution function of a standard Gaussian
random variable, we have the approximation

P

[∣∣∣∣ 1n
n∑
i=1

Yi − µ
∣∣∣∣ < x√

n

]
≈ Φ

(x
σ

)
− Φ

(
−x
σ

)
= 2Φ

(x
σ

)
− 1,
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where we used that Φ(− x
σ ) = 1−Φ( xσ ). On the one hand, as we are interested in a probabilty

of at least 95%, we have to choose x > 0 such that 2Φ( xσ )− 1 = 0.95. We have

2Φ
(x
σ

)
− 1 = 0.95 ⇐⇒ Φ

(x
σ

)
= 0.975.

Using Φ−1(0.975) = 1.96, this implies that
x

σ
= 1.96.

It follows that
x = 1.96 · σ = 1.96 ·Vco(Y1) · µ = 1.96 · 4 · µ. (1)

On the other hand, as we want the deviation of the empirical mean from µ to be less than
1%, we set

x√
n

= 0.01 · µ,

which implies

n = x2

0.012 · µ2 . (2)

Combining (1) and (2), we conclude that

nCLT = (1.96 · 4 · µ)2

0.012 · µ2 = 1.962 · 42 · 10’000 = 614’656.

(b) In this part we use Chebychev’s inequality instead of the Central Limit Theorem in order
to derive a minimum number of claims nChe such that with probability of at least 95% the
deviation of the sample mean 1

n

∑n
i=1 Yi from the mean claim size µ is less than 1%. We have

P

[∣∣∣∣ 1n
n∑
i=1

Yi − µ
∣∣∣∣ < 0.01µ

]
≥ 0.95 ⇐⇒ P

[∣∣∣∣ 1n
n∑
i=1

Yi − µ
∣∣∣∣ ≥ 0.01µ

]
≤ 0.05.

Similarly as in Exercise 2.2 we apply Chebychev’s inequality to get

P

[∣∣∣∣ 1n
n∑
i=1

Yi − µ
∣∣∣∣ ≥ 0.01µ

]
≤

Var( 1
n

∑n
i=1 Yi)

(0.01µ)2 = Var(Y1)
n · 0.012 · µ2 = Vco(Y1)2

n · 0.012 = 160’000
n

.

We have
160’000

n
≤ 0.05 ⇐⇒ n ≥ 3’200’000.

Thus, we get
nChe = 3’200’000 > 614’656 = nCLT.

This comparison confirms that Chebychev’s inequality is rather crude, see also Exercise 2.2.

Solution 2.4 Conditional Distribution and Variance Decomposition

(a) First, we write MΘ for the moment generating function of Θ. As Θ follows an exponential
distribution with parameter λ > 0, we know from Exercise 1.2 that

MΘ(r) = E
[
erΘ
]

= λ

λ− r
,

for all r < λ. As −v < 0 < λ, we calculate

P[N = 0] = E[P[N = 0|Θ]] = E
[
e−Θv] = MΘ(−v) = λ

λ+ v
.
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(b) According to the remark on the exercise sheet, we have E[N |Θ] = Θv. The tower property of
conditional expectation then leads to

E[N ] = E[E[N |Θ]] = E[Θv] = v

λ
,

as the expectation of an exponential distribution with parameter λ > 0 is equal to 1
λ , see

Exercise 1.2.

(c) Note that

E[N2] = E[E[N2|Θ]] = E[Var(N |Θ) + E[N |Θ]2] = E[Θv + (Θv)2] = v

λ
+ 2v2

λ2 < ∞,

where in the third equation we used that the expectation and the variance of a Poisson
distribution are equal to its frequency parameter, and in the fourth equation that the second
moment of an exponential distribution with parameter λ > 0 is equal to 2

λ2 , see Exercise 1.2.
In particular, the second moment of N , and thus the variance Var(N), exist. Now we have

E[Var(N |Θ)] = E[E[N2|Θ]− (E[N |Θ])2] = E[N2]− E[(E[N |Θ])2]

and
Var(E[N |Θ]) = E[(E[N |Θ])2]− E[E[N |Θ]]2 = E[(E[N |Θ])2]− E[N ]2.

Combining these two results, we get the variance decomposition formula

E[Var(N |Θ)] + Var(E[N |Θ]) = E[N2]− E[N ]2 = Var(N).

Using this formula, we can calculate

Var(N) = E[Var(N |Θ)] + Var(E[N |Θ]) = E[Θv] + Var(Θv) = v

λ
+ v2

λ2 ,

where in the last equation we used that the variance of an exponential distribution with
parameter λ > 0 is equal to 1

λ2 , see Exercise 1.2. In particular, we have

Var(N) = v

λ
+ v2

λ2 >
v

λ
= E[N ],

i.e. contrary to the (unconditional) Poisson distribution, the random variable N has a variance
which is bigger than the expectation.
Remark: The variance decomposition formula also holds in its general form

Var(X) = E[Var(X|G)] + Var(E[X|G]),

where X is a square-integrable random variable on a probability space (Ω,F ,P) and G any
sub-σ-algebra of F .
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Solution 3.1 No-Claims Bonus

(a) We define the following events:

A = {“no claims in the last six years”},
B = {“no claims in the last three years but at least one claim in the last six years”},
C = {“at least one claim in the last three years”}.

Note that since the events A, B and C are disjoint and cover all possible outcomes, we have

P[A] + P[B] + P[C] = 1,

i.e. it is sufficient to calculate two out of the three probabilities. Since the calculation of P[B]
is slightly more involved, we will look at P[A] and P[C]. Let N1, . . . , N6 be the number of
claims of the last six years of our considered car driver, where N6 corresponds to the most
recent year. By assumption, N1, . . . , N6 are i.id. Poisson random variables with frequency
parameter λ = 0.2. Therefore, we can calculate

P[A] = P [N1 = 0, . . . , N6 = 0] =
6∏
i=1

P [Ni = 0] =
6∏
i=1

exp{−λ} = exp{−6λ} = exp{−1.2}

and, similarly,

P[C] = 1− P[Cc] = 1− P [N4 = 0, N5 = 0, N6 = 0] = 1− exp{−3λ} = 1− exp{−0.6}.

For the event B we get

P[B] = 1− P[A]− P[C] = 1− exp{−1.2} − (1− exp{−0.6}) = exp{−0.6} − exp{−1.2}.

Thus, the expected proportion q of the premium that is still paid after the grant of the
no-claims bonus is given by

q = E[0.8 · 1A + 0.9 · 1B + 1 · 1C ] = 0.8 · P[A] + 0.9 · P[B] + 1 · P[C]
= 0.8 · exp{−1.2}+ 0.9 · (exp{−0.6} − exp{−1.2}) + 1− exp{−0.6}
≈ 0.915.

If s denotes the surcharge on the premium, then it has to satisfy the equation

q (1 + s) · premium = premium,

which leads to
s = 1

q
− 1.

We conclude that the surcharge on the premium is given by approximately 9.3%.
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(b) We use the same notation as in (a). Since this time the calculation of P[B] is considerably more
involved, we again look at P[A] and P[C]. By assumption, conditionally given Θ, N1, . . . , N6
are i.i.d. Poisson random variables with frequency parameter Θλ, where λ = 0.2. Therefore,
we can calculate

P[A] = P [N1 = 0, . . . , N6 = 0] = E [P [N1 = 0, . . . , N6 = 0|Θ]] = E

[ 6∏
i=1

P [Ni = 0|Θ]
]

= E

[ 6∏
i=1

exp{−Θλ}
]

= E [exp{−6Θλ}] = MΘ(−6λ),

where MΘ denotes the moment generating function of Θ. Since Θ has an exponential
distribution with parameter c = 1, MΘ is given by

MΘ(r) = 1
1− r ,

for all r < 1, see Exercise 1.2, which leads to

P[A] = 1
1 + 6λ = 1

2.2 .

Similarly, we get

P[C] = 1− P[Cc] = 1− P [N4 = 0, N5 = 0, N6 = 0] = 1− 1
1 + 3λ = 1− 1

1.6 = 0.6
1.6 .

For the event B we get

P[B] = 1− P[A]− P[C] = 1− 1
2.2 −

0.6
1.6 = 1

1.6 −
1

2.2 .

Thus, the expected proportion q of the premium that is still paid after the grant of the
no-claims bonus is given by

q = 0.8 · P[A] + 0.9 · P[B] + 1 · P[C] = 0.8 · 1
2.2 + 0.9 ·

(
1

1.6 −
1

2.2

)
+ 0.6

1.6 ≈ 0.892.

We conclude that the surcharge s on the premium is given by

s = 1
q
− 1 ≈ 12.1%,

which is considerably bigger than in (a). The reason is that in (b) we introduce dependence
between the claim counts of the individual years of the considered car driver. This increases
the probability of having no claims in the last six years, and decreases the expected proportion
q of the premium that is still paid after the grant of the no-claims bonus.

Solution 3.2 Compound Poisson Distribution

(a) Since S ∼ CompPoi(λv,G), we can write S as

S =
N∑
i=1

Yi,

where N ∼ Poi(λv), Y1, Y2, . . . are i.i.d. with distribution function G and N and Y1, Y2, . . .
are independent. Now we can define Ssc, Smc and Slc as

Ssc =
N∑
i=1

Yi1{Yi≤1’000}, Smc =
N∑
i=1

Yi1{1’000<Yi≤1’000’000} and Slc =
N∑
i=1

Yi1{Yi>1’000’000}.
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(b) Note that according to Table 2 given on the exercise sheet, we have

P[Y1 ≤ 1’000] = P[Y1 = 100] + P[Y1 = 300] + P[Y1 = 500] = 3
20 + 4

20 + 3
20 = 1

2 ,

P[1’000 < Y1 ≤ 1’000’000] = P[Y1 = 6’000] + P[Y1 = 100’000] + P[Y1 = 500’000]

= 2
15 + 2

15 + 1
15 = 1

3 and

P[Y1 > 1’000’000] = 1− P[Y1 ≤ 1’000’000] = 1− 1
2 −

1
3 = 1

6 .

Thus, using Theorem 2.14 (disjoint decomposition of compound Poisson distributions) of the
lecture notes (version of March 20, 2019), we get

Ssc ∼ CompPoi
(
λv

2 , Gsc

)
, Smc ∼ CompPoi

(
λv

3 , Gmc

)
and Slc ∼ CompPoi

(
λv

6 , Glc

)
,

where

Gsc(y) = P[Y1 ≤ y|Y1 ≤ 1’000],
Gmc(y) = P[Y1 ≤ y|1’000 < Y1 ≤ 1’000’000] and
Glc(y) = P[Y1 ≤ y|Y1 > 1’000’000],

for y ∈ R. In particular, for a random variable Ysc having distribution function Gsc, we have

P[Ysc = 100] = P[Y1 = 100]
P[Y1 ≤ 1’000] = 3/20

1/2 = 3
10 ,

P[Ysc = 300] = P[Y1 = 300]
P[Y1 ≤ 1’000] = 4/20

1/2 = 4
10 and

P[Ysc = 500] = P[Y1 = 500]
P[Y1 ≤ 1’000] = 3/20

1/2 = 3
10 .

Analogously, for random variables Ymc and Ylc having distribution functions Gmc and Glc,
respectively, we get

P[Ymc = 6’000] = 2
5 , P[Ymc = 100’000] = 2

5 and P[Ymc = 500’000] = 1
5 ,

as well as

P[Ylc = 2’000’000] = 1
2 , P[Ylc = 5’000’000] = 1

4 and P[Ylc = 10’000’000] = 1
4 .

(c) According to Theorem 2.14 of the lecture notes (version of March 20, 2019), Ssc, Smc and Slc
are independent.

(d) In order to find E[Ssc], we need E[Ysc], which can be calculated as

E[Ysc] = 100 ·P[Ysc = 100]+300 ·P[Ysc = 300]+500 ·P[Ysc = 500] = 300
10 + 1200

10 + 1500
10 = 300.

Now we can apply Proposition 2.11 of the lecture notes (version of March 20, 2019) to get

E[Ssc] = λv

2 E[Ysc] = 0.3 · 300 = 90.

Similarly, we get
E[Ymc] = 142’400 and E[Ylc] = 4’750’000.
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Thus, we find

E[Smc] = λv

3 E[Ymc] = 28’480 and E[Slc] = λv

6 E[Ylc] = 475’000.

Since S = Ssc + Smc + Slc, we get

E[S] = E[Ssc] + E[Smc] + E[Slc] = 503’570.

In order to find Var(Ssc), we need E[Y 2
sc], which can be calculated as

E[Y 2
sc] = 1002 · P[Ysc = 100] + 3002 · P[Ysc = 300] + 5002 · P[Ysc = 500]

= 30’000
10 + 360’000

10 + 750’000
10 = 114’000.

Now we can apply Proposition 2.11 of the lecture notes (version of March 20, 2019) to get

Var(Ssc) = λv

2 E[Y 2
sc] = 0.3 · 114’000 = 34’200.

Similarly, we get

E[Y 2
mc] = 54’014’400’000 and E[Y 2

lc ] = 33’250’000’000’000.

Thus, we find

Var(Smc) = λv

3 E[Y 2
mc] = 10’802’880’000 and Var(Slc) = λv

6 E[Y 2
lc ] = 3’325’000’000’000.

Since S = Ssc + Smc + Slc, and Ssc, Smc and Slc are independent, we get√
Var(S) =

√
Var(Ssc) + Var(Smc) + Var(Slc) =

√
3’335’802’914’200 ≈ 1’826’418.

(e) First, we define the random variable Nlc as

Nlc ∼ Poi
(
λv

6

)
.

The probability that the total claim in the large claims layer exceeds 5 million can be calculated
by looking at the complement, i.e. at the probability that the total claim in the large claims
layer does not exceed 5 million. Since the smallest claim size for a claim in the large claims
layer is given by 2’000’000, with three claims in the large claims layer we already exceed 5
million with probability one. Thus, it is enough to consider only up to two claims. We get

P [Slc ≤ 5’000’000]
= P[Nlc = 0] + P[Nlc = 1]P[Ylc ≤ 5’000’000] + P[Nlc = 2]P[Ylc = 2’000’000]2

= exp
{
−λv6

}
+ exp

{
−λv6

}
λv

6

(
1
2 + 1

4

)
+ exp

{
−λv6

}(
λv

6

)2 1
2

(
1
2

)2

= exp {−0.1} (1 + 0.075 + 0.00125)
≈ 97.4%.

We can conclude that

P [Slc > 5’000’000] = 1− P [Slc ≤ 5’000’000] ≈ 2.6%.
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Solution 3.3 Compound Distribution

We show that the moment generating function MS of S is equal to the moment generating function
of an exponential distribution with parameter λp. According to Proposition 2.2 of the lecture notes
(version of March 20, 2019), MS is given by (wherever it exists)

MS(r) = MN [logMY1(r)],

where MN and MY1 are the moment generating functions of N and Y1, respectively. As S ≥ 0
almost surely, MS(r) exists at least for all r < 0. In Exercises 1.1 and 1.2 we have seen that

MN (r) = p exp{r}
1− (1− p) exp{r} ,

for all r < − log(1− p), and that

logMY1(r) = log
(

λ

λ− r

)
,

for all r < λ. Thus, we get

MS(r) = MN

[
log
(

λ

λ− r

)]
=

p exp
{

log
(

λ
λ−r

)}
1− (1− p) exp

{
log
(

λ
λ−r

)} = λp

λ− r − λ(1− p) = λp

λp− r
.

With Lemma 1.3 of the lecture notes (version of March 20, 2019), we conclude that S has indeed
an exponential distribution with parameter λp. We remark that for this compound model the
corresponding distribution function can be given in closed form. However, usually this is not
possible. Therefore, we will consider other methods for the calculation of the distribution function
of S in Chapter 4 of the lecture notes (version of March 20, 2019).

Solution 3.4 Compound Binomial Distribution

(a) Let S̃ ∼ CompBinom(ṽ, p̃, G̃) with the random variable Ỹ1 having distribution function G̃
and moment generating function MỸ1

. Then, by Proposition 2.6 of the lecture notes (version
of March 20, 2019), the moment generating function MS̃ of S̃ is given by

MS̃(r) =
(
p̃MỸ1

(r) + 1− p̃
)ṽ
,

for all r ∈ R for which MỸ1
is defined. We calculate the moment generating function MSlc of

Slc and show that it is exactly of the form given above. Let r ∈ R such that MSlc(r) exists.
Note that since Slc ≥ 0 almost surely, its moment generating function is defined at least for
all r < 0. We have

MSlc(r) = E [exp {rSlc}] = E

[
exp

{
r

N∑
i=1

Yi 1{Yi>M}

}]
= E

[
N∏
i=1

exp
{
rYi 1{Yi>M}

}]

= E

[
E

[
N∏
i=1

exp
{
rYi 1{Yi>M}

}∣∣∣∣∣N
]]

= E

[
N∏
i=1

E
[
exp

{
rYi 1{Yi>M}

}]]
,

where in the fourth equality we used the tower property of conditional expectation and in the
fifth equality the independence between N and Yi. For the inner expectation we get

E
[
exp

{
rYi 1{Yi>M}

}]
= E

[
exp {rYi} · 1{Yi>M} + 1{Yi≤M}

]
= E [exp {rYi} |Yi > M ]P[Yi > M ] + P[Yi ≤M ]
= E [exp {rYi} |Yi > M ] [1−G(M)] +G(M).
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Note that the distribution function of the random variable Yi|Yi > M is Glc. Thus, we can
write

E
[
exp

{
rYi 1{Yi>M}

}]
= MY1|Y1>M (r)[1−G(M)] +G(M).

Hence, we get

MSlc(r) = E

[
N∏
i=1

(
MY1|Y1>M (r)[1−G(M)] +G(M)

)]
= E

[(
MY1|Y1>M (r)[1−G(M)] +G(M)

)N]
= E

[
exp

{
N log

(
MY1|Y1>M (r)[1−G(M)] +G(M)

)}]
= MN (ρ),

where MN is the moment generating function of N and

ρ = log
(
MY1|Y1>M (r)[1−G(M)] +G(M)

)
.

Since we have N ∼ Binom(v, p), MN (r) is given by

MN (r) = (p exp{r}+ 1− p)v.

Therefore, we get

MSlc(r) = [p
(
MY1|Y1>M (r)[1−G(M)] +G(M)

)
+ 1− p]v

= (p[1−G(M)]MY1|Y1>M (r) + 1− p[1−G(M)])v.

Applying Lemma 1.3 of the lecture notes (version of March 20, 2019), we conclude that
Slc ∼ CompBinom(ṽ, p̃, G̃) with ṽ = v, p̃ = p[1−G(M)] and G̃ = Glc.

(b) In (a) we showed that the number of claims of the compound distribution Slc has a binomial
distribution with parameters v and p[1 − G(M)] > 0. In particular, there is a positive
probability that we have v claims with Yi > M . Now suppose that Ssc > 0. Then, we know
that there is an i ∈ {1, . . . , N} with Yi ≤M . In particular, this claim cannot be part of Slc
and there is zero probability that we have v claims with Yi > M . This explains why Ssc
and Slc cannot be independent. However, note that with the Poisson distribution as claims
count distribution such a split in small and large claims leads to independent compound
distributions, see Theorem 2.14 of the lecture notes (version of March 20, 2019).
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Solution 4.1 Poisson Model and Negative-Binomial Model

(a) In the Poisson model we assume that N1, . . . , N10 are independent with Nt ∼ Poi(λvt) for all
t ∈ {1, . . . , 10}. We use Estimator 2.32 of the lecture notes (version of March 20, 2019) to
estimate the claim frequency parameter λ by

λ̂MLE
10 =

∑10
t=1 Nt∑10
t=1 vt

= 10’224
100’000 ≈ 10.22%.

Let t ∈ {1, . . . , 10}. We have

E
[
Nt

vt

]
= E[Nt]

vt
= λvt

vt
= λ and Var

(
Nt

vt

)
= Var(Nt)

v2
t

= λvt

v2
t

= λ

vt
.

Note that for the random variable Nt ∼ Poi(λvt) we can write

Nt
(d)=

vt∑
i=1

Ñi,

where Ñ1, . . . , Ñvt
are i.i.d. random variables following a Poi(λ)-distribution. Thus, we can

use the Central Limit Theorem to get

Nt/vt − E [Nt/vt]√
Var (Nt/vt)

= Nt/vt − λ√
λ/vt

=⇒ Z,

as vt → ∞, where Z is a random variable following a standard normal distribution. This
leads to the approximation

P
[
λ−

√
λ/vt ≤ Nt/vt ≤ λ+

√
λ/vt

]
= P

[
−1 ≤ Nt/vt − λ√

λ/vt

≤ 1
]
≈ P(−1 ≤ Z ≤ 1) ≈ 0.7,

i.e. with a probability of roughly 70%, Nt/vt lies in the interval [λ−
√
λ/vt, λ+

√
λ/vt]. Since

λ is unknown, we replace it by the estimator λ̂MLE
10 to get the approximate prediction interval[

λ̂MLE
10 −

√
λ̂MLE

10
/
vt, λ̂

MLE
10 +

√
λ̂MLE

10
/
vt

]
≈ [9.90%, 10.54%],

which should contain roughly 70% of the observed claim frequencies Nt/vt. We have the
following observations of the claim frequencies:

t 1 2 3 4 5 6 7 8 9 10
Nt/vt 10% 9.97% 9.85% 9.89% 10.56% 10.70% 9.94% 9.86% 10.93% 10.54%

Table 1: Observed claim frequencies Nt/vt.

We observe that instead of the expected seven observations, only four observations lie in the
estimated interval. We conclude that the assumption of having Poisson distributions might
not be reasonable.
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(b) By equation (2.9) of the lecture notes (version of March 20, 2019), the test statistic

χ̂∗ =
10∑

t=1
vt

(
Nt/vt − λ̂MLE

10

)2

λ̂MLE
10

is approximately χ2-distributed with 10− 1 = 9 degrees of freedom. By inserting the numbers,
we get χ̂∗ ≈ 14.84. The probability that a random variable with a χ2-distribution with 9
degrees of freedom is greater than 14.84 is approximately equal to 9.55%. Hence we can reject
the null hypothesis of having Poisson distributions only at significance levels that are higher
than 9.55%. In particular, we can not reject the null hypothesis at significance level of 5%.

(c) In the negative-binomial model we assume that N1, . . . , N10 are independent with, condition-
ally given Θt, Nt ∼ Poi(Θtλvt) for all t ∈ {1, . . . , 10}, where Θ1, . . . ,Θ10

i.i.d.∼ Γ(γ, γ) for some
γ > 0. We use Estimator 2.28 of the lecture notes (version of March 20, 2019) to estimate the
claim frequency parameter λ by

λ̂NB
10 =

∑10
t=1 Nt∑10
t=1 vt

= 10’224
100’000 ≈ 10.22%.

As in equation (2.8) of the lecture notes (version of March 20, 2019), we define

V̂ 2
10 = 1

9

10∑
t=1

vt

(
Nt

vt
− λ̂NB

10

)2
≈ 0.17 > λ̂NB

10 .

Let v = v1 = · · · = v10 = 10’000. Now we can use Estimator 2.30 of the lecture notes (version
of March 20, 2019) to estimate the dispersion parameter γ by

γ̂NB
10 =

(
λ̂NB

10

)2

V̂ 2
10 − λ̂NB

10

1
9

( 10∑
t=1

vt −
∑10

t=1 v
2
t∑10

t=1 vt

)
=

(
λ̂NB

10

)2

V̂ 2
10 − λ̂NB

10

(
10v − 10v2

10v

)
9 =

(
λ̂NB

10

)2
v

V̂ 2
10 − λ̂NB

10

≈ 1576.15.

For all t ∈ {1, . . . , 10} we have

E
[
Nt

vt

]
= E[Nt]

vt
= E[E[Nt|Θt]]

vt
= E[Θtλvt]

vt
= λvt

vt
= λ,

since E[Θt] = γ/γ = 1, and

Var
(
Nt

vt

)
= E[Var(Nt|Θt)] + Var(E[Nt|Θt])

v2
t

= E[Θtλvt] + Var(Θtλvt)
v2

t

= λ+ λ2vt/γ

vt
,

since Var(Θt) = γ/γ2 = 1/γ. Similarly as in part (a), we get the prediction intervalλ̂NB
10 −

√√√√ λ̂NB
10 +

(
λ̂NB

10

)2
vt/γ̂NB

10

vt
, λ̂NB

10 +

√√√√ λ̂NB
10 +

(
λ̂NB

10

)2
vt/γ̂NB

10

vt

 ≈ [9.81%, 10.63%],

which should contain roughly 70% of the observed claim frequencies Nt/vt. Looking at
the observations given in Table 1 above, we see that eight of them lie in the estimated
interval, which is clearly better than in the Poisson case in part (a). In conclusion, here the
negative-binomial model seems more reasonable than the Poisson model.
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Solution 4.2 χ2-Goodness-of-Fit-Analysis

(a) The R code used in part (a) is provided in Listing 1.

(i) In Figure 1 (left) we can see that the n MLEs of λ approximately have a Gaussian
distribution with mean equal to the true value of λ = 10%. On the one hand, this is due
to the fact that (under regularity assumptions) the MLE is consistent and asymptotically
Gaussian distributed (as T →∞). For more details we refer to Chapter 6 of the textbook
“Theory of Point Estimation” by E.L. Lehmann and G. Casella (2nd edition, 1998).
On the other hand, in the Poisson case we directly have an approximate Gaussian
distribution of the MLE, independently of the value of T , provided that the volume v is
large enough, see also Exercise 4.1.

(ii) From the QQ plot, see Figure 1 (right), we deduce that the test statistic indeed has
approximately a χ2-distribution with T − 1 = 9 degrees of freedom. We only observe
slightly heavier tails in the observations, compared to a χ2-distribution with T − 1 = 9
degrees of freedom. By increasing the values for n and v, we get even closer to a
χ2-distribution with T − 1 = 9 degrees of freedom.

(iii) We observe that we wrongly reject the null hypothesis H0 of having a Poisson distribution
as claim count distribution in 5.16% of the cases. This corresponds almost perfectly to
the chosen significance level (indicating the probability of rejecting H0 even though it is
true) of 5%.

Listing 1: R code for Exercise 4.2 (a).
1 ### Function generating the data and applying the chi - squared goodness -of -fit test
2 chi. squared .test .1 <- function (seed1 , n, t, lambda , v, alpha ){
3
4 ### Generate the claim counts
5 set.seed( seed1 )
6 claim . counts <- array ( rpois (n*t, lambda *v), dim=c(t,n))
7
8 ### Distribution of the MLEs of lambda
9 lambda_MLE <- colSums ( claim . counts )/(t*v)

10 plot( density ( lambda_MLE ), main =" Distribution of the MLEs", xlab =" Values of the MLEs",
11 cex.lab =1.25 , cex.main =1.25 , cex.axis =1.25)
12 abline (v=mean( lambda_MLE ), col =" red ")
13 legend (" topleft ", lty =1, col =" red", legend =" mean ")
14 print ("1: See plot for the distribution of the MLEs ")
15
16 ### Distribution of the test statistic
17 lambda_MLE_array <- array (rep( lambda_MLE ,each=t), dim=c(t,n))
18 test. statistic <- colSums (v*( claim . counts /v- lambda_MLE_array )^2/ lambda_MLE_array )
19 theoretical . quantiles <- qchisq (p=(1:n)/(n+1) , df=t -1)
20 empirical . quantiles <- test. statistic [ order (test. statistic )]
21 lim <- c(min( theoretical .quantiles , empirical . quantiles ),
22 max( theoretical .quantiles , empirical . quantiles ))
23 plot( theoretical .quantiles , empirical .quantiles , xlim=lim , ylim=lim ,
24 xlab =" Theoretical Quantiles ", ylab =" Empirical Quantiles ", main =" QQ plot", cex.lab =1.25 ,
25 cex.main =1.25 , cex.axis =1.25)
26 abline (a=0, b=1, col =" red ")
27 print ("2: See the QQ plot for a comparison between the empirical quantiles of the test
28 statistic and the theoretical quantiles of a chi - squared distribution with t -1
29 degrees of freedom ")
30
31 ### Result of the hypothesis test
32 print ( paste ("3: How often we wrongly reject the null hypothesis : ",
33 sum(test. statistic > qchisq (p=1-alpha , df=t -1))/n,sep =""))
34 }
35
36 ### Apply the function with the desired parameters
37 chi. squared .test .1( seed1 =100 , n=10000 , t=10 , lambda =0.1 , v=10000 , alpha =0.05)
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Figure 1: Left: Density plot of the distribution of the MLEs. Right: QQ plot of the theoretical
quantiles of a χ2-distribution with T − 1 = 9 degrees of freedom against the empirical quantiles of
the values of the test statistic.

(b) The R code used in part (b) is provided in Listing 2.

(i) We observe the following results:

dispersion parameter γ 100 1’000 10’000
Percentage with which we reject H0 99.78% 48.38% 7.96%

Table 2: Percentage with which we reject H0 for different values of γ.

(ii) We see that in case of a negative binomial distribution with a comparably small parameter
(γ = 100) for the latent gamma distribution we are almost always able to reject the
null hypothesis H0 of having a Poisson distribution as claim count distribution. The
bigger γ, the less we are able to reject H0. This is because for very large values of γ, the
corresponding gamma distribution does not vary a lot, i.e. is almost constantly equal to
1. Thus, for increasing γ, we move back to the Poisson model and, consequently, the
χ2-goodness-of-fit test does not detect the latent variable anymore.

Solution 4.3 Claim Count Distribution

The sample mean µ̂ and the sample variance σ̂2 of the observed numbers of claims N1, . . . , N10 are
given by

µ̂ = 1
10

10∑
t=1

Nt = 21.3 and σ̂2 = 1
9

10∑
t=1

(Nt − µ̂)2 ≈ 109.1.

We have
σ̂2 ≈ 5µ̂,

which suggests Var(N1) > E[N1]. In such a case we would choose a negative binomial distribution,
as it allows the variance to exceed the expectation.
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Listing 2: R code for Exercise 4.2 (b).
1 ### Function generating the data and applying the chi - squared goodness -of -fit test
2 chi. squared .test .2 <- function (seed1 , n, t, lambda , v, alpha , gamma ){
3
4 ### Generate the claim counts
5 set.seed( seed1 )
6 claim . counts <- array ( rnbinom (n*t, size=gamma , mu= lambda *v), dim=c(t,n))
7
8 ### Calculate the MLEs
9 lambda_MLE <- colSums ( claim . counts )/(t*v)

10
11 ### Calculate the test statistic
12 lambda_MLE_array <- array (rep( lambda_MLE ,each=t), dim=c(t,n))
13 test. statistic <- colSums (v*( claim . counts /v- lambda_MLE_array )^2/ lambda_MLE_array )
14
15 ### Result of the hypothesis test
16 print ( paste (" How often we correctly reject the null hypothesis : ",
17 sum(test. statistic > qchisq (p=1-alpha , df=t -1))/n,sep =""))
18 }
19
20 ### Apply the function with the desired parameters
21 chi. squared .test .2( seed1 =100 , n=10000 , t=10 , lambda =0.1 , v=10000 , alpha =0.05 , gamma =100)
22 chi. squared .test .2( seed1 =100 , n=10000 , t=10 , lambda =0.1 , v=10000 , alpha =0.05 , gamma =1000)
23 chi. squared .test .2( seed1 =100 , n=10000 , t=10 , lambda =0.1 , v=10000 , alpha =0.05 , gamma =10000)

Solution 4.4 Method of Moments

If Y ∼ Γ(γ, c), we have
E[Y ] = γ

c
and Var(Y ) = γ

c2 .

The sample mean µ̂8 and the sample variance σ̂2
8 of the eight observations y1, . . . , y8 are given by

µ̂8 = 1
8

8∑
i=1

yi = 64
8 = 8 and σ̂2

8 = 1
7

8∑
i=1

(yi − µ̂8)2 = 28
7 = 4.

The method of moments estimates (γ̂, ĉ) of (γ, c) solve the equations

µ̂8 = γ̂

ĉ
and σ̂2

8 = γ̂

ĉ2 .

We see that γ̂ = µ̂8ĉ and, thus,
σ̂2

8 = µ̂8ĉ

ĉ2 = µ̂8

ĉ
,

which is equivalent to
ĉ = µ̂8

σ̂2
8

= 8
4 = 2.

Moreover, we get

γ̂ = µ̂8ĉ = µ̂2
8
σ̂2

8
= 64

4 = 16.

We conclude that the method of moments estimates are given by (γ̂, ĉ) = (16, 2).
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Solution 5.1 Large Claims

(a) The density of a Pareto distribution with threshold θ = 50 and tail index α > 0 is given by

f(x) = fα(x) = α

θ

(x
θ

)−(α+1)
,

for all x ≥ θ. Using the independence of Y1, . . . , Yn, the joint likelihood function LY(α) for
the observation Y = (Y1, . . . , Yn) can be written as

LY(α) =
n∏
i=1

fα(Yi) =
n∏
i=1

α

θ

(
Yi
θ

)−(α+1)
=

n∏
i=1

αθαY
−(α+1)
i ,

whereas the joint log-likelihood function `Y(α) is given by

`Y(α) = logLY(α) =
n∑
i=1

logα+α log θ−(α+1) log Yi = n logα+nα log θ−(α+1)
n∑
i=1

log Yi.

The MLE α̂MLE
n is defined as

α̂MLE
n = arg max

α>0
LY(α) = arg max

α>0
`Y(α).

Calculating the first and the second derivative of `Y(α) with respect to α, we get

∂

∂α
`Y(α) = n

α
+ n log θ −

n∑
i=1

log Yi and

∂2

∂α2 `Y(α) = ∂

∂α

(
n

α
+ n log θ −

n∑
i=1

log Yi

)
= − n

α2 < 0,

for all α > 0, from which we can conclude that `Y(α) is strictly concave in α. Thus, α̂MLE
n

can be found by setting the first derivative of `Y(α) equal to 0. We get

n

α̂MLE
n

+ n log θ −
n∑
i=1

log Yi = 0 ⇐⇒ α̂MLE
n =

(
1
n

n∑
i=1

log Yi − log θ
)−1

.

(b) Let α̂ denote the unbiased version of the MLE for the storm and flood data given in Table 1
of the exercise sheet. Since we observed 15 storm and flood events, we have n = 15. Thus, α̂
can be calculated as

α̂ = n− 1
n

(
1
n

n∑
i=1

log Yi − log θ
)−1

= 14
15

(
1
15

15∑
i=1

log Yi − log 50
)−1

≈ 0.98,

where for Y1, . . . , Y15 we plugged in the observed claim sizes given in Table 1 of the exercise
sheet. Note that with α̂ = 0.98 < 1 the expectation of the claim sizes does not exist.
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(c) We define N1, . . . , N20 to be the numbers of yearly storm and flood events for the twenty
years 1986− 2005. By assumption, N1, . . . , N20 are i.i.d. Poisson distributed with frequency
parameter λ. Using Estimator 2.32 of the lecture notes (version of March 20, 2019) with
v1 = · · · = v20 = 1, the MLE λ̂ of λ is given by

λ̂ = 1∑20
i=1 1

20∑
i=1

Ni = 1
20

20∑
i=1

Ni.

Since we observed 15 storm and flood events in total, we get

λ̂ = 15
20 = 0.75.

(d) Using Proposition 2.11 of the lecture notes (version of March 20, 2019), the expected yearly
claim amount E[S] of storm and flood events with maximal claims cover M is given by

E[S] = λE[min{Y1,M}].

The expected value of min{Y1,M} can be calculated as

E[min{Y1,M}] = E[min{Y1,M}1{Y1≤M}] + E[min{Y1,M}1{Y1>M}]
= E[Y11{Y1≤M}] + E[M1{Y1>M}]
= E[Y11{Y1≤M}] +MP[Y1 > M ],

where for E[Y11{Y1≤M}] and MP[Y1 > M ] we have

E[Y11{Y1≤M}] =
∫ ∞
θ

x1{x≤M}f(x) dx =
∫ M

θ

x
α

θ

(x
θ

)−(α+1)
dx = αθα

[
1

1− αx
1−α

]M
θ

= α

1− αθ
αM1−α − α

1− αθ = α

1− αθ
(
M

θ

)1−α
− α

1− αθ

= θ
α

1− α

[(
M

θ

)1−α
− 1
]

and

MP[Y1 > M ] = M(1− P[Y1 ≤M ]) = M

(
1−

[
1−

(
M

θ

)−α])
= θ

(
M

θ

)1−α
.

Hence, we get

E[min{Y1,M}] = θ
α

1− α

[(
M

θ

)1−α
− 1
]

+ θ

(
M

θ

)1−α
= θ

1
1− α

(
M

θ

)1−α
− θ α

1− α.

Replacing the unknown parameters by their estimates, we get for the estimated expected
total yearly claim amount Ê[S]:

Ê[S] = λ̂

[
θ

1− α̂

(
M

θ

)1−α̂
− θ · α̂

1− α̂

]
≈ 0.75

[
50

1− 0.98

(
2’000

50

)1−0.98
− 50 · 0.98

1− 0.98

]
≈ 180.4.

(e) According to our compound Poisson model, next year’s total yearly claim amount S ∼
CompPoi(λ,G) of storm and flood events with claim amounts exceeding CHF 50 million can
be written as

S =
N∑
i=1

Yi,
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where N ∼ Poi(λ), Y1, Y2, . . . are i.i.d. with distribution function G, and N and Y1, Y2, . . .
are independent. Since we are only interested in events that exceed the level of CHF M = 2
billion, we define SM as

SM =
N∑
i=1

Yi1{Yi>M}.

Due to Theorem 2.14 of the lecture notes (version of March 20, 2019), we have SM ∼
CompPoi(λM , GM ) for some distribution function GM and

λM = λP[Y1 > M ] = λ(1− P[Y1 ≤M ]) = λ

(
1−

[
1−

(
M

θ

)−α])
= λ

(
M

θ

)−α
.

Defining a random variable NM ∼ Poi(λM ), the probability that we observe at least one
storm and flood event next year which exceeds the level of CHF M = 2 billion is given by

P[NM ≥ 1] = 1− P[NM = 0] = 1− exp{−λM} = 1− exp
{
−λ
(
M

θ

)−α}
.

If we replace the unknown parameters by their estimates, this probability can be estimated by

P̂[NM ≥ 1] = 1− exp
{
−λ̂
(
M

θ

)−α̂}
≈ 1− exp

{
−0.75

(
2’000

50

)−0.98
}
≈ 0.02.

Note that, in particular, such a storm and flood event that exceeds the level of CHF 2 billion
is expected roughly every 1/0.02 = 50 years.

Solution 5.2 Claim Size Distributions

The R code used to generate the four i.i.d. samples is given in Listing 1.

Listing 1: R code for Exercise 5.2 (Data generation).
1 ### Size of the i.i.d. samples
2 n <- 10000
3
4 ### Generate the gamma i.i.d. sample
5 gamma <- 1/4
6 c <- 1/40000
7 set.seed (100)
8 gamma . sample <- rgamma (n=n, shape =gamma , rate=c)
9

10 ### Generate the Weibull i.i.d. sample
11 tau <- 0.54
12 c <- 0.000175
13 set.seed (200)
14 weibull . sample <- rgamma (n=n, shape =1, rate =1)^(1/ tau )/c
15
16 ### Generate the log - normal i.i.d. sample
17 mu <- log (2000* sqrt (5))
18 sigma . squared <- log (5)
19 set.seed (300)
20 lognormal . sample <- exp( rnorm (n=n, mean=mu , sd=sqrt( sigma . squared )))
21
22 ### Generate the Pareto i.i.d. sample
23 theta <- 10000*( sqrt (5)/(2+ sqrt (5)))
24 alpha <- 1+ sqrt (5)/2
25 set.seed (400)
26 pareto . sample <- theta *exp( rgamma (n=n, shape =1, rate= alpha ))

In Figure 1 (generated by the R code given in Listing 2) we show the densities (left) of the generated
i.i.d. samples as well as the corresponding box plots (right), both on a log scale. We only display
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logarithmic values starting from 0. We see for example that we have a lot of very small values in
case of the gamma distribution and the Weibull distribution. The smallest values observed are
considerably bigger for the log-normal and especially the Pareto distribution. Moreover, the value of
the biggest value observed increases in going from the gamma over the Weibull and the log-normal
to the Pareto distribution. We cannot say much about the tails from looking at these two plots.
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Figure 1: Plot of the densities of the four i.i.d. samples (left). Box plots of the four i.i.d. samples
(right).

Listing 2: R code for Exercise 5.2 (Figure 1).
1 ### Densities
2 ymax <- max( density (log( gamma . sample ))$y , density (log( weibull . sample ))$y ,
3 density (log( lognormal . sample ))$y , density (log( pareto . sample )) $y)
4 ymax2 <- max(log( gamma . sample ),log( weibull . sample ),log( lognormal . sample ),log( pareto . sample ))
5 plot( density (log( gamma . sample )), xlim=c(0, ymax2 ), col =" grey", ylim=c(0, ymax), main =" Densities ",
6 xlab =" Sampled values (log scale )", cex.lab =1.25 , cex.main =1.25 , cex.axis =1.25 ,
7 lwd =2)
8 lines ( density (log( weibull . sample )), col =" red", xlim=c(0, ymax2 ), lwd =2)
9 lines ( density (log( lognormal . sample )), col =" blue", xlim=c(0, ymax2 ), lwd =2)

10 lines ( density (log( pareto . sample )), col =" green ", xlim=c(0, ymax2 ), lwd =2)
11 legend (" topleft ", lty =1, lwd =2, col=c(" grey "," red "," blue "," green "),
12 legend =c(" Gamma "," Weibull ","Log - normal "," Pareto "))
13
14 ### Box plots
15 boxplot (log( gamma . sample ), log( weibull . sample ), log( lognormal . sample ), log( pareto . sample ),
16 ylim=c(0, ymax2 ), col=c(" grey "," red "," blue "," green "), main =" Box plot",
17 names =c(" Gamma "," Weibull ","Log - normal "," Pareto "), xlab =" Distribution ",
18 ylab =" Sampled values (log scale )", cex.lab =1.25 , cex.main =1.25 , cex.axis =0.95)

In Figure 2 (generated by the R code given in Listing 3) we show the plots of the empirical
distribution functions (left, on a log scale) and of the empirical loss size index functions (right) of
the generated i.i.d. samples. For the plot of the empirical distribution functions we only display
logarithmic values starting from 0. We observe that the empirical distribution functions almost
perfectly intersect at the point with x-coordinate equal to log(10’000)≈ 9.21. This means that for
all of the four considered distributions approximately the same percentage of observations is smaller
than the expected value. This percentage is roughly equal to 75%, indicating that three quarters of
the observations are smaller than the expected value and one quarter of the observations are above
the expected value. Thus, not surprisingly, the large claims are the main driver of the expected
value. We get confirmed the observations from Figure 1, namely that the smallest values observed
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are considerably bigger for the log-normal and especially the Pareto distribution, compared to the
gamma and the Weibull distribution. This carries over to the plot of the empirical loss size index
function. Also these two plots do not tell us much about the tails of the distributions.
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Figure 2: Plot of the empirical distribution functions of the four i.i.d. samples (left). Plot of the
empirical loss size index functions of the four i.i.d. samples (right).

Listing 3: R code for Exercise 5.2 (Figure 2).
1 ### Empirical distribution functions
2 plot(log( gamma . sample [ order ( gamma . sample )]) , 1:n/(n+1) , xlim=c(0, ymax2 ), type ="l", col =" grey",
3 main =" Empirical distribution function ", xlab =" Sampled values (log scale )",
4 ylab =" Empirical distribution function ", cex.lab =1.25 , cex.main =1.25 , cex.axis =1.25 , lwd =2)
5 lines (log( weibull . sample [ order ( weibull . sample )]) , 1:n/(n+1) , xlim=c(0, ymax2 ), col =" red", lwd =2)
6 lines (log( lognormal . sample [ order ( lognormal . sample )]) , 1:n/(n+1) , xlim=c(0, ymax2 ), col =" blue",
7 lwd =2)
8 lines (log( pareto . sample [ order ( pareto . sample )]) , 1:n/(n+1) , xlim=c(0, ymax2 ), col =" green ", lwd =2)
9 legend (" topleft ", lty =1, lwd =2, col=c(" grey "," red "," blue "," green "),

10 legend =c(" Gamma "," Weibull ","Log - normal "," Pareto "))
11
12 ### Empirical loss size index functions
13 plot (1:n/n, cumsum ( gamma . sample [ order ( gamma . sample )])/ sum( gamma . sample ), type ="l", col =" grey",
14 main =" Empirical loss size index function ", xlab =" Number of claims (in 100%)" ,
15 ylab =" Empirical loss size index function ", cex.lab =1.25 , cex.main =1.25 , cex.axis =1.25 ,
16 lwd =2)
17 lines (1:n/n, cumsum ( weibull . sample [ order ( weibull . sample )])/ sum( weibull . sample ), type ="l",
18 col =" red", lwd =2)
19 lines (1:n/n, cumsum ( lognormal . sample [ order ( lognormal . sample )])/ sum( lognormal . sample ), type ="l",
20 col =" blue", lwd =2)
21 lines (1:n/n, cumsum ( pareto . sample [ order ( pareto . sample )])/ sum( pareto . sample ), type ="l",
22 col =" green ", lwd =2)
23 legend (" topleft ", lty =1, lwd =2, col=c(" grey "," red "," blue "," green "),
24 legend =c(" Gamma "," Weibull ","Log - normal "," Pareto "))

In Figure 3 (generated by the R code given in Listing 4) we show the log-log plots (left) and the plot
of the empirical mean excess functions (right) of the generated i.i.d. samples. These two plots can
be used for studying the tails of the distributions. We see in both plots that the gamma distribution
is the most light-tailed distribution. The Weibull distribution and the log-normal distribution have
a similar tail behaviour, with slightly heavier tails of the log-normal distribution. Note that this
similar tail behaviour is due to the value of the parameter τ of the Weibull distribution being smaller
than 1. With a value τ ≥ 1 the distribution gets (even) more light-tailed. The most heavy-tailed
distribution among the four distributions we analyzed here is the Pareto distribution.
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Listing 4: R code for Exercise 5.2 (Figure 3).
1 ### Log -log plots
2 plot(log( gamma . sample [ order ( gamma . sample )]) , log (1 -1:n/(n+1)) , xlim=c(0, ymax2 ), type ="l",
3 col =" grey", main ="Log -log plot", xlab =" log( sampled values )",
4 ylab =" log (1- empirical distribution function )", cex.lab =1.25 , cex.main =1.25 , cex.axis =1.25 ,
5 lwd =2)
6 lines (log( weibull . sample [ order ( weibull . sample )]) , log (1 -1:n/(n+1)) , xlim=c(0, ymax2 ), type ="l",
7 col =" red", lwd =2)
8 lines (log( lognormal . sample [ order ( lognormal . sample )]) , log (1 -1:n/(n+1)) , xlim=c(0, ymax2 ),
9 type ="l", col =" blue", lwd =2)

10 lines (log( pareto . sample [ order ( pareto . sample )]) , log (1 -1:n/(n+1)) , xlim=c(0, ymax2 ), type ="l",
11 col =" green ", lwd =2)
12 legend (" bottomleft ", lty =1, lwd =2, col=c(" grey "," red "," blue "," green "),
13 legend =c(" Gamma "," Weibull ","Log - normal "," Pareto "))
14
15 ### Empirical mean excess functions
16 mean. excess . function <- Vectorize ( function (threshold , input . sample ){
17 mean( input . sample [ input .sample > threshold ])- threshold
18 }," threshold ")
19 xmax <- pareto . sample [ order ( pareto . sample )][n -1]
20 ymax3 <- max( pareto . sample )-xmax
21 plot( gamma . sample [ order ( gamma . sample )][ -n],
22 mean. excess . function ( gamma . sample [ order ( gamma . sample )][ -n], gamma . sample ), pch =16 ,
23 col =" grey", xlim=c(0, xmax), ylim=c(0, ymax3 ), main =" Empirical mean excess function ",
24 xlab =" Threshold ", ylab =" Mean excess function ", cex.lab =1.25 , cex.main =1.25 , cex.axis =1.25)
25 points ( weibull . sample [ order ( weibull . sample )][ -n],
26 mean. excess . function ( weibull . sample [ order ( weibull . sample )][ -n], weibull . sample ), pch =16 ,
27 col =" red", ylim=c(0, ymax3 ))
28 points ( lognormal . sample [ order ( lognormal . sample )][ -n],
29 mean. excess . function ( lognormal . sample [ order ( lognormal . sample )][ -n], lognormal . sample ),
30 pch =16 , col =" blue", ylim=c(0, ymax3 ))
31 points ( pareto . sample [ order ( pareto . sample )][ -n],
32 mean. excess . function ( pareto . sample [ order ( pareto . sample )][ -n], pareto . sample ),pch =16 ,
33 col =" green ", ylim=c(0, ymax3 ))
34 legend (" topleft ", pch =16 , col=c(" grey "," red "," blue "," green "),
35 legend =c(" Gamma "," Weibull ","Log - normal "," Pareto "))
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Figure 3: Log-log plots of the four i.i.d. samples (left). Plot of the empirical mean excess functions
of the four i.i.d. samples (right).

Summarizing, we can say that although we fixed the mean and the standard deviation to be the
same, all of the four considered distributions behave differently. This implies that one has to
carefully select the appropriate claim size distribution.
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Solution 5.3 Hill Estimator

The Hill plot (on the left, generated by the R code of Listing 5) and the log-log plot (on the right,
generated by the R code of Listing 6) are given in Figure 4. Even though we sampled from a Pareto
distribution with tail index α = 2, it is not at all clear to see that the data comes from a Pareto
distribution. In the Hill plot we see that, first, the estimates of α seem more or less correct, but
starting from the 180 largest observations, the plot suggests a higher α or even another distribution.
In the log-log plot we see that for small-sized and medium-sized claims the fit seems to be fine. But
looking at the largest claims, we would conclude that our data is not as heavy-tailed as a true Pareto
distribution with threshold θ = 10 and tail index α = 2 would suggest. We observe these problems
even though we sampled directly from a Pareto distribution. This indicates the difficulties one faces
when trying to fit such a distribution to a real data set, where we often have less observations than
in this example and the observations may be contaminated by other distributions.

Listing 5: R code for Exercise 5.3 (Hill plot).
1 hill.plot. function <- function (n, theta , alpha , seed1 ){
2 set.seed( seed1 )
3 data .1 <- rgamma (n, shape =1, scale =1/ alpha )
4 data <- theta * exp(data .1)
5 log.data. ordered <- log(data[ order (data , decreasing = FALSE )])
6 n.obs <- n:5
7 hill. estimator <- (( sum(log.data. ordered )- cumsum (log.data. ordered )
8 +log.data. ordered )[ -((n -3):n)]/n.obs -log.data. ordered [ -((n -3):n)])^( -1)
9 upper . bound <- hill. estimator +sqrt(n.obs ^2/(( n.obs -1)^2*( n.obs -2))* hill. estimator ^2)

10 lower . bound <- hill.estimator -sqrt(n.obs ^2/(( n.obs -1)^2*( n.obs -2))* hill. estimator ^2)
11 plot(hill.estimator , ylim=c(min(hill. estimator )-1, max(hill. estimator )+1) , xaxt ="n",
12 xlab =" Number of observations ", ylab =" Pareto tail index parameter ",
13 main =" Hill plot for alpha ", cex =0.5 , cex.lab =1.25 , cex.main =1.25 , cex.axis =1.25)
14 axis (1, at=c(1, seq(from=n/10+1 , to=n*9/10+1 , by=n/10) , n -5) , c(seq(from=n, to=n/10 ,
15 by=-n/10) , 5))
16 lines ( upper . bound )
17 lines ( lower . bound )
18 abline (h=alpha , col =" blue", lwd =2)
19 legend (" topleft ", col=c(" blue "," black "), lty=c(1,NA), pch=c(NA ,1) , lwd=c(2,NA),
20 legend =c(" true tail index "," estimated tail index "))
21 }
22
23 hill.plot. function (n=300 , theta =10 , alpha =2, seed1 =100)
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Figure 4: Hill plot for determining the tail index α (left). Log-log plot for the observations and the
Pareto distribution (right).
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Listing 6: R code for Exercise 5.3 (Log-log plot).
1 log.log.plot. function <- function (n, theta , alpha , seed1 ){
2 set.seed( seed1 )
3 data .1 <- rgamma (n, shape =1, scale =1/ alpha )
4 data <- theta *exp(data .1)
5 data. ordered <- data[ order (data , decreasing = FALSE )]
6 log.data. ordered <- log(data. ordered )
7 true.sf <- (data. ordered / theta )^( - alpha )
8 empirical .sf <- 1 -(1:n)/(n+1)
9 plot(log.data.ordered , log(true.sf), xlab =" log( claim size )",

10 ylab =" log (1 - distribution function )",
11 ylim=c(min(log(true.sf),log( empirical .sf)), max(log(true.sf),log( empirical .sf ))) ,
12 main ="Log -log plot", cex.lab =1.25 , cex.main =1.25 , cex.axis =1.25 , cex =0.5 , col =" blue ")
13 lines (log.data.ordered ,log(true.sf), col =" blue ")
14 points (log.data.ordered , log( empirical .sf), col =" black ", cex =0.5)
15 legend (" bottomleft ", col=c(" blue "," black "), lty=c(1,NA), pch=c(1 ,1) ,
16 legend =c(" Pareto distribution "," observations "))
17 }
18
19 log.log.plot. function (n=300 , theta =10 , alpha =2, seed1 =100)

Solution 5.4 Pareto Distribution

The density g and the distribution function G of Y ∼ Pareto(θ, α) are defined by

g(x) = α

θ

(x
θ

)−(α+1)
and G(x) = 1−

(x
θ

)−α
,

respectively, for all x ≥ θ.

(a) The survival function Ḡ = 1−G of Y is given by

Ḡ(x) = 1−G(x) =
(x
θ

)−α
,

for all x ≥ θ. Hence, for all t > 0 we have

lim
x→∞

Ḡ(xt)
Ḡ(x)

= lim
x→∞

(xt/θ)−α

(x/θ)−α = t−α.

Thus, by definition, the survival function of Y is regularly varying at infinity with tail index
α.

(b) Let θ ≤ u1 < u2. Then, the expected value of Y within the layer (u1, u2] can be calculated as

E[Y 1{u1<Y≤u2}] =
∫ ∞
θ

x1{u1<x≤u2}g(x) dx =
∫ u2

u1

x
α

θ

(x
θ

)−(α+1)
dx

= αθ

∫ u2

u1

1
θ

(x
θ

)−α
dx.

In the case α 6= 1, we get

E[Y 1{u1<Y≤u2}] = αθ

[
− 1
α− 1

(x
θ

)−α+1
]u2

u1

= θ
α

α− 1

[(u1

θ

)−α+1
−
(u2

θ

)−α+1
]
,

and if α = 1, we get

E[Y 1{u1<Y≤u2}] = θ

∫ u2

u1

1
x
dx = θ log

(
u2

u1

)
.
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(c) Let α > 1 and y > θ. Then, the expected value µY of Y is given by

µY = θ
α

α− 1

and, similarly as in part (b), we get

E[Y 1{Y≤y}] = E[Y 1{θ<Y≤y}] = θ
α

α− 1

[(
θ

θ

)−α+1
−
(y
θ

)−α+1
]

= µY

[
1−

(y
θ

)−α+1
]
.

Hence, for the loss size index function for level y > θ we have

I[G(y)] = 1
µY

E[Y 1{Y≤y}] = 1−
(y
θ

)−α+1
∈ (0, 1).

(d) Let α > 1 and u > θ. The mean excess function of Y above u can be calculated as

e(u) = E[Y − u|Y > u] = E[Y |Y > u]− u =
E[Y 1{Y >u}]
P[Y > u] − u =

E[Y 1{Y >u}]
Ḡ(u)

− u,

where for E[Y 1{Y >u}] we have, similarly as in part (b),

E[Y 1{Y >u}] = E[Y 1{u<Y≤∞}] = αθ

[
− 1
α− 1

(x
θ

)−α+1
]∞
u

= α

α− 1θ
(u
θ

)−α+1

= α

α− 1uḠ(u).

Thus, we get
e(u) = α

α− 1u− u = 1
α− 1u.

Note that the mean excess function u 7→ e(u) has slope 1
α−1 > 0.
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Solution 6.1 Goodness-of-Fit Test

(a) Let Y be a random variable following a Pareto distribution with threshold θ = 200 and tail
index α = 1.25. Then, the distribution function G of Y is given by

G(x) = 1−
(x
θ

)−α
= 1−

( x

200

)−1.25
,

for all x ≥ θ. For example for the interval I2 we then have

P[Y ∈ I2] = P[239 ≤ Y < 301] = G(301)−G(239) = 0.2.

By analogous calculations for the other four intervals, we get

P[Y ∈ I1] = P[Y ∈ I2] = P[Y ∈ I3] = P[Y ∈ I4] = P[Y ∈ I5] ≈ 0.2.

Let Ok denote the actual number of observations and Ek the expected number of observations
in interval Ik, for all k ∈ {1, . . . , 5}. The test statistic

X2
n,5 =

5∑
k=1

(Ok − Ek)2

Ek

of the χ2-goodness-of-fit test using K = 5 intervals and n observations converges to a χ2-
distribution with K − 1 = 5 − 1 = 4 degrees of freedom, as n → ∞. As we have n = 20
observations in our data, we can calculate Ek as

Ek = 20 · P[Y ∈ Ik] = 20 · 0.2 ≈ 4,

for all k = 1, . . . , 5. The values of the actual numbers of observations Ok and the expected
numbers of observations Ek in the five intervals k = 1, . . . , 5 as well as their squared differences
(Ok − Ek)2 are summarized in Table 1.

k 1 2 3 4 5
Ok 4 0 8 6 2
Ek 4 4 4 4 4

(Ok − Ek)2 0 16 16 4 4

Table 1: Actual and expected numbers of observations with squared differences.

With the numbers in Table 1, the test statistic of the χ2-goodness-of-fit test using 5 intervals
in the case of our n = 20 observations is given by

X2
20,5 =

5∑
k=1

(Ok − Ek)2

Ek
= 0

4 + 16
4 + 16

4 + 4
4 + 4

4 = 10.

Let α = 5%. Then, the (1− α)-quantile of the χ2-distribution with 4 degrees of freedom is
given by approximately 9.49. Since this is smaller than X2

20,5, we can reject the null hypothesis
of having a Pareto distribution with threshold θ = 200 and tail index α = 1.25 as claim size
distribution at significance level of 5%.
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(b) We assume that we have n i.i.d. observations Y1, . . . , Yn from the null hypothesis distribution
and that we work with K = 2 disjoint intervals I1 and I2. We define

p = P[Y1 ∈ I1]

and
Xi = 1{Yi∈I1},

for all i = 1, . . . , n. This implies that X1, . . . , Xn
i.i.d.∼ Bernoulli(p). Thus, we have

µ
def= E[X1] = p and σ

def=
√

Var(X1) =
√
p(1− p).

Moreover, we can write

O1 =
n∑
i=1

Xi and O2 = n−O1 = n−
n∑
i=1

Xi

as well as

E1 = E

[
n∑
i=1

Xi

]
= np and E2 = E

[
n−

n∑
i=1

Xi

]
= n− np = n(1− p).

Therefore, we get

X2
n,2 =

2∑
k=1

(Ok − Ek)2

Ek
= (O1 − np)2

np
+ [n−O1 − n(1− p)]2

n(1− p)

= (O1 − np)2
[

1
np

+ 1
n(1− p)

]
= (O1 − np)2 1

np(1− p)

=
(∑n

i=1 Xi − nµ√
nσ

)2

.

Let Z ∼ N (0, 1) and χ2
1 follow a χ2-square distribution with one degree of freedom. According

to the central limit theorem, see equation (1.2) of the lecture notes (version of March 20,
2019), we have ∑n

i=1 Xi − nµ√
nσ

=⇒ Z, as n→∞.

As Z2 (d)= χ2
1, see Exercise 1.4, we can conclude that

X2
n,2 =⇒ Z2 (d)= χ2

1, as n→∞.

Solution 6.2 Log-Normal Distribution and Deductible

(a) Let X ∼ N (µ, σ2). Then, the moment generating function MX of X is given by

MX(r) = E [exp{rX}] = exp
{
rµ+ r2σ2

2

}
,

for all r ∈ R, see Exercise 1.3. Since Y1 has a log-normal distribution with mean parameter µ
and variance parameter σ2, we have

Y1
(d)= exp{X}.
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Hence, the expectation, the variance and the coefficient of variation of Y1 can be calculated as

E[Y1] = E [exp{X}] = E [exp{1 ·X}] = MX(1) = exp
{
µ+ σ2

2

}
,

Var(Y1) = E[Y 2
1 ]− E[Y1]2 = E [exp{2X}]−MX(1)2 = MX(2)−MX(1)2

= exp
{

2µ+ 4σ2

2

}
− exp

{
2µ+ 2σ

2

2

}
= exp

{
2µ+ σ2} (exp

{
σ2}− 1

)
and

Vco(Y1) =
√

Var(Y1)
E[Y1] =

exp
{
µ+ σ2/2

}√
exp {σ2} − 1

exp {µ+ σ2/2} =
√

exp {σ2} − 1.

(b) From part (a) we know that

σ =
√

log[Vco(Y1)2 + 1] and

µ = logE[Y1]− σ2

2 .

Since E[Y1] = 3’000 and Vco(Y1) = 4, we get

σ =
√

log(42 + 1) ≈ 1.68 and

µ ≈ log 3’000− (1.68)2

2 ≈ 6.59.

(i) The claim frequency λ is given by λ = E[N ]/v. With the introduction of the deductible
d = 500, the number of claims changes to

Nnew =
N∑
i=1

1{Yi>d}.

Using the independence of N and Y1, Y2, . . . , we get

E[Nnew] = E

[
N∑
i=1

1{Yi>d}

]
= E[N ]E[1{Y1>d}] = E[N ]P[Y1 > d].

Let Φ denote the distribution function of a standard Gaussian distribution. Since log Y1
has a Gaussian distribution with mean µ and variance σ2, we have

P[Y1 > d] = 1− P[Y1 ≤ d] = 1− P
[

log Y1 − µ
σ

≤ log d− µ
σ

]
= 1− Φ

(
log d− µ

σ

)
.

Hence, the new claim frequency λnew is given by

λnew = E[Nnew]/v = E[N ]P[Y1 > d]/v = λP[Y1 > d] = λ

[
1− Φ

(
log d− µ

σ

)]
.

Inserting the values of d, µ and σ, we get

λnew ≈ λ

[
1− Φ

(
log 500− 6.59

1.68

)]
≈ 0.59 · λ.

Note that the introduction of this deductible reduces the administrative burden a lot,
because we expect that 41% of the claims disappear.
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(ii) With the introduction of the deductible d = 500, the claim sizes change to

Y new
i = Yi − d |Yi > d.

Thus, the new expected claim size is given by

E[Y new
1 ] = E[Y1 − d|Y1 > d] = e(d),

where e(d) is the mean excess function of Y1 above d. According to page 67 of the lecture
notes (version of March 20, 2019), e(d) is given by

e(d) = E[Y1]

1− Φ
(

log d−µ−σ2

σ

)
1− Φ

(
log d−µ

σ

)
− d.

Inserting the values of d, µ, σ and E[Y1], we get

E[Y new
1 ] ≈ 3’000

1− Φ
(

log 500−6.59−1.682

1.68

)
1− Φ

(
log 500−6.59

1.68

)
− 500 ≈ 4’456 ≈ 1.49 · E[Y1].

(iii) According to Proposition 2.2 of the lecture notes (version of March 20, 2019), the
expected total claim amount E[S] is given by

E[S] = E[N ]E[Y1].

With the introduction of the deductible d = 500, the total claim amount S changes to
Snew, which can be written as

Snew =
Nnew∑
i=1

Y new
i .

Hence, the expected total claim amount changes to

E[Snew] = E[Nnew]E[Y new
1 ] = E[N ]P[Y1 > d]e(d) ≈ 0.59 · E[N ] · 1.49 · E[Y1]

≈ 0.87 · E[S].

In particular, the insurance company can grant a discount of roughly 13% on the pure
risk premium. Note that also the administrative expenses on claims handling will reduce
substantially because we only have 59% of the original claims, see the result in (i).

Solution 6.3 Kolmogorov-Smirnov Test

The distribution function G0 of a Weibull distribution with shape parameter τ = 1
2 and scale

parameter c = 1 is given by
G0(y) = 1− exp

{
−y1/2

}
,

for all y ≥ 0. Since G0 is continuous, we are indeed allowed to apply a Kolmogorov-Smirnov test.
If x = (− log u)2 for some u ∈ (0, 1), we have

G0(x) = 1− exp
{
−
[
(− log u)2]1/2

}
= 1− exp {log u} = 1− u.

Hence, if we evaluate G0 at our data points x1, . . . , x5, we get

G0(x1) = 2
40 , G0(x2) = 3

40 , G0(x3) = 5
40 , G0(x4) = 6

40 , G0(x5) = 30
40 .
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We write Ĝn for the empirical distribution function of a sample with n data points. The Kolmogorov-
Smirnov test statistic Dn is then defined as

Dn = sup
y∈R

∣∣∣Ĝn(y)−G0(y)
∣∣∣ ,

and
√
nDn converges to the Kolmogorov distribution K, as n → ∞. The empirical distribution

function Ĝ5 of the sample x1, . . . , x5 is given by

Ĝ5(y) =



0 if y < x1,
1/5 if x1 ≤ y < x2,
2/5 if x2 ≤ y < x3,
3/5 if x3 ≤ y < x4,
4/5 if x4 ≤ y < x5,
1 if y ≥ x5.

Since G0 is continuous and strictly increasing with range [0, 1) and Ĝ5 is piecewise constant and
attains both the values 0 and 1, it is sufficient to consider the discontinuities of Ĝ5 to determine
the Kolmogorov-Smirnov test statistic D5 for our n = 5 data points. We define

f(s−) = lim
r↗s

f(r),

for all s ∈ R, where the function f stands for G0 and Ĝ5. Since G0 is continuous, we have
G0(s−) = G0(s) for all s ∈ R. The values of G0 and Ĝ5 and their differences (in absolute value)
are summarized in Table 2.

xi, xi− x1− x1 x2− x2 x3− x3 x4− x4 x5− x5

Ĝ5(·) 0 8/40 8/40 16/40 16/40 24/40 24/40 32/40 32/40 1
G0(·) 2/40 2/40 3/40 3/40 5/40 5/40 6/40 6/40 30/40 30/40

|Ĝ5(·)−G0(·)| 2/40 6/40 5/40 13/40 11/40 19/40 18/40 26/40 2/40 10/40

Table 2: Values of G0 and Ĝ5 and their differences (in absolute value).

From Table 2 we see for the Kolmogorov-Smirnov test statistic D5 that

D5 = sup
y∈R

∣∣∣Ĝ5(y)−G0(y)
∣∣∣ = 26/40 = 0.65.

Let q = 5%. By writing K←(1 − q) for the (1 − q)-quantile of the Kolmogorov distribution, we
have K←(1− q) = 1.36, see page 81 of the lecture notes (version of March 20, 2019). Since

K←(1− q)√
5

≈ 0.61 < 0.65 = D5,

we can reject the null hypothesis (at significance level of 5%) that the data x1, . . . , x5 comes from a
Weibull distribution with shape parameter τ = 1

2 and scale parameter c = 1.

Solution 6.4 Akaike Information Criterion and Bayesian Information Criterion

(a) By definition, the MLEs
(
γ̂MLE, ĉMLE) maximize the log-likelihood function `Y. In particular,

we have
`Y
(
γ̂MLE, ĉMLE) ≥ `Y (γ, c) ,

for all (γ, c) ∈ R+ × R+.
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If we write dMM and dMLE for the number of estimated parameters in the method of moments
model and in the MLE model, respectively, we have dMM = dMLE = 2. The AIC value AICMM

of the method of moments model and the AIC value AICMLE of the MLE model are then
given by

AICMM = −2`Y
(
γ̂MM, ĉMM)+ 2dMM = −2 · 1’264.013 + 2 · 2 = −2’524.026 and

AICMLE = −2`Y
(
γ̂MLE, ĉMLE)+ 2dMLE = −2 · 1’264.171 + 2 · 2 = −2’524.342.

According to the AIC, the model with the smallest AIC value should be preferred. Since
AICMM > AICMLE, we choose the MLE fit.

(b) If we write dgam and dexp for the number of estimated parameters in the gamma model and in
the exponential model, respectively, we have dgam = 2 and dexp = 1. The AIC value AICgam

of the gamma model and the AIC value AICexp of the exponential model are then given by

AICgam = −2`gam
Y

(
γ̂MLE, ĉMLE)+ 2dgam = −2 · 1’264.171 + 2 · 2 = −2’524.342 and

AICexp = −2`exp
Y
(
ĉMLE)+ 2dexp = −2 · 1’264.169 + 2 · 1 = −2’526.338.

Since AICgam > AICexp, we choose the exponential model.
The BIC value BICgam of the gamma model and the BIC value BICexp of the exponential
model are given by

BICgam = −2`gam
Y

(
γ̂MLE, ĉMLE)+ dgam · logn = −2 · 1’264.171 + 2 · log 1’000 ≈ −2’514.53

and

BICexp = −2`exp
Y
(
ĉMLE)+ dexp · logn = −2 · 1’264.169 + log 1’000 ≈ −2’521.43.

According to the BIC, the model with the smallest BIC value should be preferred. Since
BICgam > BICexp, we choose the exponential model.
Note that the gamma model gives the better in-sample fit than the exponential model. But
if we adjust this in-sample fit by the number of parameters used, we conclude that the
exponential model probably has the better out-of-sample performance (better predictive
power).
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Solution 7.1 Re-Insurance Covers and Leverage Effect

(a) Under the assumption that P[Y > d] > 0 and that E[Y |Y > d] exists, we can generally write

E[(Y − d)+] = E[(Y − d)1{Y >d}] = E[Y 1{Y >d}]− E[d1{Y >d}]

=
E[Y 1{Y >d}]
P[Y > d] P[Y > d]− dP[Y > d] = P[Y > d](E[Y |Y > d]− d),

see also formula (3.11) of the lecture notes (version of March 20, 2019). Now we explicitly use
that a gamma distribution with shape parameter equal to 1 is an exponential distribution.
The characteristic property of an exponential distribution is the so-called memorylessness
property

P[Y > t+ s|Y > t] = P[Y > s],
for all t, s > 0. In particular, this property leads to (see below for the calculation)

E[Y |Y > d] = E[Y ] + d, (1)

which, in turn, implies for our loss Y ∼ Γ(1, 1
400 ) that

E[(Y − d)+] = P[Y > d]E[Y ].

We check equation (1). Indeed, we have

E[Y |Y > d] =
E[Y 1{Y >d}]
P[Y > d] = 1

P[Y > d]

∫ ∞
0

y1{y>d}
1

400 exp
{
− y

400

}
dy

= 1
exp

{
− d

400
} ∫ ∞

d

y
1

400 exp
{
− y

400

}
dy

= exp
{

d

400

}∫ ∞
0

(u+ d) 1
400 exp

{
− u

400

}
exp

{
− d

400

}
du

=
∫ ∞

0
u

1
400 exp

{
− u

400

}
du+ d

∫ ∞
0

1
400 exp

{
− u

400

}
du

= E[Y ] + d,

where in the fourth equality we used the substitution u = y − d.

(b) By looking at the graphs in Figure 1 on the exercise sheet, we find the following re-insurance
covers:

(i) (Y − 200)+,
(ii) min{Y, 400},
(iii) min{Y, 200} + (Y − 400)+.

(c) (i) Using part (a), we get

E[(Y − 200)+] = P[Y > 200]E[Y ] = exp
{
−200

400

}
400 = 400√

exp{1}
≈ 243.
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(ii) First, we write

E[min{Y, 400}] = E[min{Y, 400}1{Y≤400}] + E[min{Y, 400}1{Y >400}]
= E[Y 1{Y≤400}] + E[400 · 1{Y >400}}]
= E[Y ]− E[Y 1{Y >400}] + E[400 · 1{Y >400}}]
= E[Y ]− E[(Y − 400)1{Y >400}]
= E[Y ]− E[(Y − 400)+],

which holds true as E[Y ] exists, see also page 89 the lecture notes (version of March 20,
2019). Using part (a), we then get

E[min{Y, 400}] = E[Y ]− P[Y > 400]E[Y ] = E[Y ](1− P[Y > 400])

= 400
(

1− exp
{
−400

400

})
= 400(1− exp{−1}) ≈ 253.

(iii) Using the above calculation in (ii) as well as part (a), we have

E[min{Y, 200}+ (Y − 400)+] = E[Y ]− E[(Y − 200)+] + E[(Y − 400)+]
= E[Y ]− P[Y > 200]E[Y ] + P[Y > 400]E[Y ]
= E[Y ](1− P[Y > 200] + P[Y > 400])

= 400
(

1− exp
{
−1

2

}
+ exp{−1}

)
≈ 305.

(d) As Y0 ∼ Γ
(
1, 1

400
)
, formula (3.5) of the lecture notes (version of March 20, 2019) implies

Y1
(d)= (1 + i)Y0 ∼ Γ

(
1, 1

400(1 + i)

)
.

Using part (a), we get

E[(Y1 − d)+] = P[Y1 > d]E[Y1] = exp
{
− d

400(1 + i)

}
400(1 + i)

and
E[(Y0 − d)+] = P[Y0 > d]E[Y0] = exp

{
− d

400

}
400,

which leads to

E[(Y1 − d)+]
(1 + i)E[(Y0 − d)+] =

exp
{
− d

400(1+i)

}
exp

{
− d

400
} = exp

{
d

400

(
1− 1

1 + i

)}
> 1,

since i > 0. We conclude that

E[(Y1 − d)+] > (1 + i)E[(Y0 − d)+].

The reason for this (strict) inequality, which is called leverage effect, is that not only the
claim sizes are growing under inflation, but also the number of claims that exceed threshold d
increases under inflation, as we do not adapt threshold d to inflation.
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Solution 7.2 Inflation and Deductible

Let Y be a random variable following a Pareto distribution with threshold θ > 0 and tail index
α > 1. Since the insurance company only has to pay the part that exceeds the deductible θ, this
year’s average claim payment z is

z = E
[
(Y − θ)+

]
= E[Y ]− θ = α

α− 1θ − θ = 1
α− 1θ.

For the total claim size Ỹ of a claim next year we have

Ỹ
(d)= (1 + r)Y ∼ Pareto([1 + r]θ, α).

Thus, the mean excess function e
Ỹ

(u) of Ỹ above u > (1 + r)θ is given by

e
Ỹ

(u) = 1
α− 1u,

see also Exercise 5.4. Let ρθ for some ρ > 0 denote the increase of the deductible that is needed
such that the average claim payment remains unchanged. With the new deductible (1 + ρ)θ, next
year’s average claim payment is given by

z̃ = E
[(
Ỹ − [1 + ρ]θ

)
+

]
.

The goal is to find ρ > 0 such that z = z̃. Assuming ρ ≤ r, we have

z̃ = E
[(
Ỹ − [1 + ρ]θ

)
+

]
≥ E

[(
Ỹ − [1 + r]θ

)
+

]
= E

[
([1 + r]Y − [1 + r]θ)+

]
= (1 + r)E

[
(Y − θ)+

]
= (1 + r) z > z,

i.e. for ρ ≤ r it is not possible to get z = z̃. Hence, we can deduce that ρ > r, i.e. the percentage
increase in the deductible has to be bigger than the inflation. Assuming ρ > r, we can calculate

z̃ = E
[(
Ỹ − [1 + ρ]θ

)
· 1{Ỹ−(1+ρ)θ>0}

]
= E

[
Ỹ − (1 + ρ)θ

∣∣∣ Ỹ > (1 + ρ)θ
]
· P
[
Ỹ > (1 + ρ)θ

]
= e

Ỹ
([1 + ρ]θ) · P

[
Ỹ > (1 + ρ)θ

]
= 1

α− 1(1 + ρ)θ ·
[

(1 + ρ)θ
(1 + r)θ

]−α
= 1

α− 1θ(1 + r)α(1 + ρ)−α+1 = z · (1 + r)α(1 + ρ)−α+1.

We have

z = z̃ ⇐⇒ (1 + r)α(1 + ρ)−α+1 = 1 ⇐⇒ ρ = (1 + r)
α

α−1 − 1 > r.

We conclude that if we want the average claim payment to remain unchanged, we have to increase
the deductible θ by the amount

θ
[
(1 + r)

α
α−1 − 1

]
.

Solution 7.3 Normal Approximation

As Y ∼ Γ(γ = 100, c = 1
10 ), we have

E[Y ] = γ

c
= 100

1/10 = 1’000 and

E[Y 2] = γ(γ + 1)
c2 = 100 · 101

1/100 = 1’010’000.
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For the total claim amount S we can use Proposition 2.11 of the lecture notes (version of March 20,
2019) to get

E[S] = λvE[Y ] = 1’000 · 1’000 = 1’000’000 and
Var(S) = λvE[Y 2] = 1’000 · 1’010’000 = 1’010’000’000.

Let FS denote the distribution function of S. Then, since FS is continuous and strictly increasing
(above the level exp{−λv} = P[S = 0]), the quantiles q0.95 and q0.99 can be calculated as

q0.95 = F−1
S (0.95) and q0.99 = F−1

S (0.99).

According to Section 4.1.1 of the lecture notes (version of March 20, 2019), the normal approximation
is given by

FS(x) ≈ Φ
(
x− λvE[Y ]√
λvE[Y 2]

)
,

for all x ∈ R, where Φ is the standard Gaussian distribution function. For all α ∈ (0, 1) we then
have

F−1
S (α) = λvE[Y ] +

√
λvE[Y 2] · Φ−1(α) = 1’000 · 1’000 +

√
1’000 · 1’010’000 · Φ−1(α)

≈ 1’000’000 + 31’780.5 · Φ−1(α).

In particular, we get

q0.95 = F−1
S (0.95) ≈ 1’000’000 + 31’780.5 · Φ−1(0.95) ≈ 1’000’000 + 31’780.5 · 1.645 ≈ 1’052’274

and

q0.99 = F−1
S (0.99) ≈ 1’000’000 + 31’780.5 · Φ−1(0.99) ≈ 1’000’000 + 31’780.5 · 2.326 ≈ 1’073’932.

Note that the normal approximation also allows for negative claims S, which under our model
assumptions is excluded. The probability for negative claims S in the normal approximation can
be calculated as

FS(0) ≈ Φ
(

0− λvE[Y ]√
λvE[Y 2]

)
≈ Φ

(
−1’000’000

31’780.5

)
≈ Φ(−31.5) ≈ 1.27 · 10−217,

which of course is positive, but very close to 0.

Solution 7.4 Translated Gamma and Translated Log-Normal Approximation

As Y ∼ Γ(γ = 100, c = 1
10 ), we have

E[Y ] = γ

c
= 100

1/10 = 1’000,

E[Y 2] = γ(γ + 1)
c2 = 100 · 101

1/100 = 1’010’000 and

E[Y 3] = γ(γ + 1)(γ + 2)
c3 = 100 · 101 · 102

1/1’000 = 1’030’200’000.

Let MY denote the moment generating function of Y . According to formula (1.3) of the lecture
notes (version of March 20, 2019), we have

M ′′′Y (0) = d3

dr3MY (r)
∣∣∣∣
r=0

= E[Y 3].
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For the total claim amount S we can use Proposition 2.11 of the lecture notes (version of March 20,
2019) to get

E[S] = λvE[Y ] = 1’000 · 1’000 = 1’000’000,
Var(S) = λvE[Y 2] = 1’000 · 1’010’000 = 1’010’000’000 and
MS(r) = exp{λv[MY (r)− 1]},

where MS denotes the moment generating function of S. In order to get the skewness ςS of S, we
can use the third equation given in formulas (1.5) of the lecture notes (version of March 20, 2019):

ςS ·Var(S)3/2 = d3

dr3 logMS(r)
∣∣∣∣
r=0

= λv
d3

dr3 [MY (r)− 1]
∣∣∣∣
r=0

= λvM ′′′Y (0) = λvE[Y 3],

from which we can conclude that

ςS = λvE[Y 3]
(λvE[Y 2])3/2 = E[Y 3]√

λvE[Y 2]3/2
= 1’030’200’000√

1’000(1’010’000)3/2
≈ 0.0321.

Let FS denote the distribution function of S. Then, since FS is continuous and strictly increasing
(above the level exp{−λv} = P[S = 0]), the quantiles q0.95 and q0.99 can be calculated as

q0.95 = F−1
S (0.95) and q0.99 = F−1

S (0.99).

(a) According to Section 4.1.2 of the lecture notes (version of March 20, 2019), in the translated
gamma approximation we model S by the random variable

X = k + Z,

where k ∈ R and Z ∼ Γ(γ̃, c̃). The three parameters k, γ̃ and c̃ can be determined by solving
the equations

E[X] = E[S], Var(X) = Var(S) and ςX = ςS , (2)

where ςX is the skewness parameter of X. Since Z ∼ Γ(γ̃, c̃), we can use the results given in
Section 3.2.1 of the lecture notes (version of March 20, 2019) to calculate

E[X] = E[k + Z] = k + E[Z] = k + γ̃

c̃
,

Var(X) = Var(k + Z) = Var(Z) = γ̃

c̃2 and

ςX =
E
[
(X − E[X])3]
Var(X)3/2 =

E
[
(k + Z − E[k + Z])3]
Var(k + Z)3/2 =

E
[
(Z − E[Z])3]
Var(Z)3/2 = ςZ = 2√

γ̃
.

Using the equations given in (2), we get

2√
γ̃

= ςS ⇐⇒ γ̃ = 4
ς2
S

≈ 3’883,

γ̃

c̃2 = Var(S) ⇐⇒ c̃ =

√
γ̃

Var(S) ≈ 0.002 and

k + γ̃

c̃
= E[S] ⇐⇒ k = E[S]− γ̃

c̃
≈ −980’392.

If we write FZ for the distribution function of Z ∼ Γ(γ̃ ≈ 3’883, c̃ ≈ 0.002), we get using the
translated gamma approximation

FS(x) = P[S ≤ x] ≈ P[X ≤ x] = P[k + Z ≤ x] = P[Z ≤ x− k] = FZ(x− k),
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for all x ∈ R. Now, for all α ∈ (0, 1), we have

F−1
S (α) ≈ k + F−1

Z (α).

In particular, we get

q0.95 = F−1
S (0.95) ≈ k + F−1

Z (0.95) ≈ −980’392 + 2’032’955 = 1’052’563

and
q0.99 = F−1

S (0.99) ≈ k + F−1
Z (0.99) ≈ −980’392 + 2’055’074 = 1’074’682.

Note that since k < 0, the translated gamma approximation in this example also allows
for negative claims S, which under our model assumptions is excluded. The probability for
negative claims S can be calculated as

FS(0) ≈ FZ(0− k) ≈ FZ(980’392) ≈ 4.87 · 10−320,

which is basically 0.

(b) According to Section 4.1.2 of the lecture notes (version of March 20, 2019), in the translated
log-normal approximation we model S by the random variable

X = k + Z,

where k ∈ R and Z ∼ LN(µ, σ2). Similarly as in part (b), the three parameters k, µ and σ2

can be determined by solving the equations

E[X] = E[S], Var(X) = Var(S) and ςX = ςS . (3)

Since Z ∼ LN(µ, σ2), we can use the results given in Section 3.2.3 of the lecture notes (version
of March 20, 2019) to calculate

E[X] = E[k + Z] = k + E[Z] = k + exp
{
µ+ σ2/2

}
,

Var(X) = Var(k + Z) = Var(Z) = exp
{

2µ+ σ2} (exp
{
σ2}− 1

)
and

ςX = ςZ =
(
exp

{
σ2}+ 2

) (
exp

{
σ2}− 1

)1/2
.

Using the third equation in (3), we get(
exp

{
σ2}+ 2

) (
exp

{
σ2}− 1

)1/2 = ςS ≈ 0.0321 ⇐⇒ σ2 ≈ 0.00011444,

which was found using a root search algorithm. Using the second equation in (3), we get

exp
{

2µ+ σ2} (exp
{
σ2}− 1

)
= Var(S) ⇐⇒ µ = 1

2

(
log
[(

exp
{
σ2}− 1

)−1 Var(S)
]
− σ2

)
,

which implies
µ ≈ 14.90425.

Finally, using the first equation in (3), we get

k + exp
{
µ+ σ2/2

}
= E[S] ⇐⇒ k = E[S]− exp

{
µ+ σ2/2

}
≈ −1’970’704.

If we write FW for the distribution function of

W = logZ ∼ N (µ ≈ 14.90425, σ2 ≈ 0.00011444),

we get using the translated log-normal approximation

FS(x) = P[S ≤ x] ≈ P[X ≤ x] = P[k + Z ≤ x] = P[logZ ≤ log(x− k)] = FW (log[x− k]),
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for all x > k, and FS(x) = 0 for all x ≤ k. For all α ∈ (0, 1) we then have

F−1
S (α) ≈ k + exp

{
F−1
W (α)

}
.

In particular, we get

q0.95 = F−1
S (0.95) ≈ k + exp

{
F−1
W (0.95)

}
≈ −1’970’704 + 3’023’266 = 1’052’562

and

q0.99 = F−1
S (0.99) ≈ k + exp

{
F−1
W (0.99)

}
≈ −1’970’704 + 3’045’387 = 1’074’684.

Note that since k < 0, the translated log-normal approximation in this example also allows
for negative claims S, which under our model assumptions is excluded. The probability for
negative claims S can be calculated as

FS(0) ≈ FW (log[0− k]) ≈ FW (log 1’970’704) ≈ 3.22 · 10−322,

which is basically 0.

(c) We observe that with all the three approximations applied in Exercise 7.3 and in parts (a)
and (b) above we get almost the same results. In particular, the normal approximation does
not provide estimates that deviate significantly from the ones we get using the translated
gamma and the translated log-normal approximations. This is due to the fact that λv = 1’000
is large enough and the gamma distribution assumed for the claim sizes is not a heavy tailed
distribution. Moreover, the skewness ςS = 0.0321 of S is rather small, hence the normal
approximation is a valid model in this example. Note that in all the three approximations
we allow for negative claims S, which actually should not be possible under our model
assumptions. However, the probability to observe a negative claim S is vanishingly small in
all the three approximations.
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Solution 8.1 Panjer Algorithm

For the expected yearly claim amount π0 we have

π0 = E[S] = E[N ]E[Y1] = 1 · E[k + Z] = k + E[Z] = k + exp
{
µ+ σ2

2

}
≈ 4’124.

Let Y +
i denote the discretized claim sizes using a span of s = 10, where we put all the probability

mass to the upper end of the intervals. Note that k = 10s. If we write gl = P[Y +
1 = sl] for all l ∈ N,

then we have
g1 = g2 = · · · = g10 = 0,

since P[Y +
1 ≤ 10s] = P[k + Z ≤ 10s] = P[Z ≤ 0] = 0. For all l ≥ 11 we get

gl = P[Y +
1 = sl] = P[Y +

1 = k + s(l − 10)] = P[k + s(l − 11) < Y1 ≤ k + s(l − 10)]
= P[Y1 ≤ k + s(l − 10)]− P[Y1 ≤ k + s(l − 11)] = P[Z ≤ s(l − 10)]− P[Z ≤ s(l − 11)]

= Φ
(

log[s(l − 10)]− µ
σ

)
− Φ

(
log[s(l − 11)]− µ

σ

)
,

where Φ is the distribution function of the standard Gaussian distribution and where we define
log 0 = −∞. From now on we replace the original claim sizes Yi with the discretized claim sizes
Y +
i , but, by a slight abuse of notation, we still write S for the yearly claim amount.

Note that N ∼ Poi(1) has a Panjer distribution with parameters a = 0 and b = 1, see Corollary 4.8
of the lecture notes (version of March 20, 2019). Applying the Panjer algorithm given in Theorem
4.9 of the lecture notes (version of March 20, 2019), we have for r ∈ N0

fr
def.= P[S = sr] =

{
P[N = 0], for r = 0,∑r
l=1

l
rglfr−l, for r > 0.

Since the yearly amount that the client has to pay by himself is given by

Sins = min{S, d}+ min{α · (S − d)+,M} = min{S, d}+ α ·min
{

(S − d)+,
M

α

}
,

M/α = 7’000 and the maximal possible franchise is 2’500, we have to apply the Panjer algorithm
until we reach P[S = 9’500] = f950. Here we limit ourselves to determine the values of f0, . . . , f12
to illustrate how the algorithm works. We have

f0 = P[N = 0] = e−1 ≈ 0.37

and
f1 = f2 = · · · = f10 = 0,

since g1 = g2 = · · · = g10 = 0. For r = 11 and r = 12 we get

f11 =
11∑
l=1

l

11glf11−l = g11f0 =
[
Φ
(

log s− µ
σ

)
− Φ

(
log 0− µ

σ

)]
e−1 ≈ 7.089 · 10−9
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and

f12 =
12∑
l=1

l

12glf12−l = g12f0 =
[
Φ
(

log 2s− µ
σ

)
− Φ

(
log s− µ

σ

)]
e−1 ≈ 2.786 · 10−7.

Using the discretized claim sizes, the yearly expected amount πins paid by the customer is given by

πins = E[Sins] = E [min{S, d}] + αE
[
min

{
(S − d)+,

M

α

}]
,

where we have

E [min{S, d}] =
d/s∑
r=0

frsr + d

1−
d/s∑
r=0

fr

 = d+
d/s∑
r=0

fr(sr − d)

and

E
[
min

{
(S − d)+,

M

α

}]
=

d/s+M/sα∑
r=d/s+1

fr(sr − d) + M

α

1−
d/s+M/sα∑

r=0
fr


= M

α
+
d/s+M/sα∑
r=d/s+1

fr

(
sr − d− M

α

)
− M

α

d/s∑
r=0

fr.

Therefore, we get

πins = d+
d/s∑
r=0

fr(sr − d) + α

M
α

+
d/s+M/sα∑
r=d/s+1

fr

(
sr − d− M

α

)
− M

α

d/s∑
r=0

fr


= d+M +

d/s∑
r=0

fr(sr − d−M) +
d/s+M/sα∑
r=d/s+1

αfr

(
sr − d− M

α

)
.

Finally, if the customer has chosen franchise d, then the monthly pure risk premium π is given by

π = π0 − πins

12

= 1
12

k + exp
{
µ+ σ2

2

}
− d−M −

d/s∑
r=0

fr(sr − d−M)−
d/s+M/sα∑
r=d/s+1

αfr

(
sr − d− M

α

) .
In the end, we get the following monthly pure risk premiums π for the different franchises d:

franchise d 300 500 1’000 1’500 2’000 2’500
monthly pure risk premium π 307 297 274 253 233 216

Table 1: Monthly pure risk premiums π for the different franchises d.

More generally, the monthly pure risk premium π as a function of the franchise d, which is allowed
to vary between 300 CHF and 2’500 CHF, is given in Figure 1. The R code used to calculate the
values in Table 1 and to generate Figure 1 is given in Listings 1 and 2. Note that these monthly
premiums only represent pure risk premiums. In order to get the premiums that the customer has
to pay in the end, we would need to add an appropriate risk-loading, which may vary between
different health insurance companies.
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Listing 1: R code for Exercise 8.1 (Function to calculate risk premium).
1 KK_premium <- function (lambda , mu , sigma2 , span , shift ){
2 M <- 9500
3 m <- floor (M/span)
4 k0 <- shift /span
5 g_min <- array (0, dim=c(m+1 ,1)) ### mass put to the lower end of the interval
6 for (k in (k0 +1):( m +1)){
7 g_min [k ,1] <- pnorm (log ((k-k0 )* span), mean=mu , sd=sqrt( sigma2 ))- pnorm (log ((k-k0 -1)* span),
8 mean=mu , sd=sqrt( sigma2 ))
9 }

10 g_max <- array (0, dim=c(m+1 ,1)) ### mass is put to the upper end of the interval
11 g_max [2:(m+1) ,1] <- g_min [1:m ,1]
12 f1 <- matrix (0, nrow=m+1, ncol =3) ### probability to get zero claims
13 f1 [1 ,1] <- exp(- lambda *(1 - g_min [1 ,1]))
14 f1 [1 ,2] <- exp(- lambda *(1 - g_max [1 ,1]))
15 h1 <- matrix (0, nrow=m, ncol =3) ### for values "l*g_{l}" of the discretized claim sizes
16 for (i in 1:m){
17 h1[i ,1] <- g_min [i+1 ,1]*(i+1)
18 h1[i ,2] <- g_max [i+1 ,1]*(i+1)
19 }
20 for (r in 1:m){ ### Panjer algorithm (a=0 and b= lambda *v, which is just lambda here)
21 f1[r+1 ,1] <- lambda /r*(t(f1 [1:r ,1])%*% h1[r:1 ,1])
22 f1[r+1 ,2] <- lambda /r*(t(f1 [1:r ,2])%*% h1[r:1 ,2])
23 f1[r+1 ,3] <- r*span
24 }
25 m1 <- 2500 ### maximal franchise
26 m0 <- 300 ### minimal franchise
27 i1 <- floor (m1/span +1) ### number of iterations to m1
28 i0 <- floor (m0/span +1) ### number of iterations to m0
29 franchise <- array (NA , c(i1 ,3))
30 for (i in i0:i1 ){
31 franchise [i ,1] <- f1[i ,3] ### this represents the franchise
32 franchise [i ,2] <- sum(f1 [1:i ,1]* f1 [1:i ,3])+ f1[i ,3]*(1 - sum(f1 [1:i ,1]))
33 franchise [i ,2] <- franchise [i ,2]+ sum(f1 [(i+1): floor (i +7000/ span ) ,1]
34 *f1 [2: floor (7000/ span +1) ,3])*0.1
35 +700*(1 - sum(f1 [1: floor (i +7000/ span ) ,1]))
36 franchise [i ,3] <- sum(f1 [1:i ,2]* f1 [1:i ,3])+ f1[i ,3]*(1 - sum(f1 [1:i ,2]))
37 franchise [i ,3] <- franchise [i ,3]+ sum(f1 [(i+1): floor (i +7000/ span ) ,2]
38 *f1 [2: floor (7000/ span +1) ,3])*0.1+700*(1 - sum(f1 [1: floor (i +7000/ span ) ,2]))
39 }
40 price <- array (NA , c(i1 , 3))
41 price [ ,1] <- franchise [ ,1] ### this represents the franchise
42 price [ ,2:3] <- ( lambda *( exp(mu+ sigma2 /2)+ shift )- franchise [ ,2:3])/12
43 price
44 }
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Figure 1: Plot of the monthly pure risk premium π as a function of the franchise d.

Updated: November 4, 2019 3 / 11



Non-Life Insurance: Mathematics and Statistics, D-MATH
HS 2019 Solution sheet 8

Listing 2: R code for Exercise 8.1 (Risk premium).
1 require ( stats )
2 require (MASS)
3
4 ### Run the function KK_premium
5 lambda <- 1
6 mu <- 7.8
7 sigma2 <- 1
8 span <- 10
9 shift <- 100

10 price <- KK_premium (lambda , mu , sigma2 , span , shift )
11
12 ### Plot the monthly pure risk premium as a function of the franchise
13 plot(x= price [,1], y= price [,2], lwd =2, col =" blue", type=’l’, ylab =" Monthly pure risk premium ",
14 xlab =" Franchise ", main =" Monthly pure risk premium ", cex.lab =1.25 , cex.main =1.25 ,
15 cex.axis =1.25)
16 points (x=c(300 ,500 , 1000 , 1500 , 2000 , 2500) ,
17 y= price [c(300 ,500 , 1000 , 1500 , 2000 , 2500)/ span +1 ,3] , pch =19 , col =" orange ")
18 lines (x=c(300 ,300) , y=c(0, price [300/ span +1 ,3]) , lty =3, lwd =1.5 , col =" darkgray ")
19 lines (x=c(500 ,500) , y=c(0, price [500/ span +1 ,3]) , lty =3, lwd =1.5 , col =" darkgray ")
20 lines (x=c(1000 ,1000) , y=c(0, price [1000/ span +1 ,3]) , lty =3, lwd =1.5 , col =" darkgray ")
21 lines (x=c(1500 ,1500) , y=c(0, price [1500/ span +1 ,3]) , lty =3, lwd =1.5 , col =" darkgray ")
22 lines (x=c(2000 ,2000) , y=c(0, price [2000/ span +1 ,3]) , lty =3, lwd =1.5 , col =" darkgray ")
23 lines (x=c(2500 ,2500) , y=c(0, price [2500/ span +1 ,3]) , lty =3, lwd =1.5 , col =" darkgray ")
24
25 ### Give the monthly pure risk premiums for the six franchises listed on the exercise sheet
26 round ( price [ floor (c(300 , 500 , 1000 , 1500 , 2000 , 2500)/ span +1) ,2])
27 round ( price [ floor (c(300 , 500 , 1000 , 1500 , 2000 , 2500)/ span +1) ,3])

Solution 8.2 Monte Carlo Simulations

(a) We assume that for this comparably simple problem with no heavy tails 100’000 Monte Carlo
simulations are enough to provide an empirical distribution function of S which is close to
the true distribution function of S. The R codes used for part (a) are given in Listings 3 - 6.

Listing 3: R code for Exercise 8.2 (a) (Monte Carlo simulations).
1 compound . poisson . distribution <- Vectorize ( function (n, lambdav , shape , rate ){
2 number .of. claims <- rpois (n=n, lambda = lambdav )
3 sum( rgamma (n= number .of.claims , shape =shape , rate=rate ))
4 },"n")
5 n <- 100000
6 lambdav <- 1000
7 shape <- 100
8 rate <- 1/10
9 set.seed (100)

10 claims <- compound . poisson . distribution (rep (1,n), lambdav , shape , rate)
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Figure 2: Comparison of the empirical distribution function of S resulting from 100’000 Monte
Carlo simulations to the approximate distribution functions when using the normal (left), the
translated gamma (middle) and the translated log-normal (right) approximation.
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In Figure 2 we compare the empirical distribution function of S resulting from 100’000
Monte Carlo simulations to the approximate distribution functions when using the normal
(left), the translated gamma (middle) and the translated log-normal (right) approximation.
From these plots we cannot spot any differences between the various distribution functions.
In Figure 3 we consider the log-log plot of the 100’000 Monte Carlo simulations of S and
compare it to the normal (left), the translated gamma (middle) and the translated log-normal
(right) approximation. We observe that all three approximations have a rather good fit to
the tail of the distribution of S, but the translated gamma and the translated log-normal
approximation seem slightly more accurate than the normal approximation. We conclude
that in the absence of heavy tailed distributions the translated gamma and the translated
log-normal approximation are very convincing in this example. Moreover, the skewness of S is
small enough (ςS ≈ 0.0321, see Exercise 7.4) and the expected number of claims large enough
(λv = 1’000, see Exercise 7.3) for the normal approximation to be a valid approximation, too.
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Figure 3: Log-log plot of the 100’000 Monte Carlo simulations of S compared to the normal (left),
the translated gamma (middle) and the translated log-normal (right) approximation.

Listing 4: R code for Exercise 8.2 (a) (Normal approximation).
1 mu <- lambdav * shape /rate
2 sigma <- sqrt( lambdav * shape *( shape +1)/( rate ^2))
3 par(mar=c(5.1 , 4.4 , 4.1 , 2.1))
4 plot( claims [ order ( claims )], 1:n/(n+1) , xlim=c(min( claims ),max( claims )), type ="l", col =" red",
5 main =" Empirical distribution function ", xlab =" Sampled values ",
6 ylab =" Empirical distribution function ", cex.lab =1.5 , cex.main =1.5 , cex.axis =1.5 , lwd =2)
7 lines ( claims [ order ( claims )], pnorm (( claims [ order ( claims )]) ,mu , sigma ))
8 legend (" bottomright ", lty =1, lwd =2, col=c(" red "," black "),
9 legend =c(" Monte Carlo "," normal approx . "), cex =1)

10 plot(log( claims [ order ( claims )]) , log (1 -1:n/(n+1)) , xlim=c(min(log( claims )), max(log( claims ))) ,
11 ylim=c(min(log (1-n/(n+1)) , log (1- pnorm (( claims [ order ( claims )]) ,mu , sigma ))) ,0) , type ="l",
12 col =" red", main ="Log -log plot", xlab =" log( sampled values )",
13 ylab =" log (1- empirical distribution function )", cex.lab =1.5 , cex.main =1.5 , cex.axis =1.5 ,
14 lwd =2)
15 lines (log( claims [ order ( claims )]) , log (1- pnorm (( claims [ order ( claims )]) ,mu , sigma )), col =" black ")
16 legend (" bottomleft ", lty =1, lwd =2, col=c(" red "," black "),
17 legend =c(" Monte Carlo "," normal approx . "), cex =1)

(b) Replicating 10’000 Monte Carlo simulations 100 times already requires some time. This is
also the reason why we chose 10’000 as maximum number of simulations and not 100’000 as in
part (a). Note that every single time we use Monte Carlo simulations to derive quantities like
for example the quantiles q0.95 and q0.99, we get different results. This is something one needs
to be aware of, and it is in contrast to the normal, the translated gamma and the translated
log-normal approximation. In Figure 4 we show the densities of the 100 quantiles q0.95 (left)
and q0.99 (right) resulting from Listing 7 where we replicate the n ∈ {100, 1’000, 10’000}
Monte Carlo simulations 100 times. We see that increasing the number of simulations n for
every replication, the uncertainty regarding the quantiles q0.95 and q0.99 is reduced.
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Listing 5: R code for Exercise 8.2 (a) (Translated gamma approximation).
1 skews <- ( lambdav * shape *( shape +1)*( shape +2)/ rate ^3)/( lambdav * shape *( shape +1)/ rate ^2)^(3/2)
2 shape2 <- 4/ skews ^2
3 rate2 <- sqrt( shape2 /( lambdav * shape *( shape +1)/ rate ^2))
4 k <- lambdav * shape /rate - shape2 / rate2
5 plot( claims [ order ( claims )], 1:n/(n+1) , xlim=c(min( claims ),max( claims )), type ="l", col =" red",
6 main =" Empirical distribution function ", xlab =" Sampled values ",
7 ylab =" Empirical distribution function ", cex.lab =1.5 , cex.main =1.5 , cex.axis =1.5 , lwd =2)
8 lines ( claims [ order ( claims )], pgamma (( claims [ order ( claims )]) -k, shape =shape2 ,rate= rate2 ))
9 legend (" bottomright ", lty =1, lwd =2, col=c(" red "," black "),

10 legend =c(" Monte Carlo "," transl . gamma "), cex =1)
11 plot(log( claims [ order ( claims )]) , log (1 -1:n/(n+1)) , xlim=c(min(log( claims )), max(log( claims ))) ,
12 ylim=c(min(log (1-n/(n+1)) , log (1- pgamma (( claims [ order ( claims )]) -k, shape =shape2 ,
13 rate= rate2 ))) ,0) , type ="l", col =" red", main ="Log -log plot", xlab =" log( sampled values )",
14 ylab =" log (1- empirical distribution function )", cex.lab =1.5 , cex.main =1.5 , cex.axis =1.5 ,
15 lwd =2)
16 lines (log( claims [ order ( claims )]) , log (1- pgamma (( claims [ order ( claims )]) -k, shape =shape2 ,
17 rate= rate2 )))
18 legend (" bottomleft ", lty =1, lwd =2, col=c(" red "," black "),
19 legend =c(" Monte Carlo "," transl . gamma "), cex =1)

Listing 6: R code for Exercise 8.2 (a) (Translated log-normal approximation).
1 sigma . squared <- 0.00011444
2 mu2 <- 1/2*( log (( exp( sigma . squared ) -1)^( -1)* lambdav * shape *( shape +1)/ rate ^2) - sigma . squared )
3 k2 <- lambdav * shape /rate -exp(mu2+ sigma . squared /2)
4 plot( claims [ order ( claims )], 1:n/(n+1) , xlim=c(min( claims ),max( claims )), type ="l", col =" red",
5 main =" Empirical distribution function ", xlab =" Sampled values ",
6 ylab =" Empirical distribution function ", cex.lab =1.5 , cex.main =1.5 , cex.axis =1.5 , lwd =2)
7 lines ( claims [ order ( claims )], pnorm (log (( claims [ order ( claims )]) - k2),mu2 ,sqrt( sigma . squared )))
8 legend (" bottomright ", lty =1, lwd =2, col=c(" red "," black "),
9 legend =c(" Monte Carlo "," transl . log - normal "), cex =1)

10 plot(log( claims [ order ( claims )]) , log (1 -1:n/(n+1)) , xlim=c(min(log( claims )), max(log( claims ))) ,
11 ylim=c(min(log (1-n/(n+1)) , log (1- pnorm (log (( claims [ order ( claims )]) - k2),mu2 ,
12 sqrt( sigma . squared )))) ,0) , type ="l", col =" red", main ="Log -log plot",
13 xlab =" log( sampled values )", ylab =" log (1- empirical distribution function )", cex.lab =1.5 ,
14 cex.main =1.5 , cex.axis =1.5 , lwd =2)
15 lines (log( claims [ order ( claims )]) , log (1- pnorm (log (( claims [ order ( claims )]) - k2),mu2 ,
16 sqrt( sigma . squared ))))
17 legend (" bottomleft ", lty =1, lwd =2, col=c(" red "," black "),
18 legend =c(" Monte Carlo "," transl . log - normal "), cex =1)
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Figure 4: Densities of the 100 quantiles q0.95 (left) and q0.99 (right) resulting from replicating the
n ∈ {100, 1’000, 10’000} Monte Carlo simulations 100 times.
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Listing 7: R code for Exercise 8.2 (b) (Quantiles).
1 ### Monte Carlo simulations
2 k <- 100
3 n <- c (100 ,1000 ,10000)
4 set.seed (100)
5 claims .1 <- array ( compound . poisson . distribution (n=rep (1,k*n[1]) , lambdav =1000 , shape =100 ,
6 rate =1/10) , dim=c(n[1] ,k))
7 set.seed (200)
8 claims .2 <- array ( compound . poisson . distribution (n=rep (1,k*n[2]) , lambdav =1000 , shape =100 ,
9 rate =1/10) , dim=c(n[2] ,k))

10 set.seed (300)
11 claims .3 <- array ( compound . poisson . distribution (n=rep (1,k*n[3]) , lambdav =1000 , shape =100 ,
12 rate =1/10) , dim=c(n[3] ,k))
13
14 ### Function calculating alpha - quantiles of S on the basis of Monte Carlo simulations of S
15 quantiles . monte . carlo <- function (claims , alpha ){
16 n <- nrow( claims )
17 claims . sorted <- apply (claims , 2, sort)
18 quantiles . alpha <- claims . sorted [ floor ( alpha *n)+1 ,]
19 }
20
21 ### 0.95 - quantiles
22 range ( quantiles .1 <- quantiles . monte . carlo ( claims = claims .1, alpha =0.95))
23 range ( quantiles .2 <- quantiles . monte . carlo ( claims = claims .2, alpha =0.95))
24 range ( quantiles .3 <- quantiles . monte . carlo ( claims = claims .3, alpha =0.95))
25
26 ### Density
27 ymax <- max( density ( quantiles .1)$y , density ( quantiles .2)$y , density ( quantiles .3) $y)
28 plot( density ( quantiles .1) , col =" black ", ylim=c(0, ymax), main =" Density of 0.95 - quantiles of S",
29 xlab ="0.95 - quantiles of S ( Monte Carlo )", cex.lab =1.25 , cex.main =1.25 , cex.axis =1.25 ,
30 lwd =2)
31 lines ( density ( quantiles .2) , col =" blue", lwd =2)
32 lines ( density ( quantiles .3) , col =" red", lwd =2)
33 legend (" topleft ", col=c(" black ", "blue", "red "), lwd =2, lty =1,
34 legend =c("n = 100" ,"n = 1 ’000" ,"n = 10 ’000"))
35
36 ### 0.99 - quantiles
37 range ( quantiles .1 <- quantiles . monte . carlo ( claims = claims .1, alpha =0.99))
38 range ( quantiles .2 <- quantiles . monte . carlo ( claims = claims .2, alpha =0.99))
39 range ( quantiles .3 <- quantiles . monte . carlo ( claims = claims .3, alpha =0.99))
40
41 ### Density
42 ymax <- max( density ( quantiles .1)$y , density ( quantiles .2)$y , density ( quantiles .3) $y)
43 plot( density ( quantiles .1) , col =" black ", ylim=c(0, ymax), main =" Density of 0.99 - quantiles of S",
44 xlab ="0.99 - quantiles of S ( Monte Carlo )", cex.lab =1.25 , cex.main =1.25 , cex.axis =1.25 ,
45 lwd =2)
46 lines ( density ( quantiles .2) , col =" blue", lwd =2)
47 lines ( density ( quantiles .3) , col =" red", lwd =2)
48 legend (" topright ", col=c(" black ", "blue", "red "), lwd =2, lty =1,
49 legend =c("n = 100" ,"n = 1 ’000" ,"n = 10 ’000"))

q0.95 q0.99
Monte Carlo smallest largest smallest largest
n = 100 1’035’018 1’069’209 1’053’719 1’126’533
n = 1’000 1’047’186 1’057’829 1’066’770 1’084’902
n = 10’000 1’050’955 1’054’282 1’072’045 1’077’195
Approximations
normal 1’052’274 1’073’932
translated gamma 1’052’563 1’074’682
translated log-normal 1’052’562 1’074’684

Table 2: Smallest and largest observed values of the quantiles q0.95 and q0.99 among the 100
replications of the n ∈ {100, 1’000, 10’000} Monte Carlo simulations together with the values of
the quantiles q0.95 and q0.99 resulting from the normal, the translated gamma and the translated
log-normal approximation.
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One can reach the same conclusions from Table 2, where we give the smallest and the
largest observed values of the quantiles q0.95 and q0.99 among the 100 replications of the
n ∈ {100, 1’000, 10’000} Monte Carlo simulations. Moreover, we also give the values of the
quantiles q0.95 and q0.99 resulting from the normal, the translated gamma and the translated
log-normal approximation, see Exercises 7.3 and 7.4. We see that the quantiles resulting
from the approximations are always between the smallest and the largest observed value
resulting from the Monte Carlo simulations. Of course, one can argue that we could choose
the number of simulations n large enough such that the results do not vary considerably
anymore. However, a too high number of simulations n will lead to an excessive computation
time. This is especially true if one considers heavy tailed distributions. Therefore, one is often
inclined to use other algorithms for compound distributions, such as the Panjer algorithm
and fast Fourier transforms.

Solution 8.3 Fast Fourier Transform

Assume that Ỹ follows the claim size distribution given on the exercise sheet. Let Y denote the
discretized version of Ỹ that takes values in N0. More precisely, we shift the probability masses of
Ỹ to the right and define

P[Y = 0] = 0 and P[Y = l] = P
[
Ỹ ≤ l

]
− P

[
Ỹ ≤ l − 1

]
,

for all l ∈ N. By a slight abuse of notation, we still write S for the compound Poisson distribution
with discrete claim size distribution Y . In particular, also S takes values in N0. We define

gl = P[Y = l] and fl = P[S = l],

for all l ∈ N0. We choose a threshold of n = 2’000’000, i.e. we determine the distribution function
of S up to n− 1. Note that n is chosen sufficiently high such that we approximately have

P [Y > n− 1] ≈ 0. (1)

We define A = {0, . . . , n− 1} and calculate the discrete Fourier transform (ĝz)z∈A of (gl)l∈A by

ĝz =
n−1∑
l=0

gl exp
{

2πizl
n

}
, (2)

for all z ∈ A. Due to (1), we approximately have

ĝz ≈ E
[
exp

{
2πizY

n

}]
= MY

(
2πi z

n

)
,

for all z ∈ A, where MY denotes the moment generating function of Y . Note that we use an
extended version of the moment generating function also allowing for complex numbers. If MS

denotes the moment generating function of S, again extended to complex numbers, then, according
to Proposition 2.11 of the lecture notes (version of March 20, 2019), we have

MS

(
2πi z

n

)
= exp

{
λv
[
MY

(
2πi z

n

)
− 1
]}
≈ exp {λv (ĝz − 1)} , (3)

for all z ∈ A. The left hand side of equation (3) can be written as

MS

(
2πi z

n

)
=
∞∑
l=0

fl exp
{

2πizl
n

}
=

n−1∑
l=0

(
fl +

∞∑
k=1

fl+kn

)
exp

{
2πizl

n

}
,
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for all z ∈ A. Using the approximation

fl ≈ fl +
∞∑
k=1

fl+kn, (4)

for all l ∈ A, we compute the discrete Fourier transform (f̂z)z∈A of (fl)l∈A by

f̂z =
n−1∑
l=0

fl exp
{

2πizl
n

}
≈ MS

(
2πi z

n

)
≈ exp {λv (ĝz − 1)} ,

for all z ∈ A. Applying the inversion formula of the discrete Fourier transform, we finally calculate

fl = 1
n

n−1∑
z=0

f̂z exp
{
−2πizl

n

}
, (5)

for all l ∈ A. Note that due to the approximation in (4), instead of fl we actually calculate

fl +
∞∑
k=1

fl+kn > fl,

for all l ∈ A. This error is called wrap around error (or aliasing error), and n should be chosen
large enough in order to keep this wrap around error small.
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Figure 5: Comparison of the distribution function (left) and the log-log plot (right) of S resulting
from the fast Fourier transform algorithm to the Monte Carlo simulations.

In R, the calculations in equations (2) and (5) can be done using the command fft. The corre-
sponding R code is given in Listing 8. In Figure 5 we compare the distribution function (left)
and the log-log plot (right) of S resulting from the fast Fourier transform algorithm to the Monte
Carlo simulations of Exercise 8.2. We see that we get a very good fit. In particular, the threshold
n = 2’000’000 seems to be high enough. For the 0.95-quantile q0.95 and the 0.99-quantile q0.99 we
get

q0.95 = 1’053’089 and q0.99 = 1’075’215.
We see that we get values which are very close to the ones derived in Exercises 7.3 and 7.4, where
we used the normal, the translated gamma and the translated log-normal approximation.
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Listing 8: R code for Exercise 8.3.
1 ### Fast Fourier transfom
2 n <- 2000000
3 lambdav <- 1000
4 claim .size <- c(0, pgamma (1:(n -1) , shape =100 , rate =1/10) - pgamma (0:(n -2) , shape =100 , rate =1/10))
5 claim .size.ft <- fft( claim .size)
6 total . claim . amount .ft <- exp( lambdav *( claim .size.ft -1))
7 total . claim . amount <- Re(fft( total . claim . amount .ft , inverse =TRUE )/ length ( total . claim . amount .ft ))
8
9 ### Monte Carlo simulations from Exercise 8.2

10 compound . poisson . distribution <- Vectorize ( function (n, lambdav , shape , rate ){
11 number .of. claims <- rpois (n=n, lambda = lambdav )
12 sum( rgamma (n = number .of.claims , shape =shape , rate=rate ))
13 },"n")
14 m <- 100000
15 set.seed (100)
16 claim . amounts <- compound . poisson . distribution (n=rep (1,m), lambdav =1000 , shape =100 , rate =1/10)
17
18 ### Calculate values of the distribution function of S using the fast Fourier transfrom
19 probabilities <- cumsum ( total . claim . amount )[ floor ( claim . amounts [ order ( claim . amounts )])+1]
20
21 ### Check the fast Fourier transform result
22 par(mar=c(5.1 , 4.4 , 4.1 , 2.1))
23 plot( claim . amounts [ order ( claim . amounts )], 1:m/(m+1) ,
24 xlim=c(min( claim . amounts ),max( claim . amounts )), type ="l", col =" red",
25 main =" Distribution function ", xlab =" Total claim amount ", ylab =" Distribution function ",
26 cex.lab =1.25 , cex.main =1.25 , cex.axis =1.25 , lwd =2)
27 lines ( claim . amounts [ order ( claim . amounts )], probabilities , lwd =1)
28 legend (" bottomright ", lty =1, lwd =2, col=c(" red "," black "), legend =c(" Monte Carlo "," fast Fourier

"), cex =1)
29 plot(log( claim . amounts [ order ( claim . amounts )]) , log (1 -1:m/(m+1)) ,
30 xlim=c(min(log( claim . amounts )), max(log( claim . amounts ))) ,
31 ylim=c(min(log (1-m/(m+1)) , log (1- probabilities )) ,0) , type ="l", col =" red",
32 main ="Log -log plot", xlab =" log( total claim amount )", ylab =" log (1 - distribution function )",
33 cex.lab =1.25 , cex.main =1.25 , cex.axis =1.25 , lwd =2)
34 lines (log( claim . amounts [ order ( claim . amounts )]) , log (1- probabilities ), col =" black ", lwd =1)
35 legend (" bottomleft ", lty =1, lwd =2, col=c(" red "," black "), legend =c(" Monte Carlo "," fast Fourier

"), cex =1)
36
37 ### Determine the 0.95 - and the 0.99 - quantiles
38 which ( cumsum ( total . claim . amount ) > 0.95)[1] -1
39 which ( cumsum ( total . claim . amount ) > 0.99)[1] -1

Solution 8.4 Panjer Distribution

If we write pk = P[N = k], for all k ∈ N, then, by definition of the Panjer distribution, we have

pk = pk−1

(
a+ b

k

)
,

for all k ∈ N. We can use this recursion to calculate E[N ] and Var(N). Note that the range of N is
N, if a ≥ 0, and {0, 1, . . . , n} for some n ∈ N≥1, if a < 0.
First, we consider the case where a < 0, i.e. where the range of N is {0, 1, . . . , n}. According to the
proof of Lemma 4.7 of the lecture notes (version of March 20, 2019), we have

n = −a+ b

a
. (6)

For the expectation of N we get

E[N ] =
n∑
k=0

k pk =
n∑
k=1

k pk =
n∑
k=1

k pk−1

(
a+ b

k

)
= a

n∑
k=1

k pk−1 + b

n∑
k=1

pk−1

= a

n−1∑
k=0

(k + 1) pk + b

n−1∑
k=0

pk = a

n−1∑
k=0

k pk + (a+ b)
n−1∑
k=0

pk = a (E[N ]− npn) + (a+ b)(1− pn)

= aE[N ] + a+ b+ pn(−an− a− b).
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Using (6), we get
−an− a− b = a

a+ b

a
− a− b = 0. (7)

Hence, the above expression for E[N ] simplifies to

E[N ] = aE[N ] + a+ b,

from which we can conclude that
E[N ] = a+ b

1− a.

In order to get the variance of N , we first calculate the second moment of N :

E[N2] =
n∑
k=0

k2 pk =
n∑
k=1

k2 pk =
n∑
k=1

k2 pk−1

(
a+ b

k

)
= a

n∑
k=1

k2 pk−1 + b

n∑
k=1

k pk−1

= a

n−1∑
k=0

(k + 1)2 pk + b

n−1∑
k=0

(k + 1) pk = a

n−1∑
k=0

k2 pk + (2a+ b)
n−1∑
k=0

k pk + (a+ b)
n−1∑
k=0

pk

= a (E[N2]− n2pn) + (2a+ b)(E[N ]− npn) + (a+ b)(1− pn)
= aE[N2] + (2a+ b)E[N ] + a+ b+ pn[−an2 − (2a+ b)n− a− b].

Using (6), we get

−an2 − (2a+ b)n− a− b = −a
(
a+ b

a

)2
+ (2a+ b)a+ b

a
− a− b

= −a
2 + 2ab+ b2

a
+ 2a2 + 3ab+ b2

a
− a2 + ab

a
= 0.

(8)

Hence, the above expression for E[N2] simplifies to

E[N2] = aE[N2] + (2a+ b)E[N ] + a+ b,

from which we get

E[N2] = (2a+ b)E[N ] + a+ b

1− a = (2a+ b) (a+ b) + (a+ b)(1− a)
(1− a)2

= 2a2 + 3ab+ b2 + a− a2 + b− ab
(1− a)2 = (a+ b)2 + a+ b

(1− a)2 .

Finally, the variance of N then is

Var(N) = E[N2]− E[N ]2 = (a+ b)2 + a+ b

(1− a)2 − (a+ b)2

(1− a)2 = a+ b

(1− a)2 .

In the case where a ≥ 0, i.e. where the range of N is N, we can perform analogous calculations
with the only difference that the index of summation in all the sums involved goes up to ∞ instead
of stopping at n. As a consequence, the calculations in (7) and in (8) aren’t necessary anymore.
The formulas for E[N ] and Var(N), however, remain the same.
The ratio of Var(N) to E[N ] is given by

Var(N)
E[N ] = a+ b

(1− a)2
1− a
a+ b

= 1
1− a.

Note that if a < 0, i.e. if N has a binomial distribution, we have Var(N) < E[N ]. If a = 0, i.e. if
N has a a Poisson distribution, we have Var(N) = E[N ]. Finally, in the case of a > 0, i.e. for a
negative-binomial distribution, we have Var(N) > E[N ].

Updated: November 4, 2019 11 / 11



ETH Zürich, D-MATH
HS 2019
Prof. Dr. Mario V. Wüthrich

Coordinator
Andrea Gabrielli

Non-Life Insurance: Mathematics and Statistics
Solution sheet 9

Solution 9.1 Utility Indifference Price

(a) Suppose that there exist two utility indifference prices π1 = π1(u, S, c0) and π2 = π2(u, S, c0)
with π1 6= π2. By definition of a utility indifference price, we have

E[u(c0 + π1 − S)] = u(c0) = E[u(c0 + π2 − S)]. (1)

Without loss of generality, we assume that π1 < π2. Then, we have

c0 + π1 − S < c0 + π2 − S a.s.,

which implies
u(c0 + π1 − S) < u(c0 + π2 − S) a.s.,

since u is a utility function and, thus, strictly increasing by definition. Finally, by taking the
expectation, we get

E[u(c0 + π1 − S)] < E[u(c0 + π2 − S)],

which is a contradiction to (1). We conclude that if the utility indifference price π exists, then
it is unique. Moreover, being a risk-averse utility function, u is strictly concave by definition.
Hence, we can apply Jensen’s inequality to get

u(c0) = E[u(c0 + π − S)] < u(E[c0 + π − S]) = u(c0 + π − E[S]).

Note that we used that S is non-deterministic and, thus, Jensen’s inequality is strict. Since u
is strictly increasing, this implies π − E[S] > 0, i.e.

π > E[S].

(b) Note that
E
[
Y

(1)
1

]
= γ

c
= 20

0.01 = 2’000

and that
E
[
Y

(2)
1

]
= 1

κ
= 1

0.005 = 200.

Since S1 and S2 both have a compound Poisson distribution, Proposition 2.11 of the lecture
notes (version of March 20, 2019) gives

E[S1] = λ1v1E
[
Y

(1)
1

]
= 1

2 · 2’000 · 2’000 = 2’000’000

and
E[S2] = λ2v2E

[
Y

(2)
1

]
= 1

10 · 10’000 · 200 = 200’000.

We conclude that

E[S] = E[S1 + S2] = E[S1] + E[S2] = 2’200’000.
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(c) The utility indifference price π = π(u, S, c0) is defined through the equation

u(c0) = E[u(c0 + π − S)].

In this exercise we use the exponential utility function u given by

u(x) = 1− 1
α

exp {−αx} ,

for all x ∈ R, with α = 1.5 · 10−6. Thus, we get

u(c0) = E[u(c0 + π − S)] ⇐⇒ 1− 1
α

exp {−αc0} = E
[
1− 1

α
exp {−α(c0 + π − S)}

]
⇐⇒ exp {−αc0} = E [exp {−α(c0 + π − S)}]
⇐⇒ exp {απ} = E [exp {αS}]

⇐⇒ π = 1
α

logE [exp {αS}] .

Note that we can write S = S1 + S2 and use the independence of S1 and S2 to get

π = 1
α

logE [exp {α(S1 + S2)}] = 1
α

log (E [exp {αS1}]E [exp {αS2}])

= 1
α

(logE [exp {αS1}] + logE [exp {αS2}]) = 1
α

[logMS1(α) + logMS2(α)] ,

where MS1 and MS2 denote the moment generating functions of S1 and S2, respectively.
Moreover, since S1 and S2 both have a compound Poisson distribution, Proposition 2.11 of
the lecture notes (version of March 20, 2019) gives

π = 1
α

(
λ1v1

[
M
Y

(1)
1

(α)− 1
]

+ λ2v2

[
M
Y

(2)
1

(α)− 1
])
,

whereM
Y

(1)
1

andM
Y

(2)
1

denote the moment generating functions of Y (1)
1 and Y (2)

1 , respectively,
and are given by

M
Y

(1)
1

(α) =
(

c

c− α

)γ
=
(

0.01
0.01− 1.5 · 10−6

)20

and
M
Y

(2)
1

(α) = κ

κ− α
= 0.005

0.005− 1.5 · 10−6 .

In particular, since α < c and α < κ, both M
Y

(1)
1

(α) and M
Y

(2)
1

(α) and, thus, also MS1(α)
and MS2(α) exist. Inserting all the numerical values, we find the utility indifference price

π = 2
3 · 106

(
1
2 · 2’000

[(
0.01

0.01− 1.5 · 10−6

)20
− 1
]

+ 1
10 · 10’000

[
0.005

0.005− 1.5 · 10−6 − 1
])

= 2’203’213.

Note that we have

π − E[S]
E[S] = 2’203’213− 2’200’000

2’200’000 = 3’213
2’200’000 ≈ 0.146%.

Thus, the loading π − E[S] is given by approximately 0.146% of the pure risk premium.
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(d) The moment generating function MX of X ∼ N (µ, σ2) with µ ∈ R and σ2 > 0 is given by

MX(r) = exp
{
rµ+ r2σ2

2

}
,

for all r ∈ R, see Exercise 1.3. Thus, if we assume Gaussian distributions for S1 and S2, and
according to the calculations in part (c), we get

π = 1
α

[logMS1(α) + logMS2(α)] = 1
α

(
αE[S1] + α2

2 Var(S1) + αE[S2] + α2

2 Var(S2)
)

= E[S1] + E[S2] + α

2 [Var(S1) + Var(S2)] = E[S] + α

2 Var(S),

where in the last equation we used that S1 and S2 are independent. We see that in this case
the utility indifference price is given according to a variance loading principle. Since here we
assume Gaussian distributions for S1 and S2 with the same corresponding first two moments
as in the compound Poisson case in part (c), in order to calculate Var(S1) and Var(S2), we
again assume that S1 and S2 have compound Poisson distributions. Note that

E
[(
Y

(1)
1

)2
]

= γ(γ + 1)
c2

= 20 · 21
0.012 = 4’200’000,

and that
E
[(
Y

(2)
1

)2
]

= 2
κ2 = 2

0.0052 = 80’000.

Then, Proposition 2.11 of the lecture notes (version of March 20, 2019) gives

Var(S1) = λ1v1E
[(
Y

(1)
1

)2
]

= 1
2 · 2’000 · 4’200’000 = 4’200’000’000

and
Var(S2) = λ2v2E

[(
Y

(2)
1

)2
]

= 1
10 · 10’000 · 80’000 = 80’000’000,

which leads to

Var(S) = Var(S1 + S2) = Var(S1) + Var(S2) = 4’280’000’000.

We conclude that the utility indifference price is given by

π = E[S] + α

2 Var(S) = 2’200’000 + 1.5 · 10−6

2 · 4’280’000’000 = 2’203’210.

Note that we have

π − E[S]
E[S] = 2’203’210− 2’200’000

2’200’000 = 3’210
2’200’000 ≈ 0.146%.

Thus, as in part (c), the loading π − E[S] is given by approximately 0.146% of the pure risk
premium. The reason why we get the same results in (c) and in (d) is the Central Limit
Theorem. In particular, neither the gamma distribution nor the exponential distribution
are heavy-tailed distributions. Moreover, the skewness ςS1 of S1 and also the skewness
ςS2 of S2 are rather small (ςS1 ≈ 0.034 and ςS2 ≈ 0.067). Thus, the expected numbers of
claims λ1v1 = λ2v2 = 1’000 are large enough for the normal approximations to be valid
approximations for the compound Poisson distributions.
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(e) On the one hand, in part (c) we have shown that the utility indifference price π = π(u, S, c0)
is given by

π = 1
α
λv [MY1(α)− 1] .

On the other hand, according to the calculations in part (c), we also have

π̃ = π̃
(
u, S̃, c0

)
= 1

α
logE

[
exp

{
αS̃
}]

.

From this we can calculate

π̃ = 1
α

logE
[

exp
{
α

λv∑
i=1

Yi

}]
= 1

α

λv∑
i=1

logE [exp {αYi}] = 1
α
λv logMY1(α).

We then have
π > π̃ ⇐⇒ MY1(α)− 1 > logMY1(α).

We define
g(x) = x− 1 and h(x) = log x.

For x = 1 we have g(1) = 0 = h(1). Since g is linear and h is strictly concave, we get

g(x) > h(x)

for all x 6= 1 in the domain of g and h. Since for the claim sizes we assume Y1 > 0, P-a.s.,
and since α > 0, we have MY1(α) > 1. If follows that

MY1(α)− 1 > logMY1(α)

and, thus, π > π̃. This does not come as a surprise: in the compound Poisson model we have
randomness in the number of claims and under risk aversion we do not like this uncertainty.
This leads to a higher price in the compound Poisson model and explains why π > π̃.

Solution 9.2 Value-at-Risk and Expected Shortfall

(a) Since S ∼ LN(µ, σ2) with µ = 20 and σ2 = 0.015, we have

E[S] = exp
{
µ+ σ2

2

}
≈ 488’817’614.

Let z denote the VaR of S−E[S] at security level 1− q = 99.5%. Then, since the distribution
function of a lognormal distribution is continuous and strictly increasing, z is defined via the
equation

P[S − E[S] ≤ z] = 1− q.
By writing Φ for the distribution function of a standard Gaussian distribution, we can calculate
z as follows

P[S − E[S] ≤ z] = 1− q ⇐⇒ P[S ≤ z + E[S]] = 1− q

⇐⇒ P
[

logS − µ
σ

≤ log(z + E[S])− µ
σ

]
= 1− q

⇐⇒ Φ
[

log(z + E[S])− µ
σ

]
= 1− q

⇐⇒ log(z + E[S]) = µ+ σ · Φ−1(1− q)
⇐⇒ z = exp

{
µ+ σ · Φ−1(1− q)

}
− E[S]

⇐⇒ z = exp{µ}
(

exp
{
σ · Φ−1(1− q)

}
− exp

{
σ2

2

})
.
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For 1− q = 99.5% we have Φ−1(1− q) ≈ 2.576, and

z ≈ 176’299’286.

In particular, πCoC is then given by

πCoC = E[S] + rCoC · z ≈ 488’817’614 + 0.06 · 176’299’286 ≈ 499’395’571.

Note that we have
πCoC − E[S]

E[S] ≈ 499’395’571− 488’817’614
488’817’614 = 10’577’957

488’817’614 ≈ 2.16%.

Thus, the loading πCoC − E[S] is given by approximately 2.16% of the pure risk premium.

(b) For all u ∈ (0, 1), let VaRu and ESu denote the VaR risk measure and the expected shortfall
risk measure, respectively, at security level u. Note that actually in part (a) we have found
that

VaRu(S − E[S]) = exp
{
µ+ σ · Φ−1(u)

}
− E[S],

and that by a similar computation we get

VaRu(S) = exp
{
µ+ σ · Φ−1(u)

}
,

for all u ∈ (0, 1). In particular, we have

VaRu(S − E[S]) + E[S] = VaRu(S),

for all u ∈ (0, 1). Since the distribution function of S is continuous and strictly increasing,
according to Example 6.26 of the lecture notes (version of March 20, 2019), we have

ES1−q(S − E[S]) = E [S − E[S] |S − E[S] ≥ VaR1−q(S − E[S])]
= E [S − E[S] |S ≥ VaR1−q(S)]
= E [S |S ≥ VaR1−q(S)]− E[S]
= ES1−q(S)− E[S].

By the definition of the mean excess function eS(·) of S, we can write

ES1−q(S) = E [S −VaR1−q(S) |S ≥ VaR1−q(S)] + VaR1−q(S)
= eS [VaR1−q(S)] + VaR1−q(S).

Moreover, according to the formula given in Chapter 3.2.3 of the lecture notes (version of
March 20, 2019), the mean excess function eS [VaR1−q(S)] above level VaR1−q(S) for the
log-normal distribution S is given by

eS [VaR1−q(S)] = E[S]

1− Φ
[

log VaR1−q(S)−µ−σ2

σ

]
1− Φ

[
log VaR1−q(S)−µ

σ

]
−VaR1−q(S).

Using the formula calculated above for VaRu(S) with u = 1− q, we get

ES1−q(S) = E[S]

1− Φ
[

log VaR1−q(S)−µ−σ2

σ

]
1− Φ

[
log VaR1−q(S)−µ

σ

]
 = E[S]

1− Φ
[
µ+σ·Φ−1(1−q)−µ−σ2

σ

]
1− Φ

[
µ+σ·Φ−1(1−q)−µ

σ

]


= E[S]
(

1− Φ
[
Φ−1(1− q)− σ

]
1− Φ [Φ−1(1− q)]

)
= E[S] 1

q

(
1− Φ

[
Φ−1(1− q)− σ

])
.
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In particular, we have found that

ES1−q(S − E[S]) = 1
q
E[S]

(
1− Φ

[
Φ−1(1− q)− σ

])
− E[S]

= 1
q
E[S]

(
1− q − Φ

[
Φ−1(1− q)− σ

])
= 1

q
exp

{
µ+ σ2

2

}(
1− q − Φ

[
Φ−1(1− q)− σ

])
.

For 1− q = 99% we get Φ−1(1− q) ≈ 2.326, and

ES99%(S − E[S]) ≈ 184’119’256.

Finally, πCoC is then given by

πCoC = E[S] + rCoC · ES99%(S − E[S]) ≈ 488’817’614 + 0.06 · 184’119’256 ≈ 499’864’769.

Note that we have

πCoC − E[S]
E[S] ≈ 499’864’769− 488’817’614

488’817’614 = 11’047’155
488’817’614 ≈ 2.26%.

Thus, the loading πCoC − E[S] is given by approximately 2.26% of the pure risk premium. In
particular, the cost-of-capital price in this example is higher using the expected shortfall risk
measure at security level 99% than using the VaR risk measure at security level 99.5%.

(c) In parts (a) and (b) we have seen that in this example

VaR99.5%(S − E[S]) < ES99%(S − E[S]).

Let 1− q = 99%. Now the goal is to find u ∈ [0, 1] such that

VaRu(S − E[S]) = ES1−q(S − E[S]),

which is equivalent to
VaRu(S) = ES1−q(S).

From part (b) we know that

VaRu(S) = exp
{
µ+ σ · Φ−1(u)

}
,

for all u ∈ (0, 1), and that

ES1−q(S) = 1
q
E[S]

(
1− Φ

[
Φ−1(1− q)− σ

])
.

Hence, we can solve for u to get

u = Φ

 log
[

1
q E[S]

(
1− Φ

[
Φ−1(1− q)− σ

])]
− µ

σ

 ≈ 99.62%.

We conclude that in this example the cost-of-capital price using the VaR risk measure at
security level 99.62% is approximately equal to the cost-of-capital price using the expected
shortfall risk measure at security level 99%.
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(d) Since S ∼ LN(µ, σ2) with µ = 20 and σ2 = 0.015 and U and V are assumed to be independent,
we have

U ∼ N (µ, σ2), V ∼ N (µ, σ2) and U + V ∼ N (2µ, 2σ2).

Let X ∼ N (µ̃, σ̃2) for some µ̃ ∈ R and σ̃2 > 0. Then, VaR1−q(X) can be calculated as

P [X ≤ VaR1−q(X)] = 1− q ⇐⇒ P
[
X − µ̃
σ̃

≤ VaR1−q(X)− µ̃
σ̃

]
= 1− q

⇐⇒ Φ
[
VaR1−q(X)− µ̃

σ̃

]
= 1− q

⇐⇒ VaR1−q(X) = µ̃+ σ̃ · Φ−1(1− q).

This implies that

VaR1−q(U) + VaR1−q(V ) = µ+ σ · Φ−1(1− q) + µ+ σ · Φ−1(1− q)
= 2µ+ 2σ · Φ−1(1− q)

and that
VaR1−q(U + V ) = 2µ+

√
2σ · Φ−1(1− q).

Since

VaR1−q(U + V ) > VaR1−q(U) + VaR1−q(V ) ⇐⇒ Φ−1(1− q) >
√

2Φ−1(1− q)
⇐⇒ Φ−1(1− q) < 0

⇐⇒ 1− q < 1
2 ,

one can see that in this example

VaR1−q(U + V ) > VaR1−q(U) + VaR1−q(V )

for all 1− q ∈
(
0, 1

2
)
, and that

VaR1−q(U + V ) < VaR1−q(U) + VaR1−q(V )

for all 1− q ∈
( 1

2 , 1
)
.

Solution 9.3 Variance Loading Principle

(a) Let S1, S2, S3 denote the total claim amounts of the passenger cars, delivery vans and trucks,
respectively. Then, according to Proposition 2.11 of the lecture notes (version of March 20,
2019), we have

E[Si] = λivi E
[
Y

(i)
1

]
,

for all i ∈ {1, 2, 3}. Using the data given in Table 2 on the exercise sheet, we get

E[S1] = 0.25 · 40 · 2’000 = 20’000,
E[S2] = 0.23 · 30 · 1’700 = 11’730 and
E[S3] = 0.19 · 10 · 4’000 = 7’600.

If we write S for the total claim amount of the car fleet, we can conclude that

E[S] = E[S1 + S2 + S3] = E[S1] + E[S2] + E[S3] = 39’330.
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(b) Again using Proposition 2.11 of the lectures notes (version of March 20, 2019), we get

Var[Si] = λivi E
[(
Y

(i)
1

)2
]

= λivi

(
Var

(
Y

(i)
1

)
+ E

[
Y

(i)
1

]2)
= λivi E

[
Y

(i)
1

]2 [
Vco

(
Y

(i)
1

)2
+ 1
]
,

for all i ∈ {1, 2, 3}. Using the data given in Table 2 on the exercise sheet, we find

Var(S1) = 0.25 · 40 · 2’0002 · (2.52 + 1) = 290’000’000,
Var(S2) = 0.23 · 30 · 1’7002 · (22 + 1) = 99’705’000 and
Var(S3) = 0.19 · 10 · 4’0002 · (32 + 1) = 304’000’000.

Since S1, S2 and S3 are independent by assumption, the variance of the total claim amount S
of the car fleet is given by

Var(S) = Var(S1 + S2 + S3) = Var(S1) + Var(S2) + Var(S3) = 693’705’000.

Using the variance loading principle with α = 3 · 10−6, we get for the premium π of the car
fleet

π = E[S] + αVar(S) = 39’330 + 3 · 10−6 · 693’705’000 ≈ 39’330 + 2’081 = 41’411.

Note that we have
π − E[S]
E[S] = αVar(S)

E[S] ≈ 2’081
39’330 ≈ 5.3%.

Thus, the loading π − E[S] is given by 5.3% of the pure risk premium.

Solution 9.4 Esscher Premium

(a) Let α ∈ (0, r0) and M ′S and M ′′S denote the first and second derivative of MS , respectively.
According to the proof of Corollary 6.16 of the lecture notes (version of March 20, 2019), the
Esscher premium πα can be written as

πα = M ′S(α)
MS(α) .

Hence, the derivative of πα can be calculated as

d

dα
πα = d

dα

M ′S(α)
MS(α) = M ′′S (α)

MS(α) −
(
M ′S(α)
MS(α)

)2
=

E
[
S2 exp{αS}

]
MS(α) −

(
E [S exp{αS}]

MS(α)

)2

= 1
MS(α)

∫ ∞
−∞

x2 exp{αx} dF (x)−
[

1
MS(α)

∫ ∞
−∞

x exp{αx} dF (x)
]2

=
∫ ∞
−∞

x2 dFα(x)−
[∫ ∞
−∞

x dFα(x)
]2
,

where we define the distribution function Fα by

Fα(s) = 1
MS(α)

∫ s

−∞
exp{αx} dF (x),

for all s ∈ R. Let X be a random variable with distribution function Fα. Then, we get

d

dα
πα =

∫ ∞
−∞

x2 dFα(x)−
[∫ ∞
−∞

x dFα(x)
]2

= E
[
X2]− E[X]2 = Var(X) ≥ 0.
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Hence, the Esscher premium πα is always non-decreasing in α. Moreover, if S is non-
deterministic, then also X is non-deterministic. Thus, in this case we get

d

dα
πα = Var(X) > 0.

In particular, if S is non-deterministic, then the Esscher premium πα is strictly increasing in
α.

(b) Let α ∈ (0, r0). According to Corollary 6.16 of the lecture notes (version of March 20, 2019),
the Esscher premium πα is given by

πα = d

dr
logMS(r)

∣∣∣∣
r=α

.

For small values of α, we can use a first-order Taylor approximation around 0 to get

πα ≈
d

dr
logMS(r)

∣∣∣∣
r=0

+ α · d
2

dr2 logMS(r)
∣∣∣∣
r=0

= M ′S(0)
MS(0) + α

(
M ′′S (0)
MS(0) −

[
M ′S(0)
MS(0)

]2
)

= E[S] + α
(
E[S2]− E[S]2

)
= E[S] + αVar(S).

We conclude that for small values of α, the Esscher premium πα of S is approximately equal
to a premium resulting from a variance loading principle.

(c) Since S ∼ CompPoi(λv,G), we can use Proposition 2.11 of the lecture notes (version of March
20, 2019) to get

logMS(r) = λv [MG(r)− 1] ,

where MG denotes the moment generating function of a random variable with distribution
function G. Since G is the distribution function of a gamma distribution with shape parameter
γ > 0 and scale parameter c > 0, we have

MG(r) =
(

c

c− r

)γ
,

for all r < c. In particular, also MS(r) is defined for all r < c, which implies that the Esscher
premium πα exists for all α ∈ (0, c).
Now let α ∈ (0, c). Then, the Esscher premium πα can be calculated as

πα = d

dr
logMS(r)

∣∣∣∣
r=α

= d

dr
λv

[(
c

c− r

)γ
− 1
] ∣∣∣∣∣
r=α

= d

dr
λv

[(
1− r

c

)−γ
− 1
] ∣∣∣∣∣
r=α

= λv
γ

c

(
1− r

c

)−γ−1
∣∣∣∣∣
r=α

= λv
γ

c

(
c

c− α

)γ+1
.

Note that since c > c− α and γ + 1 > 1, we have(
c

c− α

)γ+1
> 1,

and, thus,

πα = λv
γ

c

(
c

c− α

)γ+1
> λv

γ

c
= E[S].
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Solution 10.1 Method of Bailey & Simon

In this exercise we work with two tariff criteria. The first criterion (vehicle type) has I = 3 risk
characteristics:

χ1,1 (passenger car), χ1,2 (delivery van) and χ1,3 (truck).

The second criterion (driver age) has J = 4 risk characteristics:

χ2,1 (21 - 30 years), χ2,2 (31 - 40 years), χ2,3 (41 - 50 years) and χ2,4 (51 - 60 years).

The claim amounts Si,j for the risk classes (i, j), 1 ≤ i ≤ 3, 1 ≤ j ≤ 4, are given in Table 1 on the
exercise sheet. The multiplicative tariff structure leads to the model

E[Si,j ] = vi,j µχ1,i χ2,j ,

for all 1 ≤ i ≤ 3, 1 ≤ j ≤ 4, where we set the number of policies vi,j = 1. Moreover, in order to get a
unique solution, we set µ = 1 and χ1,1 = 1. Therefore, there remains to find the risk characteristics
χ1,2, χ1,3, χ2,1, χ2,2, χ2,3, χ2,4. Using the method of Bailey & Simon, these risk characteristics are
found by minimizing

X2 =
I∑
i=1

J∑
j=1

(Si,j − vi,j µχ1,i χ2,j)2

vi,j µχ1,i χ2,j
=

3∑
i=1

4∑
j=1

(Si,j − χ1,i χ2,j)2

χ1,i χ2,j
.

Let i ∈ {2, 3} (recall that we set χ̂1,1 = 1). Then, χ̂1,i is found by the solution of

0 != ∂

∂χ1,i
X2 =

4∑
j=1

∂

∂χ1,i

(Si,j − χ1,i χ2,j)2

χ1,i χ2,j

=
4∑
j=1

−2(Si,j − χ1,i χ2,j)χ1,i χ2,j − (Si,j − χ1,i χ2,j)2

χ2
1,i χ2,j

=
4∑
j=1

−2Si,jχ1,i χ2,j + 2χ2
1,i χ

2
2,j − S2

i,j + 2Si,jχ1,i χ2,j − χ2
1,i χ

2
2,j

χ2
1,i χ2,j

=
4∑
j=1

χ2
1,i χ

2
2,j − S2

i,j

χ2
1,i χ2,j

=
4∑
j=1

χ2,j −
1
χ2

1,i

4∑
j=1

S2
i,j

χ2,j
.

Thus, for i ∈ {2, 3} we get

χ̂1,i =
(∑4

j=1 S
2
i,j/χ̂2,j∑4

j=1 χ̂2,j

)1/2

.

By an analogous calculation, one finds

χ̂2,j =
(∑3

i=1 S
2
i,j/χ̂1,i∑3

i=1 χ̂1,i

)1/2

,
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for j ∈ {1, 2, 3, 4}. For solving these equations, one has to apply a root-finding algorithm like for
example the Newton-Raphson method. We get the following multiplicative tariff structure:

21-30y 31-40y 41-50y 51-60y χ̂1,i
passenger car 2’176 1’751 1’491 1’493 1
delivery van 2’079 1’674 1’425 1’427 0.96

truck 2’456 1’977 1’684 1’686 1.13
χ̂2,j 2’176 1’751 1’491 1’493

Table 1: Tariff structure resulting from the method of Bailey & Simon.

We see that the risk characteristics for the classes passenger car and delivery van are close to each
other, whereas for trucks we have a higher tariff. Moreover, an insured with age between 21 and
30 years gets a considerably higher tariff than an insured with a higher age. The smallest tariff is
assigned to insureds with age between 41 and 60 years. Note that we have

3∑
i=1

4∑
j=1

vi,j µ χ̂1,i χ̂2,j = 21’320 > 21’300 =
3∑
i=1

4∑
j=1

Si,j ,

which confirms the (systematic) positive bias of the method of Bailey & Simon shown in Lemma
7.2 of the lecture notes (version of March 20, 2019).

Solution 10.2 Method of Bailey & Jung

We use the same setup and the same notation as in the solution of Exercise 10.1. In order to get a
unique solution, we again set µ = 1 and χ1,1 = 1. Using the method of Bailey & Jung, which is
also called method of total marginal sums, the risk characteristics χ1,2, χ1,3, χ2,1, χ2,2, χ2,3, χ2,4 are
found by solving the equations

J∑
j=1

vi,j µχ1,i χ2,j =
J∑
j=1

Si,j , i ∈ {2, 3},

I∑
i=1

vi,j µχ1,i χ2,j =
I∑
i=1

Si,j , j ∈ {1, 2, 3, 4}.

Since I = 3, J = 4 and we work with vi,j = 1 and set µ = 1, we get the equations
4∑
j=1

χ1,i χ2,j =
4∑
j=1

Si,j , i ∈ {2, 3},

3∑
i=1

χ1,i χ2,j =
3∑
i=1

Si,j , j ∈ {1, 2, 3, 4}.

Thus, for i ∈ {2, 3} (recall that we set χ̂1,1 = 1) and j ∈ {1, 2, 3, 4}, we get

χ̂1,i =
4∑
j=1

Si,j

/ 4∑
j=1

χ̂2,j , and,

χ̂2,j =
3∑
i=1

Si,j

/ 3∑
i=1

χ̂1,i.

Analogously to the method of Bailey & Simon, one has to solve this system of equations using a
root-finding algorithm.
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We get the following multiplicative tariff structure:

21-30y 31-40y 41-50y 51-60y χ̂1,i
passenger car 2’170 1’749 1’490 1’490 1
delivery van 2’076 1’673 1’425 1’425 0.96

truck 2’454 1’977 1’685 1’685 1.13
χ̂2,j 2’170 1’749 1’490 1’490

Table 2: Tariff structure resulting from the method of Bailey & Jung.

We see that the results are very close to those in Exercise 10.1, where we applied the method of
Bailey & Simon. However, now we have

3∑
i=1

4∑
j=1

vi,j µ χ̂1,i χ̂2,j = 21’300 =
3∑
i=1

4∑
j=1

Si,j ,

which comes as no surprise as we fitted the risk characteristics such that the above equality holds
true.

Solution 10.3 Log-Linear Gaussian Regression Model
(a) In the log-linear Gaussian regression model we work with a stochastic model for the claim

amounts Si,j for the risk classes (i, j), 1 ≤ i ≤ 3, 1 ≤ j ≤ 4, given in Table 1 on the exercise
sheet. We assume that

Xi,j
def= log Si,j

vi,j
= logSi,j ∼ N (β0 + β1,i + β2,j , σ

2),

where β0, β1,i, β2,j ∈ R and σ2 > 0, for all risk classes (i, j), 1 ≤ i ≤ 3, 1 ≤ j ≤ 4. The risk
characteristics of the two tariff criteria vehicle type and driver age are now given by

β1,1 (passenger car), β1,2 (delivery van) and β1,3 (truck),

and

β2,1 (21 - 30 years), β2,2 (31 - 40 years), β2,3 (41 - 50 years) and β2,4 (51 - 60 years).

In order to get a unique solution, we set β1,1 = β2,1 = 0. Simplifying notation, we write
X = (X1, . . . , XM )′ with M = 12 and

X1 = X1,1, X2 = X1,2, X3 = X1,3, X4 = X1,4, X5 = X2,1, X6 = X2,2,

X7 = X2,3, X8 = X2,4, X9 = X3,1, X10 = X3,2, X11 = X3,3, X12 = X3,4.

Moreover, we define

β = (β0, β1,2, β1,3, β2,2, β2,3, β2,4)′ ∈ Rr+1,

with r = 5. Then, we assume that X has a multivariate Gaussian distribution

X ∼ N (Zβ, σ2I),

where I ∈ RM×M denotes the identity matrix and Z ∈ RM×(r+1) is the so-called design
matrix that satisfies

E[X] = Zβ.

For example for m = 1 we have

E[Xm] = E[X1] = E[X1,1] = β0 + β1,1 + β2,1 = β0 = (1, 0, 0, 0, 0, 0)β,

and for m = 8

E[Xm] = E[X8] = E[X2,4] = β0 + β1,2 + β2,4 = (1, 1, 0, 0, 0, 1)β.
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Doing this for all m ∈ {1, . . . , 12}, we find the design matrix Z given in Table 3. Note that
we can also let R find the design matrix by itself, see Listing 1 given below.

intercept (β0) van (β1,2) truck (β1,3) 31-40y (β2,2) 41-50y (β2,3) 51-60y (β2,4)
1 0 0 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
1 1 0 0 0 0
1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1
1 0 1 0 0 0
1 0 1 1 0 0
1 0 1 0 1 0
1 0 1 0 0 1

Table 3: Design matrix Z (β1,1 = β2,1 = 0).

(b) The R code used for parts (b), (c) and (d) is given in Listing 1 below. According to formula
(7.11) of the lecture notes (version of March 20, 2019), the MLE of the parameter vector β is
given by

β̂
MLE

= [Z ′(σ2I)−1Z]−1Z ′(σ2I)−1X = (Z ′Z)−1Z ′X.

Note that β̂
MLE

does not depend on σ2. Moreover, the design matrix Z has full column rank
and, thus, Z ′Z is indeed invertible. We get the following tariff structure:

β̂0 = 7.688 21-30y 31-40y 41-50y 51-60y β̂1,i
passenger car 2’182 1’759 1’500 1’501 0
delivery van 2’063 1’663 1’417 1’419 -0.056

truck 2’444 1’970 1’680 1’682 0.113
β̂2,j 0 -0.216 -0.375 -0.374

Table 4: Tariff structure resulting from the log-linear Gaussian regression model.

If we use the same parametrization as in Exercises 10.1 and 10.2, we get the following table:

exp{β̂0} = 1 21-30y 31-40y 41-50y 51-60y exp{β̂1,i}
passenger car 2’182 1’759 1’500 1’501 1
delivery van 2’063 1’663 1’417 1’419 0.95

truck 2’444 1’970 1’680 1’682 1.12
exp{β̂2,j} 2’182 1’759 1’500 1’501

Table 5: Tariff structure with the same parametrization as in Exercises 10.1 and 10.2.

Note that the tariffs in Tables 4 and 5 do not change with the different parametrization.

(c) We see that the results are very close to those found in Exercises 10.1 and 10.2, where we
applied the method of Bailey & Simon and the method of Bailey & Jung. The only differences
are that with the method of Bailey & Jung we get coinciding marginal totals and with
the log-linear Gaussian regression model we are in a stochastic framework which allows for
calculating parameter uncertainties and hypothesis testing, i.e we get standard errors and we
can make statements about the statistical significance of the parameters.
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According to the R output, we get the following p-values for the individual parameters:

β̂0 β̂1,2 β̂1,3 β̂2,2 β̂2,3 β̂2,4
p-value ≈ 0 0.2322 0.0366 0.0045 0.0003 0.0003

Table 6: Resulting p-values for the individual parameters.

For every parameter, R calculates the corresponding p-value by applying a t-test to the
null hypothesis that the parameter under consideration is equal to 0. While the p-values
for β̂0, β̂1,3, β̂2,2, β̂2,3, β̂2,4 are smaller than 0.05 and, thus, these parameters are significantly
different from zero, the p-value for β̂1,2 (delivery van) is fairly high. Hence, we might question
if we really need the class delivery van. This is in line with the observations that the risk
characteristics for the classes passenger car and delivery van are close to each other, see Tables
1, 2, 4 and 5.

(d) In order to check whether there is statistical evidence that the classification into different
types of vehicles could be omitted, we define the null hypothesis of the reduced model:

H0 : β1,2 = β1,3 = 0,

i.e. we set p = 2 parameters equal to 0. We can perform the same analysis as above to get the
MLE β̂

MLE
H0

of the reduced model H0. In particular, let ZH0 be the design matrix Z without
the second column van (β1,2) and the third column truck (β1,3). Then, we have

β̂
MLE
H0

= (Z ′H0
ZH0)−1Z ′H0

X.

Now, for all m ∈ {1, . . . , 12} we define the fitted value X̂ full
m of the full model and the fitted

value X̂H0
m of the reduced model. In particular, we have

X̂ full
m =

[
Zβ̂

MLE]
m

and
X̂H0
m =

[
ZH0 β̂

MLE
H0

]
m
,

where [·]m denotes the m-th element of the corresponding vector, for all m ∈ {1, . . . , 12}.
Moreover, we define the residual differences

SSfull
err =

M∑
m=1

(
Xm − X̂ full

m

)2

and

SSH0
err =

M∑
m=1

(
Xm − X̂H0

m

)2
.

According to formula (7.17) of the lecture notes (version of March 20, 2019), the test statistic

T = SSH0
err − SSfull

err
SSfull

err

M − r − 1
p

= 3 SS
H0
err − SSfull

err
SSfull

err

has an F -distribution with degrees of freedom given by df1 = p = 2 and df2 = M − r − 1 = 6.
We get

T ≈ 8.336,
which corresponds to a p-value of approximately 1.85%. Thus, we can reject H0 at significance
level of 5%, i.e. there seems to be no statistical evidence that the classification into different
types of vehicles could be omitted.
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Listing 1: R code for Exercise 10.3.
1 ### Load the observed claim amounts into a matrix
2 S <- matrix (c (2000 ,2200 ,2500 ,1800 ,1600 ,2000 ,1500 ,1400 ,1700 ,1600 ,1400 ,1600) , nrow =3)
3
4 ### Define the design matrix Z
5 Z <- matrix (c(rep (1 ,12) , rep (0 ,4) , rep (1 ,4) , rep (0 ,12) , rep (1 ,4) , rep(c(0 ,1 ,0 ,0) ,3) ,
6 rep(c(0 ,0 ,1 ,0) ,3) , rep(c(0 ,0 ,0 ,1) ,3)) , nrow =12)
7
8 ### Store design matrix Z and log(S_{i,j}) in one dataset
9 data <- as.data. frame ( cbind (Z[,-1], matrix (log(t(S)), nrow =12)))

10 colnames (data) <- c(" van", " truck ", " X31_40y ", " X41_50y ", " X51_60y ", " observation ")
11
12 ### Apply the regression model
13 linear . model1 <- lm( formula = observation ~ van+ truck + X31_40y + X41_50y +X51_60y , data=data)
14 summary ( linear . model1 )
15
16 ### Fitted values
17 matrix (exp( fitted ( linear . model1 )), byrow =TRUE , nrow =3)
18
19 ### We can also get the parameters by applying formula (7.11) of the lecture notes
20 solve (t(Z)%*%Z) %*% t(Z) %*% matrix (log(t(S)), nrow =12)
21
22 ### We can also use R directly on the data (it finds the design matrix internally )
23 car <- c(" passenger car", "van", " truck ")
24 age <- c(" X21_30y ", " X31_40y ", " X41_50y ", " X51_60y ")
25 dat <- expand .grid(car , age)
26 colnames (dat) <- c(" car "," age ")
27 dat$observation <- as. vector (log(S))
28 linear . model1 . direct <- lm( formula = observation ~ car+age , data=dat)
29 summary ( linear . model1 . direct )
30
31 ### Apply the regression model under H_0 , calculate the test statistic F and the p- value
32 linear . model2 <- lm( formula = observation ~ X31_40y + X41_50y +X51_60y , data=data)
33 test.stat <- 3*( sum (( data [,6]- fitted ( linear . model2 ))^2) - sum (( data [,6]- fitted ( linear . model1 ))^2))
34 /sum (( data [,6]- fitted ( linear . model1 ))^2)
35 pf(test.stat , 2, 6, lower .tail= FALSE )
36
37 ### We can also directly use anova to test H_0
38 anova ( linear .model1 , linear . model2 )

Solution 10.4 Tweedie’s Compound Poisson Model

(a) We can write S as

S =
N∑
i=1

Yi,

where N ∼ Poi(λv), Y1, Y2, . . .
i.i.d.∼ G and N and (Y1, Y2, . . . ) are independent. Since G is the

distribution function of a gamma distribution, we have G(0) = 0 and, thus,

P[S = 0] = P[N = 0] = exp{−λv}.

Let x ∈ (0,∞). Then, the density fS of S at x can be calculated as

fS(x) = d

dx
P[S ≤ x],

where we have

P[S ≤ x] =
∞∑
n=0

P[S ≤ x,N = n] =
∞∑
n=0

P[S ≤ x |N = n]P[N = n]

= P[S ≤ x |N = 0]P[N = 0] +
∞∑
n=1

P[S ≤ x |N = n]P[N = n]

= P[N = 0] +
∞∑
n=1

P

[
n∑
i=1

Yi ≤ x

]
P[N = n].
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Since Y1, Y2, . . .
i.i.d.∼ Γ(γ, c), we get

n∑
i=1

Yi ∼ Γ(nγ, c).

By writing fn for the density function of Γ(nγ, c), for all n ∈ N, we get

fS(x) = d

dx

(
P[N = 0] +

∞∑
n=1

P

[
n∑
i=1

Yi ≤ x

]
P[N = n]

)
=
∞∑
n=1

d

dx
P

[
n∑
i=1

Yi ≤ x

]
P[N = n]

=
∞∑
n=1

fn(x)P[N = n] =
∞∑
n=1

cnγ

Γ(nγ)x
nγ−1 exp{−cx} exp{−λv} (λv)n

n!

= exp{−(cx+ λv)}
∞∑
n=1

(λvcγ)n 1
Γ(nγ)n!x

nγ−1

= exp
{
−(cx+ λv) + log

[ ∞∑
n=1

(λvcγ)n 1
Γ(nγ)n!x

nγ−1

]}
,

for all x ∈ (0,∞). Note that one can show that interchanging summation and differentiation
in the second equality above is indeed allowed. However, the proof is omitted here.

(b) Let X ∼ fX belong to the exponential dispersion family with w, φ, θ, b(·) and c(·, ·, ·) as given
on the exercise sheet. Then, we have

xθ

φ/w
= −xv

(γ + 1)
(
λvγ
c

)− 1
γ+1

γ+1
λγ

(
λvγ
c

) γ
γ+1

= −xλvγ
(
λvγ

c

)−1
= −cx,

for all x ≥ 0, and

b(θ)
φ/w

= v

γ+1
γ

(
−θ
γ+1

)−γ
γ+1
λγ

(
λvγ
c

) γ
γ+1

= λv

(
λvγ
c

) γ
γ+1

(
λvγ
c

) γ
γ+1

= λv.

Moreover, since

(γ + 1)γ+1

γ

(
φ

w

)−γ−1
= (γ + 1)γ+1

γ

[
γ + 1
λvγ

(
λvγ

c

) γ
γ+1
]−γ−1

= 1
γ

(λvγ)γ+1
(
λvγ

c

)−γ
= 1

γ
λvγcγ = λvcγ ,

we have, for all x > 0,

c(x, φ,w) = log
( ∞∑
n=1

[
(γ + 1)γ+1

γ

(
φ

w

)−γ−1
]n

1
Γ(nγ)n! x

nγ−1

)

= log
[ ∞∑
n=1

(λvcγ)n 1
Γ(nγ)n! x

nγ−1

]
.
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By putting the above terms together, we get, for all x > 0,

fX(x; θ, φ) = exp
{
xθ − b(θ)
φ/w

+ c(x, φ,w)
}

= exp
{
−(cx+ λv) + log

[ ∞∑
n=1

(λvcγ)n 1
Γ(nγ)n!x

nγ−1

]}
= fS(x),

and
fX(0; θ, φ) = exp

{
0 · θ − b(θ)

φ/w
+ c(0, φ, w)

}
= exp{−λv} = P[S = 0].

We conclude that S indeed belongs to the exponential dispersion family. Note that with this
result at hand one might be tempted to estimate the shape parameter γ of the claim size
distribution and to do a GLM analysis directly on the compound claim size S. However, there
are two reasons to rather perform a separate GLM analysis of the claim frequency and the
claim severity instead: First, claim frequency modelling is usually more stable than claim
severity modelling and often much of the differences between tariff cells are due to the claim
frequency. Second, a separate analysis of the claim frequency and the claim severity provides
more insights into the differences between the tariffs.
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Solution 11.1 Claim Frequency Modeling with GLM

(a) In this exercise we work with three tariff criteria. The first criterion (vehicle class) has 2 risk
characteristics:

β1,1 (weight over 60 kg and more than two gears) and β1,2 (other).

The second criterion (vehicle age) also has 2 risk characteristics:

β2,1 (at most one year) and β2,2 (more than one year).

The third criterion (geographic zone) has 3 risk characteristics:

β3,1 (large cities), β3,2 (middle-sized towns) and β3,3 (smaller towns and countryside).

We write Nl1,l2,l3 for the numbers of claims, vl1,l2,l3 for the volumes and λl1,l2,l3 for the claim
frequencies of the risk classes (l1, l2, l3), 1 ≤ l1 ≤ 2, 1 ≤ l2 ≤ 2, 1 ≤ l3 ≤ 3. We assume that all
Nl1,l2,l3 are independent with

Nl1,l2,l3 ∼ Poi(λl1,l2,l3vl1,l2,l3),

and define
Xl1,l2,l3 = Nl1,l2,l3

vl1,l2,l3
.

In particular, we have

λl1,l2,l3 = E
[
Nl1,l2,l3
vl1,l2,l3

]
= E [Xl1,l2,l3 ] .

We model
g(λl1,l2,l3) = g (E [Xl1,l2,l3 ]) = β0 + β1,l1 + β2,l2 + β3,l3 ,

where β0 ∈ R and where we use the log-link function, i.e. g(·) = log(·). In order to get a
unique solution, we set β1,1 = β2,1 = β3,1 = 0. Moreover, we define

β = (β0, β1,2, β2,2, β3,2, β3,3)′ ∈ Rr+1,

where r = 4. Similarly as in Exercise 10.3, we relabel the risk classes with the index
m ∈ {1, . . . ,M}, where M = 2 · 2 · 3 = 12, define X = (X1, . . . , XM )′ and the design matrix
Z ∈ RM×(r+1) that satisfies

logE[X] = Zβ,

where the logarithm is applied componentwise to E[X]. Let m ∈ {1, . . . , 12}. According to
Example 7.9 of the lecture notes (version of March 20, 2019), Xm = Nm/vm belongs to the
exponential dispersion family with cumulant function b(·) = exp{·}, θm = log λm, wm = vm
and dispersion parameter φ = 1, i.e. we have

[Zβ]m = logE[Xm] = logE
[
Nm
vm

]
= log λm = θm,
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where [Zβ]m denotes the m-th element of the vector Zβ. Summarizing, we assume that
X1, . . . , XM are independent with

Xm ∼ EDF(θm = [Zβ]m, φ = 1, wm = vm, b(·) = exp{·}),

for all m ∈ {1, . . . ,M}. As b(·) = exp{·}, we also have b′(·) = exp{·}, where b′ denotes the
first derivative of b. In particular, the log-link function g(·) = log(·) is equal to the canonical
link function h(·) = (b′)−1(·) = log(·) in the Poisson model. Therefore, we can use equation
(7.26) of the lecture notes (version of March 20, 2019): the MLE β̂

MLE
of β is the solution of

Z ′V b′(Zβ) = Z ′V exp{Zβ} != Z ′VX, (1)

where the weight matrix V is given by V = diag(v1, . . . , vM ), see also Proposition 7.11 of
the lecture notes (version of March 20, 2019). Equation (1) has to be solved numerically.
We refer to Listing 1 for the application of this GLM model in R. The resulting MLEs of
the parameters β0, β1,2, β2,2, β3,2, β3,3 are given in the first row of Table 1. We observe that
insureds with a vehicle with weight over 60 kg and more than two gears tend to cause more
claims than insureds with other vehicles. Analogously, if the vehicle is at most one year old,
we expect more claims than if it is older. Regarding the geographic zone, we see that driving
in middle-sized towns leads to fewer claims than driving in large cities. Moreover, driving in
smaller towns and countryside leads to even fewer claims than driving in middle-sized towns.
Similarly as the log-linear Gaussian regression model discussed in Exercise 10.3, the GLM
framework allows for calculating parameter uncertainties and hypothesis testing. According
to the R output, for the individual parameters we get the p-values listed in the second row of
Table 1. These p-values are all substantially smaller than 0.05 and, thus, all the parameters
are significantly different from zero.

β̂0 β̂1,2 β̂2,2 β̂3,2 β̂3,3
MLE -1.4351 -0.2371 -0.5019 -0.4036 -1.6571
p-value ≈ 0 0.0009 ≈ 0 ≈ 0 ≈ 0

Table 1: MLEs of the parameters β0, β1,2, β2,2, β3,2, β3,3 and corresponding p-values.

Listing 1: R code for Exercise 11.1 (a).
1 ### Determine the design matrix Z
2 class <- factor (c(rep (1 ,6) , rep (2 ,6)))
3 age <- factor (c(rep (1 ,3) , rep (2 ,3) , rep (1 ,3) , rep (2 ,3)))
4 zone <- factor (c(rep (1:3 ,4)))
5 volumes <- c(1 ,2 ,5 ,4 ,9 ,70 ,2 ,3 ,6 ,8 ,15 ,50)*100
6 counts <- c(25 ,15 ,15 ,60 ,90 ,210 ,45 ,45 ,30 ,80 ,120 ,90)
7 Z <- model . matrix ( counts ~ class + age + zone)
8
9 ### Store design matrix Z ( without intercept term), counts and volumes in one dataset

10 data <- as.data. frame ( cbind (Z[,-1], counts , volumes ))
11
12 ### Apply GLM
13 d.glm <- glm( counts ~ class2 + age2 + zone2 + zone3 , data=data , offset =log( volumes ),
14 family = poisson ())
15 summary (d.glm)

(b) The plots of the observed and the fitted claim frequencies against the vehicle class, the vehicle
age and the geographic zone are given in Figure 1, the corresponding R code in Listing 2.
Note that the observed and the fitted marginal claim frequencies are always the same. This is
a direct consequence of equation (1) above, which ensures that the observed and the fitted
total marginal sums are the same (if we use the same volumes again), see also the remarks
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after Proposition 7.11 in the lecture notes (version of March 20, 2019). Moreover, in the
marginal plot for the vehicle class we do not see that insureds with a vehicle with weight
over 60 kg and more than two gears tend to cause more claims than insureds with other
vehicles, as we would have expected after the discussion at the end of part (a). The reason
for this peculiarity is that the MLE β̂1,2 is driven by the risk cells with the biggest volumes
(v6 = 7’000 and v12 = 5’000). However, in these risk cells with the biggest volumes we observe
very low claim frequencies. This implies that these risk cells have a small impact on the mean
claim frequency. As a consequence, the resulting mean claim frequency is of similar size for
both vehicles with weight over 60 kg and more than two gears and for other vehicles. For the
other variables vehicle age and geographic zone we again see the same results as in part (a).
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Figure 1: Observed and fitted claim frequencies against the vehicle class, the vehicle age and the
geographical zone.

Listing 2: R code for Exercise 11.1 (b).
1 ### Store features , observed numbers of claims and fitted numbers of claims in one dataset
2 data2 <- as.data. frame ( cbind (class , age , zone , volumes , counts , fitted (d.glm )))
3 colnames ( data2 )[5:6] <- c(" observed "," fitted ")
4
5 ### Marginal claim frequencies for the two class categories
6 library (plyr)
7 class .comp <- ddply (data2 , .( class ), summarise , volumes =sum( volumes ), observed =sum( observed ),
8 fitted =sum( fitted ))
9 par(mar=c(5.1 , 4.6 , 4.1 , 2.1))

10 barplot (t(as. matrix ( class .comp [ ,3:4]/ class .comp [ ,2])) , beside =TRUE ,
11 names .arg=c(" weight > 60 kg , nr. of gears > 2", " other "), main =" Claim frequencies ",
12 ylim=c(0 ,0.15) , xlab =" Vehicle class ", ylab =" Mean claim frequency ", legend .text=FALSE ,
13 col =1:2 , cex. names =0.95 , cex.lab =1.5 , cex.main =1.5 , cex.axis =1.5)
14 legend (" topright ", legend =c(" observed ", " fitted "), fill =1:2 , cex =1.25)
15
16 ### Marginal claim frequencies for the two age categories
17 age.comp <- ddply (data2 , .( age), summarise , volumes =sum( volumes ), observed =sum( observed ),
18 fitted =sum( fitted ))
19 barplot (t(as. matrix (age.comp [ ,3:4]/ age.comp [ ,2])) , beside =TRUE ,
20 names .arg=c(" at most one year", "two years or more "), main =" Claim frequencies ",
21 ylim=c(0 ,0.15) , xlab =" Vehicle age", ylab =" Mean claim frequency ", legend .text=FALSE ,
22 col =1:2 , cex. names =0.95 , cex.lab =1.5 , cex.main =1.5 , cex.axis =1.5)
23 legend (" topright ", legend =c(" observed ", " fitted "), fill =1:2 , cex =1.25)
24
25 ### Marginal claim frequencies for the three zone categories
26 zone.comp <- ddply (data2 , .( zone), summarise , volumes =sum( volumes ), observed =sum( observed ),
27 fitted =sum( fitted ))
28 barplot (t(as. matrix (zone.comp [ ,3:4]/ zone.comp [ ,2])) , beside =TRUE ,
29 names .arg=c(" large cities ", " medium towns ", " small towns "), main =" Claim frequencies ",
30 ylim=c(0 ,0.15) , xlab =" Geographic zone", ylab =" Mean claim frequency ", legend .text=FALSE ,
31 col =1:2 , cex. names =0.95 , cex.lab =1.5 , cex.main =1.5 , cex.axis =1.5)
32 legend (" topright ", legend =c(" observed ", " fitted "), fill =1:2 , cex =1.25)
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(c) The Tukey-Anscombe plot given in Figure 2 can be generated by the R code of Listing 3.
The plot looks rather fine in the sense that we do not observe any structure. However, we
remark that we only have 12 observations in this example and, thus, it is difficult to detect
possible patterns and to make a clear statement.
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Figure 2: Tukey-Anscombe plot.

Listing 3: R code for Exercise 11.1 (c).
1 ### Deviance residuals
2 dev.red <- residuals .glm(d.glm)
3
4 ### Tukey - Anscombe plot
5 par(mar=c(5.1 , 4.4 , 4.1 , 2.1))
6 plot( data2$fitted , dev.red , main =" Tukey - Anscombe plot",
7 xlab =" Fitted expected numbers of claims ", ylab =" Deviance residuals ",
8 ylim=c(-max(abs(dev.red )), max(abs(dev.red ))) , cex.lab =1.25 , cex.main =1.25 , cex.axis =1.25)
9 abline (h=0, col =" red ")

(d) We perform two tests in order to check if there is statistical evidence that the classification
into the geographic zones could be omitted. Note that in part (a) we have seen that we tend
to have considerably fewer claims for drivers in smaller towns and countryside than for drivers
in middle-sized towns. The same holds true for middle-sized towns and large cities. Thus, we
would expect that the classification into the three different geographic zones is reasonable.
Now we investigate this. The estimates of the expected values of Xm are given by

µ̂m = b′(θ̂m) = exp
{
θ̂m

}
= exp

{[
Zβ̂

MLE]
m

}
,

for all m = 1, . . . ,M , and we write µ̂ = (µ̂1, . . . , µ̂M )′. According to page 196 of the lecture
notes (version of March 20, 2019), the scaled deviance statistics is given by

D∗(X, µ̂) = 2
φ

M∑
m=1

wm(Xmh(Xm)− b[h(Xm)]−Xmh(µ̂m) + b[h(µ̂m)])

= 2
M∑
m=1

vm (Xm logXm −Xm −Xm log µ̂m + µ̂m) . (2)
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Moreover, since for the Poisson case we have φ = 1, the scaled deviance statistics D∗(X, µ̂)
and the deviance statistics D(X, µ̂) are the same. In order to check whether there is statistical
evidence that the classification into the geographic zones could be omitted, we define the null
hypothesis

H0 : β3,2 = β3,3 = 0.

Thus, in the reduced model we set the above p = 2 variables equal to 0. Then, we can
recalculate β̂

MLE
H0

for this reduced model and define

µ̂H0 = exp
{
ZH0 β̂

MLE
H0

}
,

where ZH0 is the design matrix in the reduced model. According to formula (7.30) of the
lecture notes (version of March 20, 2019), the test statistic

F =
D(X, µ̂H0)−D(X, µ̂)

D(X, µ̂)
M − r − 1

p
= 7

2
D(X, µ̂H0)−D(X, µ̂)

D(X, µ̂)

has approximately an F -distribution with degrees of freedom given by df1 = p = 2 and
df2 = M − r − 1 = 7. We get

F ≈ 51.239,

which corresponds to a p-value of approximately 0.007%. Thus, we can rejectH0 at significance
level of 5%. According to formula (7.31) of the lecture notes (version of March 20, 2019), a
second test statistic is given by

X2 = D∗(X, µ̂H0)−D∗(X, µ̂).

The test statistic X2 has approximately a χ2-distribution with df = p = 2 degrees of freedom.
We get

X2 ≈ 389.882,

which corresponds to a p-value of approximately 2.179 · 10−85, which is basically 0. Thus,
we can reject H0 at significance level of 5%. Since we can reject H0 using both tests, we
can conclude that there seems to be no statistical evidence that the classification into the
geographic zones could be omitted. For the R code used in part (d) we refer to Listing 4.

Listing 4: R code for Exercise 11.1 (d).
1 ### Deviance statistics of the full model
2 D.full <- d. glm$deviance
3
4 ### Fit the reduced model
5 d.glm .2 <- glm( counts ~ class2 + age2 , data=data , offset =log( volumes ), family = poisson ())
6 summary (d.glm .2)
7
8 ### Deviance statistics of the reduced model
9 D. reduced <- d.glm .2 $deviance

10
11 ### Calculate the test statistic F
12 test.stat <- 7/2*( D.reduced -D.full )/D.full
13
14 ### Calculation of the corresponding p- value
15 pf(test.stat , 2, 7, lower .tail= FALSE )
16
17 ### Calculate the test statistic X^2
18 X.2 <- D.reduced -D.full
19
20 ### Calculation of the corresponding p- value
21 pchisq (X.2, 2, lower .tail= FALSE )
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Solution 11.2 Claim Frequency Modeling with Neural Networks

(a) The Poisson deviance statistics calculated on the datasets trainset and testset with the R
code of Listing 5 are given in the first column of Table 2.

GLM NN (100 epochs) NN (1’000 epochs)
deviance statistics trainset 1’314.7 709.7 111.6
deviance statistics testset 1’454.3 1’070.2 1’523.5

Table 2: Deviance statistics.

Listing 5: R code for Exercise 11.2 (a).
1 ### Apply GLM (on the training set)
2 d.glm <- glm( ClaimNb ~ VehPower + VehAge +DrivAge , data=trainset , offset =log( Exposure ),
3 family = poisson ())
4 summary (d.glm)
5
6 ### Deviance statistics on training set
7 predtrain <- predict (d.glm , trainset , type =" response ")
8 obstrain <- trainset$ClaimNb
9 ( Deviancetrain <- 2* sum(log (( obstrain / predtrain )^ obstrain )- obstrain + predtrain ))

10 d. glm$deviance ### check deviance statistics on training set
11
12 ### Deviance statistics on test set
13 predtestGLM <- predict (d.glm , testset , type =" response ")
14 obstest <- testset$ClaimNb
15 ( Deviancetest <- 2* sum(log (( obstest / predtestGLM )^ obstest )- obstest + predtestGLM ))

(b) We fit the neural network for 100 gradient descent steps, see the R code given in Listing 6 and
use the resulting model to calculate the Poisson deviance statistics on the datasets trainset
and testset, see the second column of Table 2. We observe that the neural network leads to
smaller values of the deviance statistics on both the datasets trainset and testset. This
is an indication that the neural network model has better predictive power than the GLM
model. We remark that a simple GLM model like the one used in this exercise usually is
not able to cope with interactions between the tariff criteria, in contrast to neural network
models. This might explain the lower deviance statistics observed for the neural network
model on the data testset. However, we do not further investigate this here.

(c) We perform the exact same fitting procedure as in part (b), with the only difference that
we use 1’000 gradient descent steps instead of only 100. The resulting Poisson deviance
statistics on the datasets trainset and testset are given in the third column of Table 2.
On the one hand, we see that the deviance statistics on the dataset trainset used during
training is smaller than for the GLM model of part (a) and the neural network model with
100 gradient descent steps of part (b). However, this “better” fit is deceiving. In fact, the
deviance statistics on the dataset testset is bigger than for the GLM model of part (a) and
the neural network model with 100 gradient descent steps of part (b). We emphasize that the
dataset testset has not been seen during training and, thus, is the correct dataset to analyze
the predictive power of a fitted model. We conclude that with 1’000 gradient descent steps
we are in the situation of overfitting to the training data trainset. Therefore, the number of
gradient descent steps has to be chosen carefully. Usually, one splits the available dataset
into a learning set and a validation set. The learning set is then used to perform the gradient
descent steps and to fit the model. The validation set can be used to track over-fitting to
the learning set. As long as the deviance statistics on the validation set decreases, we are
learning additional model structure. Once the deviance statistics on the validation set starts
to increase again, we reach the phase of over-fitting where we are not learning (true) model
structure anymore but rather peculiarities of the learning set, which is undesirable.
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Listing 6: R code for Exercise 11.2 (b) and (c) (Neural network model).
1 ### Features , volumes , responses and initial estimate
2 Ztrain <- model . matrix (data=trainset , ClaimNb ~ VehPower + VehAge + DrivAge )
3 trainset [ ,6:30] <- as.data. frame ( Ztrain [ , -1])
4 Ztest <- model . matrix (data=testset , ClaimNb ~ VehPower + VehAge + DrivAge )
5 testset [ ,6:30] <- as.data. frame ( Ztest [ , -1])
6 featlearn <- data. matrix ( trainset [ ,6:30])
7 feattest <- data. matrix ( testset [ ,6:30])
8 vollearn <- as. vector (log( trainset$Exposure ))
9 voltest <- as. vector (log( testset$Exposure ))

10 resplearn <- as. vector ( trainset$ClaimNb )
11 resptest <- as. vector ( testset$ClaimNb )
12 lambda0 <- sum( trainset$ClaimNb )/ sum( trainset$Exposure )
13
14 ### Keras model
15 seed1 <- 100
16 use_session_with_seed ( seed1 )
17 Design <- layer_input ( shape =c(25) , dtype =" float32 ", name =" Design ")
18 LogVol <- layer_input ( shape =c(1) , dtype =" float32 ", name =" LogVol ")
19 Network <- Design %>%
20 layer_dense ( units =20 , activation =" tanh ") %>%
21 layer_dense ( units =10 , activation =" tanh ") %>%
22 layer_dense ( units =1, activation =" linear ", name =" Network ",
23 weights =list( array (0, dim=c(10 ,1)) , array (log( lambda0 ),dim=c (1))))
24 Response <- list(Network , LogVol ) %>%
25 layer_add (name =" Add ") %>%
26 layer_dense ( units =1, activation =k_exp , name =" Response ", trainable =FALSE ,
27 weights =list( array (1, dim=c(1 ,1)) , array (0, dim=c (1))))
28 model <- keras_model ( inputs =c(Design , LogVol ), outputs =c( Response ))
29 model %>% compile ( optimizer = optimizer_nadam (), loss =" poisson ")
30
31 ### Prepare features and responses for keras and fit the neural network model
32 xlearn = list( Design =featlearn , LogVol = vollearn )
33 ylearn = list( Response = resplearn )
34 xtest = list( Design =feattest , LogVol = voltest )
35 ytest = list( Response = resptest )
36 epochs <- 100 ### c) 1000
37 model %>% fit(x=xlearn , y=ylearn , epochs =epochs , verbose =1)
38
39 ### Deviance statistics on training set
40 predtrain <- as. vector ( model %>% predict ( xlearn ))
41 obstrain <- trainset$ClaimNb
42 ( Deviancetrain <- 2* sum(log (( obstrain / predtrain )^ obstrain )- obstrain + predtrain ))
43
44 ### Deviance statistics on test set
45 predtestNN <- as. vector ( model %>% predict ( xtest ))
46 obstest <- testset$ClaimNb
47 ( Deviancetest <- 2* sum(log (( obstest / predtestNN )^ obstest )- obstest + predtestNN ))

Solution 11.3 Claim Severity Modeling with GLM

(a) In this exercise we work with three tariff criteria. The first criterion (area code) has 6 risk
characteristics:

β1,1 (A), β1,2 (B), β1,3 (C), β1,4 (D), β1,5 (E) and β1,6 (F).

The second criterion (brand of the vehicle) has 11 risk characteristics:

β2,1 (B1), β2,2 (B10), . . . , β2,6 (B14), β2,7 (B2), . . . , β2,11 (B6).

The third criterion (diesel/fuel) has 2 risk characteristics:

β3,1 (diesel) and β3,2 (regular fuel).

Therefore, we consider risk classes (l1, l2, l3), 1 ≤ l1 ≤ 6, 1 ≤ l2 ≤ 11, 1 ≤ l3 ≤ 2. We write
nl1,l2,l3 for the numbers of claims in risk class (l1, l2, l3) and we only consider risk classes with
nl1,l2,l3 > 0. The nl1,l2,l3 individual claim sizes in risk class (l1, l2, l3) are denoted by Y (i)

l1,l2,l3
,
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i = 1, . . . , nl1,l2,l3 . We assume that all Y (i)
l1,l2,l3

are independent with

Y
(i)
l1,l2,l3

∼ Γ(γ, cl1,l2,l3),

where γ > 0 is a global shape parameter and cl1,l2,l3 > 0 a risk-class dependent scale parameter.
The total claim amount Yl1,l2,l3 in risk class (l1, l2, l3) is then given by

Yl1,l2,l3 =
nl1,l2,l3∑
i=1

Y
(i)
l1,l2,l3

∼ Γ(γnl1,l2,l3 , cl1,l2,l3).

For the average claim amount Xl1,l2,l3 in risk class (l1, l2, l3) we have

Xl1,l2,l3 = Yl1,l2,l3
nl1,l2,l3

∼ Γ(γnl1,l2,l3 , cl1,l2,l3nl1,l2,l3).

We model
g (E [Xl1,l2,l3 ]) = β0 + β1,l1 + β2,l2 + β3,l3 ,

where β0 ∈ R and where we use the log-link function, i.e. g(·) = log(·), which leads to a
multiplicative structure. In order to get a unique solution, we set β1,1 = β2,1 = β3,1 = 0.
Moreover, we define

β = (β0, β1,2, . . . , β1,6, β2,2, . . . , β2,11, β3,2)′ ∈ Rr+1,

where r = 16. Similarly as in Exercises 10.3 and 11.1, we relabel the risk classes with the
index m ∈ {1, . . . ,M}, where M = 6 · 11 · 2 = 132, define X = (X1, . . . , XM )′ and the design
matrix Z ∈ RM×(r+1) that satisfies

logE[X] = Zβ,

where the logarithm is applied componentwise to E[X]. Let m ∈ {1, . . . ,M}. According to
Section 7.4.4 of the lecture notes (version of March 20, 2019), Xm belongs to the exponential
dispersion family with cumulant function b(θ) = − log(−θ) for θ < 0, θm = −cm/γ, wm = nm
and dispersion parameter φ = 1/γ, i.e. we have

[Zβ]m = logE[Xm] = log γnm
cmnm

= log γ

cm
= log

(
− 1
θm

)
,

where [Zβ]m denotes the m-th element of the vector Zβ. Summarizing, we assume that
X1, . . . , XM are independent with

Xm ∼ EDF (θm = − exp{−[Zβ]m}, φ = 1/γ,wm = nm, b(θ) = − log(−θ)) ,

for all m ∈ {1, . . . ,M}. As b(θ) = − log(−θ), we have b′(·) = −1/θ, where b′ denotes the
first derivative of b. In particular, the log-link function g(·) = log(·) is not equal to the
canonical link function h(µ) = (b′)−1(µ) = −1/µ in the gamma model. Therefore, we cannot
use equation (7.26) of the lecture notes (version of March 20, 2019) in order to determine
the MLE β̂

MLE
of β. However, according to Proposition 7.13 of the lecture notes (version of

March 20, 2019), the MLE β̂
MLE

of β is the solution of

Z ′Vθ exp{Zβ} != Z ′VθX, (3)

where the weight matrix Vθ is given by Vθ = diag(−θ1n1, . . . ,−θMnM ). Note that assuming
a constant scale parameter γ for all risk cells m = 1, . . .M , the dispersion parameter φ = 1/γ
cancels from the weight matrix defined on page 195 of the lecture notes (version of March 20,
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2019). Equation (3) has to be solved numerically. We refer to Listing 7 for the R code used in
this exercise. The resulting MLEs of the parameters β0, β2,3, β2,7, β3,2 that are (statistically)
significantly different from 0 (on a 10% level) are given in the first row of Table 3. We observe
that we expect higher claim sizes in regions B11 and B2, compared to the reference region B1.
Moreover, claim sizes tend to be higher if a car with regular fuel is involved compared to a
diesel car. We remark that the parameters corresponding to the individual categorical levels
of the covariate area code are not (statistically) significantly different from 0 (on a 10% level).
However, this does not mean that the covariate area code itself is not statistically significant,
see part (b).

β̂0 β̂2,3 β̂2,7 β̂3,2
MLE 7.6116 0.5288 0.1991 0.1846
p-value ≈ 0 0.0585 0.0898 0.0321

Table 3: MLEs of the statistically significant parameters and corresponding p-values.

(b) The estimates of the expected values of Xm are given by

µ̂m = b′(θ̂m) = −θ̂−1
m = exp

{[
Zβ̂

MLE]
m

}
,

for all m = 1, . . . ,M , and we write µ̂ = (µ̂1, . . . , µ̂M )′. According to page 196 of the lecture
notes (version of March 20, 2019), the deviance statistics is given by

D(X, µ̂) = 2
M∑
m=1

wm(Xmh(Xm)− b[h(Xm)]−Xmh(µ̂m) + b[h(µ̂m)])

= 2
M∑
m=1

nm(−1− logXm +Xm/µ̂m + log µ̂m).

Estimating φ by
φ̂D = D(X, µ̂)

M − r − 1 ,

see page 197 of the lecture notes (version of March 20, 2019), we have for the scaled deviance
statistics

D∗(X, µ̂) = 2(`X(X)− `X(µ̂)) = 2
φ̂D

M∑
m=1

nm(−1− logXm +Xm/µ̂m + log µ̂m).

We perform two tests in order to check if there is statistical evidence that the area code could
be omitted as tariff criterion. We define the null hypothesis

H0 : β1,2 = · · · = β1,6 = 0.

Thus, in the reduced model we set the above p = 5 variables equal to 0. Then, we can
recalculate β̂

MLE
H0

for this reduced model and define

µ̂H0 = exp
{
ZH0 β̂

MLE
H0

}
,

where ZH0 is the design matrix in the reduced model. According to formula (7.30) of the
lecture notes (version of March 20, 2019), the test statistic

F =
D(X, µ̂H0)−D(X, µ̂)

D(X, µ̂)
M − r − 1

p
= 115

5
D(X, µ̂H0)−D(X, µ̂)

D(X, µ̂)
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has approximately an F -distribution with degrees of freedom given by df1 = p = 5 and
df2 = M − r − 1 = 115. We get

F ≈ 2.983,

which corresponds to a p-value of approximately 1.44%. Thus, using the F -test, we can reject
H0 at significance level of 5%. According to formula (7.31) of the lecture notes (version of
March 20, 2019), a second test statistic is given by

X2 = D∗(X, µ̂H0)−D∗(X, µ̂).

The test statistic X2 has approximately a χ2-distribution with df = p = 5 degrees of freedom.
We get

X2 ≈ 14.917,

which corresponds to a p-value of approximately 1.07%. Thus, also using the χ2-test we can
reject H0 at significance level of 5%. We can conclude that there seems to be no statistical
evidence that the area code could be omitted as tariff criterion, even though the individual
categorical levels of the covariate area code are not (statistically) significantly different from
0 (on a 10% level), see part (a).

Listing 7: R code for Exercise 11.3.
1 ### Apply GLM
2 d.glm <- glm( ClaimAmount ~ Area+ VehBrand +VehGas , data=data , weights =ClaimNb ,
3 family = Gamma (link =" log "))
4 summary (d.glm)
5
6 ### Calculate the deviance statistics of the full model
7 D.full <- d. glm$deviance
8
9 ### Fit the reduced model and calculate the deviance statistics

10 d.glm .2 <- glm( ClaimAmount ~ VehGas +VehBrand , data=data , weights =ClaimNb ,
11 family = Gamma (link =" log "))
12 D. reduced <- d.glm .2 $deviance
13
14 ### Calculate the test statistic F and the corresponding p- value
15 round (( test.stat <- d. glm$df . residual /5*(D.reduced -D.full )/D.full ) ,3)
16 pf(test.stat , 5, d. glm$df .residual , lower .tail= FALSE )
17
18 ### Calculate the test statistic X^2 and the corresponding p- value
19 phi.est <- d. glm$deviance /d. glm$df . residual
20 round ((X.2 <- D. reduced /phi.est -D.full/phi.est ) ,3)
21 pchisq (X.2, 5, lower .tail= FALSE )

Solution 11.4 Neural Networks and Gradient Descent

(a) We model the regression function α : Z → R+ with a a single hidden layer neural network
with r1 ∈ N hidden neurons. Our feature space is Z ⊂ Rr0+1 with r0 = 1, i.e. we have input
dimension r0 = 1. We assume that the first component of the covariates z = (1, z) ∈ Z is
equal to 1 for modeling an intercept. We define the parameter vectors

β
(1)
j =

(
β

(1)
j,0 , β

(1)
j,1

)
∈ Rr0+1,

for all j = 1, . . . , r1, and

β(2) =
(
β

(2)
0 , β

(2)
1 , . . . , β(2)

r1

)
∈ Rr1+1.

The hyperbolic tangent activation function is given by

ψ(x) = tanh(x) = e2x − 1
e2x + 1 , for x ∈ R.
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For covariates z = (1, z) ∈ Z, the activations in the hidden layer are then given by

q(1)(z) =
(

1, q(1)
1 (z), . . . , q(1)

r1
(z)
)
,

where
q

(1)
j (z) = ψ

(
〈β(1)

j , z〉
)

= ψ
(
β

(1)
j,0 + β

(1)
j,1 z

)
,

for all j = 1, . . . , r1. Since the codomain of α(·) has to be R+, we define a log-linear regression
approach as follows

α(z) = αβ(z) = exp
{
〈β(2), q(1)(z)〉

}
= exp

β(2)
0 +

r1∑
j=1

β
(2)
j q

(1)
j (z)

 ,

with resulting network parameter

β =
(
β

(1)
1 , . . . ,β(1)

r1
,β(2)

)
∈ R%

having dimension % = (r0 + 1)r1 + r1 + 1 = (1 + 1)r1 + r1 + 1 = 3r1 + 1.

(b) As we assume independent Pareto distributions with threshold θ > 0 and covariate-dependent
tail index α(zm) > 0 for the data Y = (Y1, . . . , YM ) with corresponding covariates z1, . . . ,zM ,
the joint log-likelihood function `Y (β) is given by

`Y (β) = log
M∏
m=1

αβ(zm)
θ

(
Ym
θ

)−αβ(zm)−1

=
M∑
m=1

logαβ(zm)− log θ − [αβ(zm) + 1] log Ym
θ
.

In the saturated model we assume one parameter αm per observation m. This parameter αm
is determined by maximizing the individual MLE for observation m, i.e. we have to maximize

g(αm) def= log(αm)− log θ − (αm + 1) log Ym
θ

with respect to αm, for all m = 1, . . . ,M . If we take the derivative with respect to αm, we get
∂g(αm)
∂αm

= 1
αm
− log Ym

θ
,

for all m = 1, . . . ,M . This is equal to 0 if and only if

αm = 1
log Ym

θ

, (4)

for all m = 1, . . . ,M . For the second derivative of g(αm) with respect to αm we get

∂2g(αm)
∂α2

m

= − 1
α2
m

< 0,

for all m = 1, . . . ,M . That is, in the saturated model we have parameter α = (α1, . . . , αM )
with αm given as in (4), for all m = 1, . . . ,M . For the log-likelihood of the saturated model
we then have

`Y (Y ) =
M∑
m=1

log 1
log Ym

θ

− log θ −
(

1
log Ym

θ

+ 1
)

log Ym
θ

=
M∑
m=1
− log log Ym

θ
− log θ − 1− log Ym

θ
.
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Finally, the (scaled) deviance statistics is given by

LY (β) = 2(`Y (Y )− `Y (β)) = 2
M∑
m=1
− log log Ym

θ
− 1− logαβ(zm) + αβ(zm) log Ym

θ
.

(c) A neural network model with a large number of hidden neurons is heavily over-parametrized.
Therefore, a maximum likelihood estimator would lead to overfitting of the model to the data
(in-sample). Thus, we are only interested in finding a sufficiently good approximation which
has also a good out-of-sample performance. We believe that such a ‘good’ parametrization
can be reached for example by the gradient descent method.

(d) For the derivative of the hyperbolic tangent activation function ψ we have

∂ψ(x)
∂x

= ∂

∂x

e2x − 1
e2x + 1 = 2e2x(e2x + 1)− 2e2x(e2x − 1)

(e2x + 1)2 = 4e2x

(e2x + 1)2

= (e2x + 1)2 − (e2x − 1)2

(e2x + 1)2 = 1− ψ2(x).

In the gradient descent optimization algorithm the goal is to decrease a given loss function by
iteratively updating the model parameters. In our case we would like to decrease the (scaled)
deviance statistics LY (β) derived in part (b) above. To this end, for a given β, we move in
the direction of the maximal local decrease of the deviance statistics, i.e. in the direction of
the negative gradient ∇βLY (β) of the deviance statistics. We calculate

∇βLY (β) = ∂LY (β)
∂β

= 2
M∑
m=1

[
− 1
αθ(zm) + log Ym

θ

]
∂αβ(zm)

∂β
,

where we have

∂αβ(zm)
∂β

(1)
j,0

= αθ(zm)β(2)
j

(
1−

[
q

(1)
j (z)

]2
)
,

∂αβ(zm)
∂β

(1)
j,1

= αθ(zm)β(2)
j

(
1−

[
q

(1)
j (z)

]2
)
zm,

∂αβ(zm)
∂β

(2)
0

= αβ(z),

∂αβ(zm)
∂β

(2)
j

= αβ(z)q(1)
j (z),

for all m = 1, . . . ,M and j = 1, . . . , r1. In one single step of the gradient descent optimization
algorithm we have the update

β −→ β − ρ∇βLY (β),

where ρ > 0 is the so-called learning rate. Note that one should carefully choose an appropriate
stopping time of the algorithm in order to prevent from overfitting; and one should also
carefully choose ρ > 0 because the gradient descent steps lead to a decrease locally.
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Solution 12.1 (Inhomogeneous) Credibility Estimators for Claim Counts

First, we note that
µ0

def= E[µ(Θi)] = E[Θiλ0] = λ0 = 0.088.
Then, we define

Xi,1 = Ni,1
vi,1

,

for all i ∈ {1, . . . , 5}. We have

E[Xi,1|Θi] = 1
vi,1

E[Ni,1|Θi] = 1
vi,1

µ(Θi) vi,1 = µ(Θi)

and
Var(Xi,1|Θi) = 1

v2
i,1

Var(Ni,1|Θi) = 1
v2
i,1
µ(Θi) vi,1 = µ(Θi)

vi,1
= σ2(Θi)

vi,1
,

with
σ2(Θi) = µ(Θi) = Θiλ0,

for all i ∈ {1, . . . , 5}. Moreover, since

E[µ(Θi)2] = Var(µ(Θi)) + E[µ(Θi)]2 = τ2 + λ2
0 <∞

and
E[X2

i,1|Θi] = Var(Xi,1|Θi) + E[Xi,1|Θi]2 = µ(Θi)
vi,1

+ µ(Θi)2,

we get

E[X2
i,1] = E[E[X2

i,1|Θi]] = E
[
µ(Θi)
vi,1

+ µ(Θi)2
]

= λ0

vi,1
+ τ2 + λ2

0 < ∞,

for all i ∈ {1, . . . , 5}. In particular, Model Assumptions 8.12 of the lecture notes (version of March
20, 2019) for the Bühlmann-Straub model are satisfied. The (expected) volatility σ2 within the
regions defined in formula (8.4) of the lecture notes (version of March 20, 2019) is given by

σ2 = E[σ2(Θi)] = E[µ(Θi)] = λ0 = 0.088.

(a) Let i ∈ {1, . . . , 5}. Then, according to Theorem 8.16 of the lecture notes (version of March
20, 2019), the inhomogeneous credibility estimator is given by

̂̂
µ(Θi) = αi,T X̂i,1:T + (1− αi,T )µ0,

with credibility weight αi,T and observation based estimator X̂i,1:T

αi,T = vi,1

vi,1 + σ2

τ2

and X̂i,1:T = 1
vi,1

vi,1Xi,1 = Xi,1.

Hence, we get

̂̂
µ(Θi) = vi,1

vi,1 + σ2

τ2

Xi,1 +
σ2

τ2

vi,1 + σ2

τ2

µ0 = vi,1

vi,1 + 0.088
0.00024

Xi,1 +
0.088

0.00024
vi,1 + 0.088

0.00024
0.088.
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The results for the five regions are summarized in the following table:

region 1 region 2 region 3 region 4 region 5
αi,T 99.3% 96.5% 99.7% 99.0% 92.0%
X̂i,1:T 7.8% 7.8% 7.4% 9.8% 7.5%
̂̂
µ(Θi) 7.8% 7.9% 7.4% 9.8% 7.6%

Table 1: Estimated credibility weights αi,T , observation based estimates X̂i,1:T and inhomogeneous

credibility estimates ̂̂
µ(Θi) in regions i = 1, . . . , 5.

Note that since the credibility coefficient κ = σ2/τ2 ≈ 367 is rather small compared to the
volumes v1,1, . . . , v5,1, the credibility weights α1,T , . . . , α5,T are fairly high. Moreover, the
observation based estimates are almost the same for the regions 1, 2, 3 and 5, only X̂4,1:T is
roughly 2% higher. As a result, only for the smallest two credibility weights α2,T and α5,T
we see a slight upwards deviation of the corresponding inhomogeneous credibility estimates
̂̂
µ(Θ2) and ̂̂

µ(Θ5) from the observation based estimates X̂2,1:T and X̂5,1:T towards µ0 = 8.8%.
If we decreased the volatility τ2 between the risk classes, the credibility coefficient κ = σ2/τ2

would increase and, thus, the credibility weights α1,T , . . . , α5,T would decrease. Consequently,
the credibility estimates would move stronger towards µ0 = 8.8%.

(b) Since the number of policies grows 5% in each region, next year’s numbers of policies
v1,2, . . . , v5,2 are given by

region 1 region 2 region 3 region 4 region 5
vi,2 52’564 10’642 127’376 36’797 4’402

Table 2: Next year’s numbers of policies in regions i = 1, . . . , 5.

Similarly to part (a), we define
Xi,2 = Ni,2

vi,2
,

for all i ∈ {1, . . . , 5}. According to the exercise sheet, next year’s numbers of claims stay
within the Bühlmann-Straub model framework assumed for this year’s numbers of claims.
Thus, according to formula (8.16) of the lecture notes (version of March 20, 2019), the mean
square error of prediction is given by, for all i ∈ {1, . . . , 5},

E

[(
Ni,2
vi,2
−̂̂
µ(Θi)

)2
]

= E

[(
Xi,2 −

̂̂
µ(Θi)

)2
]

= σ2

vi,2
+ (1− αi,T ) τ2. (1)

We get the following root mean square errors of prediction for the five regions:

region 1 region 2 region 3 region 4 region 5√
mean square errors of prediction 0.185% 0.408% 0.119% 0.221% 0.627%
in % of the credibility estimates 2.4% 5.2% 1.6% 2.2% 8.3%

Table 3: Root mean square errors of prediction in regions i = 1, . . . , 5.

Note that we get the highest root mean square errors of prediction for regions 2 and 5,
i.e. exactly for those regions for which we also have the lowest volumes and, consequently, the
lowest credibility weights. Of course, this is due to formula (1).

Updated: December 2, 2019 2 / 8



Non-Life Insurance: Mathematics and Statistics, D-MATH
HS 2019 Solution sheet 12

Solution 12.2 (Homogeneous) Credibility Estimators for Claim Sizes

We define
Xi,t = Yi,t

vi,t
,

for all i ∈ {1, 2, 3, 4} and t ∈ {1, 2}. Then, we have

E[Xi,t|Θi] = 1
vi,t

E[Yi,t|Θi] = 1
vi,t

µ(Θi)cvi,t
c

= µ(Θi)

and
Var(Xi,t|Θi) = 1

v2
i,t

Var(Yi,t|Θi) = 1
v2
i,t

µ(Θi)cvi,t
c2

= µ(Θi)
cvi,t

= σ2(Θi)
vi,t

,

with
σ2(Θi) = µ(Θi)

c
= Θi

c
,

for all i ∈ {1, 2, 3, 4} and t ∈ {1, 2}. Moreover, using that

E[X2
i,t|Θi] = Var(Xi,t|Θi) + E[Xi,t|Θi]2 = µ(Θi)

cvi,t
+ µ(Θi)2 = Θi

cvi,t
+ Θ2

i ,

we get

E[X2
i,t] = E[E[X2

i,t|Θi]] = E
[

Θi

cvi,t
+ Θ2

i

]
< ∞

by assumption, for all i ∈ {1, 2, 3, 4} and t ∈ {1, 2}. In particular, Model Assumptions 8.12 of the
lecture notes (version of March 20, 2019) for the Bühlmann-Straub model are satisfied.

(a) First, following Theorem 8.16 of the lecture notes (version of March 20, 2019), we define the
observation based estimator X̂i,1:T as

X̂i,1:T = 1∑T
t=1 vi,t

T∑
t=1

vi,tXi,t = vi,1Xi,1 + vi,2Xi,2

vi,1 + vi,2
= Yi,1 + Yi,2

vi,1 + vi,2
,

for all i ∈ {1, 2, 3, 4}. Then, we need to estimate the structural parameters σ2 = E[σ2(Θ1)]
and τ2 = Var(µ(Θ1)). According to formula (8.14) of the lecture notes (version of March 20,
2019), σ2 can be estimated by

σ̂2
T = 1

I

I∑
i=1

1
T − 1

T∑
t=1

vi,t (Xi,t − X̂i,1:T )2 ≈ 1.3 · 1010.

In order to estimate τ2, we define first the weighted sample mean X̄ over all observations by

X̄ = ∑I
i=1
∑T
t=1 vi,t

I∑
i=1

T∑
t=1

vi,tXi,t =
∑I
i=1 Yi,1 + Yi,2∑I
i=1 vi,1 + vi,2

≈ 7’004.

Then, following the lecture notes, we define v̂2
T , cw and t̂2T as

v̂2
T = I

I − 1

I∑
i=1

vi,1 + vi,2∑I
j=1 vj,1 + vj,2

(
X̂i,1:T − X̄

)2
≈ 9.3 · 107,

cw = I − 1
I

[
I∑
i=1

vi,1 + vi,2∑I
j=1 vj,1 + vj,2

(
1− vi,1 + vi,2∑I

j=1 vj,1 + vj,2

)]−1

≈ 1.425
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and

t̂2T = cw

(
v̂2
T −

I σ̂2
T∑I

i=1 vi,1 + vi,2

)
≈ 1.25 · 108.

Then, using formula (8.15) of the lecture notes (version of March 20, 2019), τ2 is estimated by

τ̂2
T = max

{
t̂2T , 0

}
= t̂2T ≈ 1.25 · 108.

Now let i ∈ {1, 2, 3, 4}. According to Theorem 8.16 of the lecture notes (version of March 20,
2019), the homogeneous credibility estimator is given by

̂̂
µ(Θi)

hom

= αi,T X̂i,1:T + (1− αi,T ) µ̂T ,

with credibility weight αi,T and estimate µ̂T

αi,T = vi,1 + vi,2
vi,1 + vi,2 + σ̂2

T /τ̂
2
T

and µ̂T = 1∑I
i=1 αi,T

I∑
i=1

αi,T X̂i,1:T ≈ 14’538.

The results for the four risk classes are summarized in the following table:

risk class 1 risk class 2 risk class 3 risk class 4
αi,T 95.4% 98.4% 82.5% 89.6%
X̂i,1:T 10’493 1’907 18’375 29’197

̂̂
µ(Θi)

hom

10’677 2’107 17’702 27’665

Table 4: Estimated credibility weights αi,T , observation based estimates X̂i,1:T and homogeneous

credibility estimates ̂̂
µ(Θi)

hom

in risk classes i = 1, 2, 3, 4.

Looking at the credibility weights α1,T , α2,T , α3,T and α4,T , we see that the estimated
credibility coefficient κ̂ = σ̂2

T /τ̂
2
T ≈ 104 has the biggest impact on risk classes 3 and 4, where

we have less volumes compared to risk classes 1 and 2. As a result, the smoothing of the
observation based estimates X̂1,1:T , X̂2,1:T , X̂3,1:T and X̂4,1:T towards µ̂T ≈ 14’538 is strongest
for risk classes 3 and 4.

(b) Since the number of claims grows 5% in each risk class, next year’s numbers of claims
v1,3, . . . , v4,3 are given by

risk class 1 risk class 2 risk class 3 risk class 4
vi,3 1’167 3’468 262 479

Table 5: Next year’s numbers of claims in risk classes i = 1, 2, 3, 4.

Similarly to part (a), we define
Xi,3 = Yi,3

vi,3
,

for all i ∈ {1, 2, 3, 4}. According to the exercise sheet, next year’s total claim sizes stay within
the Bühlmann-Straub model framework assumed for the previous year’s total claim sizes.
Thus, according to formula (8.17) of the lecture notes (version of March 20, 2019), the mean
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square error of prediction can be estimated by, for all i ∈ {1, 2, 3, 4},

Ê

(Yi,3
vi,3
−̂̂
µ(Θi)

hom
)2
 = Ê

(Xi,3 −
̂̂
µ(Θi)

hom
)2


= σ̂2
T

vi,3
+ (1− αi,T )τ̂2

T

(
1 + 1− αi,T∑I

i=1 αi,T

)
.

(2)

We get the following estimated root mean square errors of prediction for the four risk classes:

risk class 1 risk class 2 risk class 3 risk class 4√
mean square errors of prediction 4’108 2’392 8’508 6’360
in % of the credibility estimates 38.5% 113.5% 48.1% 23.0%

Table 6: Estimated root mean square errors of prediction in risk classes i = 1, 2, 3, 4.

According to formula (2), the smaller the volumes in a particular risk class, the bigger the
corresponding estimated root mean square error of prediction. Moreover, note that these
estimated root mean square errors of prediction are rather high compared to the credibility
estimates, which indicates a high variability within the individual risk classes.

Solution 12.3 Degenerate MLE and the Poisson-Gamma Model

(a) We observe that Nt = 0 for all t = 1, . . . , T . In this case, the log-likelihood function `N (λ) of
the data N = (N1, . . . , NT ) for the unknown parameter λ > 0 is given by

`N (λ) =
T∑
t=1

log
(

exp{−λvt}
(λvt)Nt

Nt!

)
=

T∑
t=1

log (exp{−λvt}) = −λ
T∑
t=1

vt.

As the volumes v1, . . . , vT are positive, we see that `N (λ) increases as λ decreases, i.e. here
we are in the situation of a degenerate Poisson model with MLE λ̂T = 0. If we used this
degenerate model for premium calculations, we would get a pure risk premium of 0, as we do
not expect any claims. Of course, a model with zero pure risk premium does not make any
sense, i.e. we need to circumvent this degenerate case. This can be done for example with the
Poisson-gamma model considered in part (b).

(b) (i) The prior estimator λ0 of the unknown parameter Λ is given by

λ0 = E[Λ] = γ

c
= 1

50 .

According to Theorem 8.2 of the lecture notes (version of March 20, 2019), we have

Λ|N ∼ Γ
(
γ +

T∑
t=1

Nt, c+
T∑
t=1

vt

)
,

where we write N = (N1, . . . , NT ). Therefore, the posterior estimator λ̂post
T of the

unknown parameter Λ is given by

λ̂post
T = E[Λ|N ] =

γ +
∑T
t=1Nt

c+
∑T
t=1 vt

= 1 + 0
50 + 50 = 1

100 .
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(ii) According to Corollary 8.4 of the lecture notes (version of March 20, 2019), we can write

λ̂post
T = αT λ̂T + (1− αT )λ0

by setting

αT =
∑T
t=1 vt

c+
∑T
t=1 vt

∈ (0, 1).

In our case we get
αT = 50

50 + 50 = 1
2 .

Indeed, we check

αT λ̂T + (1− αT )λ0 = 1
2 · 0 +

(
1− 1

2

)
· 1

50 = 1
100 = λ̂post

T .

(iii) Similarly as in item (i), for the posterior estimator λ̂post
T+1, conditionally given data

(N1, v1), . . . , (NT+1, vT+1), we get

λ̂post
T+1 =

γ +
∑T+1
t=1 Nt

c+
∑T+1
t=1 vt

= 1 + 1
50 + 60 = 2

110 .

According to Corollary 8.6 of the lecture notes (version of March 20, 2019), we can write

λ̂post
T+1 = βT+1

NT+1

vT+1
+ (1− βT+1) λ̂post

T

by setting
βT+1 = vT+1

c+
∑T+1
t=1 vt

∈ (0, 1).

In our case we get
βT+1 = 10

50 + 60 = 1
11 .

Indeed, we check

βT+1
NT+1

vT+1
+(1−βT+1) λ̂post

T = 1
11

1
10 +

(
1− 1

11

)
1

100 = 1
110 + 1

110 = 2
110 = λ̂post

T+1.

(c) Note that, by definition, a Poisson random variable requires a positive frequency parameter.
In case of a frequency parameter which is equal to 0, we are in the degenerate Poisson model,
see also part (a). However, if Λ ∼ N (µ, σ2), then the probability that Λ is negative is given
by

P[Λ < 0] = P
[

Λ− µ
σ

< −µ
σ

]
= Φ

(
−µ
σ

)
> 0,

where Φ denotes the distribution function of a standard Gaussian distribution. As there
is a positive probability that the frequency parameter Λ is negative, we conclude that a
Poisson-normal model is not well-defined and, thus, not reasonable.
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Solution 12.4 Pareto-Gamma Model

(a) Let fY |Λ denote the density of Y |Λ and fΛ the density of Λ. Then, we have

fY |Λ(y1, . . . , yT |Λ = α) =
T∏
t=1

α

θ

(yt
θ

)−(α+1)
· 1{yt≥θ}

= αT θ−T

(
T∏
t=1

yt
θ

)−α( T∏
t=1

yt
θ

)−1

· 1{yt≥θ}

and
fΛ(α) = cγ

Γ(γ)α
γ−1 exp{−cα} · 1{α>0}.

Let fΛ|Y denote the density of Λ|Y . Then, for all α > 0 and y1, . . . , yT ≥ θ, we have

fΛ|Y (α|Y1 = y1, . . . , YT = yT ) =
fY |Λ(y1, . . . , yT |Λ = α) fΛ(α)∫∞

0 fY |Λ(y1, . . . , yT |Λ = x) fΛ(x) dx

∝ αT

(
T∏
t=1

yt
θ

)−α
αγ−1 exp{−cα}

= αγ+T−1 exp
{
−α

T∑
t=1

log yt
θ

}
exp{−cα}

= αγ+T−1 exp
{
−α

(
T∑
t=1

log yt
θ

+ c

)}
.

We conclude that

Λ|Y ∼ Γ
(
γ + T, c+

T∑
t=1

log Yt
θ

)
.

(b) First, we observe that

λ0 = E[Λ] = γ

c
and λ̂post

T = E[Λ|Y ] = γ + T

c+
∑T
t=1 log Yt

θ

.

Then, we can write

λ̂post
T = γ + T

c+
∑T
t=1 log Yt

θ

=
∑T
t=1 log Yt

θ

c+
∑T
t=1 log Yt

θ

T∑T
t=1 log Yt

θ

+ c

c+
∑T
t=1 log Yt

θ

γ

c

= αT λ̂T + (1− αT )λ0,

with

αT =
∑T
t=1 log Yt

θ

c+
∑T
t=1 log Yt

θ

.

(c) For the (conditional mean square error) uncertainty of the posterior estimator λ̂post
T = E[Λ|Y ]

we have

E
[(

Λ− λ̂post
T

)2
∣∣∣∣Y ] = E

[
(Λ− E[Λ|Y ])2

∣∣∣∣Y ] = Var (Λ|Y ) = γ + T(
c+

∑T
t=1 log Yt

θ

)2

= 1
c+

∑T
t=1 log Yt

θ

λ̂post
T = (1− αT ) 1

c
λ̂post
T .
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(d) Analogously to λ̂post
T , the posterior estimator λ̂post

T−1 in the sub-model where we only have
observed (Y1, . . . , YT−1) is given by

λ̂post
T−1 = γ + T − 1

c+
∑T−1
t=1 log Yt

θ

.

Thus, we can write

λ̂post
T = γ + T

c+
∑T
t=1 log Yt

θ

=
log YT

θ

c+
∑T
t=1 log Yt

θ

1
log YT

θ

+
c+

∑T−1
t=1 log Yt

θ

c+
∑T
t=1 log Yt

θ

γ + T − 1
c+

∑T−1
t=1 log Yt

θ

= βT
1

log YT

θ

+ (1− βT ) λ̂post
T−1,

with

βT =
log YT

θ

c+
∑T
t=1 log Yt

θ

.

Remark: Suppose we want to use the observations Y1, . . . , YT−1 in order to estimate YT in a
Bayesian sense. Then, we have

E[YT |Y1, . . . , YT−1] = E [E [YT |Y1, . . . , YT−1,Λ] |Y1, . . . , YT−1] a.s.
= E [E [YT |Λ] |Y1, . . . , YT−1] a.s.,

where in the second equality we used that, conditionally given Λ, Y1, . . . , YT are independent.
Now, by assumption,

YT |Λ ∼ Pareto(θ,Λ).

In particular, E[YT |Λ] <∞ if and only if Λ > 1. However, according to part (a) (for T − 1
instead of T observations), we have

Λ|(Y1, . . . , YT−1) ∼ Γ
(
γ + T − 1, c+

T−1∑
t=1

log Yt
θ

)
.

Since the range of a gamma distribution is the whole positive real line, this implies that

0 < P [Λ ≤ 1|Y1, . . . , YT−1] = P [E [YT |Λ] =∞|Y1, . . . , YT−1] a.s.

We conclude that
E[YT |Y1, . . . , YT−1] = ∞ a.s.
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Solution 13.1 Chain-Ladder Algorithm

(a) According to formula (9.5) of the lecture notes (version of March 20, 2019), the CL factor fj

can be estimated by

f̂CL
j =

∑I−j−1
i=1 Ci,j+1∑I−j−1

i=1 Ci,j

=
I−j−1∑

i=1

Ci,j∑I−j−1
n=1 Cn,j

Ci,j+1

Ci,j
,

for all j = 0, . . . , J − 1. Then, for all i = 2, . . . , I and j = 1, . . . , J with i+ j > I, Ci,j can be
predicted by

ĈCL
i,j = Ci,I−i

j−1∏
k=I−i

f̂CL
k ,

see formula (9.6) of the lecture notes (version of March 20, 2019). In particular, for the
prediction ĈCL

i,J of the ultimate claim Ci,J we have, for all i = 2, . . . , I,

ĈCL
i,J = Ci,I−i

J−1∏
j=I−i

f̂CL
j . (1)

The estimates f̂CL
0 , . . . , f̂CL

J−1 and the prediction of the lower triangle Dc
I are given in Table 1.

We see that f̂CL
0 ≈ 1.5, while f̂CL

j is close to 1 for all j = 1, . . . , J − 1, i.e. we observe a rather
fast claims settlement in this example.

accident development year j
year i 0 1 2 3 4 5 6 7 8 9

1
2 10’663’318
3 10’646’884 10’662’008
4 9’734’574 9’744’764 9’758’606
5 9’837’277 9’847’906 9’858’214 9’872’218
6 10’005’044 10’056’528 10’067’393 10’077’931 10’092’247
7 9’419’776 9’485’469 9’534’279 9’544’580 9’554’571 9’568’143
8 8’445’057 8’570’389 8’630’159 8’674’568 8’683’940 8’693’030 8’705’378
9 8’243’496 8’432’051 8’557’190 8’616’868 8’661’208 8’670’566 8’679’642 8’691’971
10 8’470’989 9’129’696 9’338’521 9’477’113 9’543’206 9’592’313 9’602’676 9’612’728 9’626’383
f̂CL

j 1.493 1.078 1.023 1.015 1.007 1.005 1.001 1.001 1.001

Table 1: Estimates f̂CL
0 , . . . , f̂CL

J−1 and prediction of the lower triangle Dc
I .

(b) The CL reserves R̂CL
i at time t = I are given by

R̂CL
i = ĈCL

i,J − Ci,I−i = Ci,I−i

 J−1∏
j=I−i

f̂CL
j − 1

 ,

for all accident years i = 2, . . . , I. Moreover, since C1,J = C1,I−1 is known, we have R̂CL
1 = 0.

Updated: December 6, 2019 1 / 7



Non-Life Insurance: Mathematics and Statistics, D-MATH
HS 2019 Solution sheet 13

Summarizing, we get the following CL reserves R̂CL
i :

accident year i 1 2 3 4 5 6 7 8 9 10
CL reserves R̂CL

i 0 15’126 26’257 34’538 85’302 156’494 286’121 449’167 1’043’242 3’950’815

Table 2: CL reserves R̂CL
i for all accident years i = 1, . . . , I.

By aggregating the CL reserves over all accident years, we get the CL predictor R̂CL for the
outstanding loss liabilities of past exposure claims:

R̂CL =
I∑

i=1
R̂CL

i = 6’047’061.

Solution 13.2 Bornhuetter-Ferguson Algorithm

(a) Let C0 > 0 be some initial value for development period j = 0. Then, for all j = 0, . . . , J − 1
we define β̂CL

j to be the proportion paid after the first j development periods according to
the estimated CL pattern from Exercise 13.1. In particular, we calculate

β̂CL
0 = C0

C0
∏J−1

l=0 f̂CL
l

= 1∏J−1
l=0 f̂CL

l

=
J−1∏
l=0

1
f̂CL

l

and

β̂CL
j =

C0
∏j−1

l=0 f̂
CL
l

C0
∏J−1

l=0 f̂CL
l

=
∏j−1

l=0 f̂
CL
l∏J−1

l=0 f̂CL
l

=
J−1∏
l=j

1
f̂CL

l

,

for all j = 1, . . . , J − 1. We get the following proportions:

development period j 0 1 2 3 4 5 6 7 8
proportion β̂CL

j paid so far 0.590 0.880 0.948 0.970 0.984 0.991 0.996 0.998 0.999

Table 3: Proportions β̂CL
j paid after the first j development periods according to the estimated CL

pattern from Exercise 13.1.

According to formula (9.8) of the lecture notes (version of March 20, 2019), in the Bornhuetter-
Ferguson method the ultimate claim Ci,J is predicted by

ĈBF
i,J = Ci,I−i + µ̂i

(
1− β̂CL

I−i

)
,

for all accident years i = 2, . . . , I. Thus, the Bornhuetter-Ferguson reserves R̂BF
i are given by

R̂BF
i = ĈBF

i,J − Ci,I−i = µ̂i

(
1− β̂CL

I−i

)
,

for all accident years i = 2, . . . , I. Moreover, since C1,J = C1,I−1 is known, we have R̂BF
1 = 0.
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Summarizing, we get the following BF reserves R̂BF
i :

accident year i 1 2 3 4 5 6 7 8 9 10
BF reserves R̂BF

i 0 16’124 26’998 37’575 95’434 178’024 341’305 574’089 1’318’646 4’768’384

Table 4: BF reserves R̂BF
i for all accident years i = 1, . . . , I.

By aggregating the BF reserves over all accident years, we get the BF predictor R̂BF for the
outstanding loss liabilities of past exposure claims:

R̂BF =
I∑

i=1
R̂BF

i = 7’356’580.

(b) Note that for accident year i = 1 we have

R̂CL
1 = 0 = R̂BF

1 .

Now let i = 2, . . . , I. Then, we observe that

R̂CL
i < R̂BF

i .

This can be explained as follows: Equation (1) can be rewritten as

ĈCL
i,J = Ci,I−i

J−1∏
j=I−i

f̂CL
j = Ci,I−i + Ci,I−i

 J−1∏
j=I−i

f̂CL
j − 1


= Ci,I−i + Ci,I−i

J−1∏
j=I−i

f̂CL
j

1−
J−1∏

j=I−i

1
f̂CL

j

 = Ci,I−i + ĈCL
i,J

(
1− β̂CL

I−i

)
.

Comparing this to
ĈBF

i,J = Ci,I−i + µ̂i

(
1− β̂CL

I−i

)
and noting that for the prior information µ̂i we have µ̂i > ĈCL

i,J , we immediately see that

ĈCL
i,J < ĈBF

i,J ,

which of course implies that

R̂CL
i = ĈCL

i,J − Ci,I−i < ĈBF
i,J − Ci,I−i = R̂BF

i .

We conclude that choosing a prior information µ̂i which is bigger than the estimated CL
ultimate ĈCL

i,J leads to more conservative, i.e. higher reserves in the Bornhuetter-Ferguson
method compared to the chain-ladder method.
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Solution 13.3 Over-Dispersed Poisson Model

(a) According to Theorem 9.11 of the lecture notes (version of March 20, 2019), the MLEs
µ̂MLE

1 , . . . , µ̂MLE
I and γ̂MLE

0 , . . . , γ̂MLE
J of µ1, . . . , µI and γ0, . . . , γJ are given by

µ̂MLE
i = ĈCL

i,J and γ̂MLE
j =

(
1− 1

f̂CL
j−1

)
J−1∏
k=j

1
f̂CL

k

,

for all i = 1, . . . , I and j = 1, . . . , J−1, where ĈCL
i,J is the prediction of the ultimate claim Ci,J

and f̂j the estimated CL factor fj from the chain-ladder model of Exercise 13.1. Moreover,
we have

γ̂MLE
0 =

J−1∏
k=0

1
f̂CL

k

and γ̂MLE
J =

(
1− 1

f̂CL
J−1

)
.

The values of the MLEs µ̂MLE
1 , . . . , µ̂MLE

I are given in Table 5, the values of the MLEs
γ̂MLE

0 , . . . , γ̂MLE
J in Table 6.

accident year i 1 2 3 4 5
MLE µ̂MLE

i 11’148’124 10’663’318 10’662’008 9’758’606 9’872’218
accident year i 6 7 8 9 10
MLE µ̂MLE

i 10’092’247 9’568’143 8’705’378 8’691’971 9’626’383

Table 5: Values of the MLEs µ̂MLE
1 , . . . , µ̂MLE

I .

development year j 0 1 2 3 4 5 6 7 8 9
MLE γ̂MLE

j 0.590 0.290 0.068 0.022 0.014 0.007 0.005 0.001 0.001 0.001

Table 6: Values of the MLEs γ̂MLE
0 , . . . , γ̂MLE

J .

(b) According to Theorem 9.11 of the lecture notes (version of March 20, 2019), the ODP reserves
R̂ODP

i are given by

R̂ODP
i = µ̂MLE

i

J∑
j=I−i+1

γ̂MLE
j ,

for all accident years i = 2, . . . , I. Moreover, since C1,J = C1,I−1 is known, we have R̂ODP
1 = 0.

Summarizing, we get the following ODP reserves R̂ODP
i :

accident year i 1 2 3 4 5 6 7 8 9 10
ODP reserves R̂ODP

i 0 15’126 26’257 34’538 85’302 156’494 286’121 449’167 1’043’242 3’950’815

Table 7: ODP reserves R̂ODP
i for all accident years i = 1, . . . , I.

We observe that R̂ODP
i = R̂CL

i for all accident years i = 1, . . . , I, where R̂CL
i are the CL

reserves from Exercise 13.1. As a matter of fact, this observation holds true in general, see
Theorem 9.11 of the lecture notes (version of March 20, 2019). By aggregating the ODP
reserves over all accident years, we get the ODP predictor R̂ODP for the outstanding loss
liabilities of past exposure claims (which is equal to the CL predictor R̂CL):

R̂ODP =
I∑

i=1
R̂ODP

i = 6’047’061 =
I∑

i=1
R̂CL

i = R̂CL.

Updated: December 6, 2019 4 / 7



Non-Life Insurance: Mathematics and Statistics, D-MATH
HS 2019 Solution sheet 13

(c) As the ODP model belongs to the family of GLM models, we can calculate the ODP reserves
also using the GLM machinery. In particular, we work with the two risk characteristics
accident year i, with parameters β1,1, . . . , β1,I , and development year j, with parameters
β2,0, . . . , β2,J , where β1,i corresponds to accident year i and β2,j to development year j.
Compared to the parametrization on the exercise sheet, in order to apply GLM techniques,
we use the following re-parametrization. We assume that all Xi,j are independent with

Xi,j

φ
∼ Poi(λi,j/φ),

for all risk classes (i, j), 1 ≤ i ≤ I, 0 ≤ j ≤ J , where λi,j denotes the mean parameter. Note
that we work with volumes which are constantly equal to 1. Moreover, in a Poisson GLM
model we would set φ = 1. Here we assume a general dispersion parameter φ > 0. We have

E[Xi,j ] = φE
[
Xi,j

φ

]
= φ

λi,j

φ
= λi,j ,

and we model
g(λi,j) = g(E[Xi,j ]) = β0 + β1,i + β2,j ,

where β0 ∈ R and where we use the log-link function, i.e. g(·) = log(·). In order to get a
unique solution, we set β1,1 = β2,0 = 0. We refer to Listing 1 for the application of this
over-dispersed Poisson GLM model in R.

Listing 1: R code for Exercise 13.3 (c).
1 ### Load the required packages
2 library ( readxl )
3 library (plyr)
4
5 ### Download the data from the link indicated on the exercise sheet
6 ### Store the data under the name " Exercise13Data .xls" in the same folder as this R code
7 ### Load the data
8 data <- read_excel (" Exercise13Data .xls", sheet =" Data_1 ", range =" B22:K31", col_names = FALSE )
9

10 ### ODP as GLM Model
11 data2 <- as.data. frame (data)
12 data2 [ ,2:10] <- data2 [ ,2:10] - data2 [ ,1:9]
13 data2 <- stack (data2 , select =c(" X__1 "," X__2 "," X__3 "," X__4 "," X__5 "," X__6 "," X__7 "," X__8 "," X__9",
14 " X__10 "))
15 data2 [ ,2] <- rep (1:10)
16 data2 [ ,3] <- rep (0:9 , each =10)
17 colnames ( data2 )[2:3] <- c(" AY","DY ")
18 data2$AY <- as. factor ( data2$AY )
19 data2$DY <- as. factor ( data2$DY )
20 lower .ind <- is.na( data2 [ ,1])
21 upper <- data2 [is.na( data2 [ ,1])== FALSE ,]
22 lower <- data2 [is.na( data2 [ ,1]) ,]
23 ODP <- glm( values ~ AY+DY , data=upper , family = quasipoisson ())
24 lower [ ,1] <- predict (ODP , newdata =lower , " response ")
25 ODP.GLM. reserves <- rep (0 ,10)
26 ODP.GLM. reserves [1] <- 0
27 ODP.GLM. reserves [2:10] <- ddply (lower , .( AY), summarise , reserves =sum( values ))[ ,2]
28 round (ODP.GLM. reserves )
29
30 ### MLEs for the accident years
31 exp(c(0, ODP$coefficients [2:10])+ ODP$coefficients [1])* sum(exp(c(0, ODP$coefficients [11:19])))
32
33 ### MLEs for the development years
34 round (exp(c(0, ODP$coefficients [11:19]))/ sum(exp(c(0, ODP$coefficients [11:19]))) ,3)

Running the R code of Listing 1, we can confirm that the ODP GLM model leads to
the same reserves as the CL method. In order to check the MLE parameters of Tables 5
and 6, we have to go back to the parametrization used on the exercise sheet. We write
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β̂MLE
0 , β̂MLE

1,1 , . . . , β̂MLE
1,I , β̂MLE

2,0 , . . . , β̂MLE
2,J for the resulting MLEs of the ODP GLM model. By

setting

µ̃i = exp
{
β̂MLE

0 + β̂MLE
1,i

} J∑
k=0

exp
{
β̂MLE

2,k

}
,

for all i = 1, . . . , I, and

γ̃j =
exp

{
β̂MLE

2,j

}
∑J

k=0 exp
{
β̂MLE

2,k

} ,
for all j = 0, . . . , J , we get

λ̂MLE
i,j = exp

{
β̂MLE

0 + β̂MLE
1,i + β̂MLE

2,j

}
= exp

{
β̂MLE

0 + β̂MLE
1,i

} J∑
k=0

exp
{
β̂MLE

2,k

} exp
{
β̂MLE

2,j

}
∑J

k=0 exp
{
β̂MLE

2,k

}
= µ̃iγ̃i.

In particular, we get back to the parametrization used on the exercise sheet. The values of
µ̃i, i = 1, . . . , I and γ̃j , j = 0, . . . , J , are calculated on lines 26 and 29 of Listing 1. We can
confirm that we get the same values as in Tables 5 and 6.

Solution 13.4 Mack’s Formula and Merz-Wüthrich (MW) Formula

(a) The R code used in this exercise is provided in Listing 2. We get the following results:

accident CL reserves
√
total msep in % of the

√
CDR msep in % of the

year i R̂CL
i (Mack) reserves (MW)

√
total msep

1 0 − − − −
2 15’126 267 1.8 % 267 100 %
3 26’257 914 3.5 % 884 97 %
4 34’538 3’058 8.9 % 2’948 96 %
5 85’302 7’628 8.9 % 7’018 92 %
6 156’494 33’341 21.3 % 32’470 97 %
7 286’121 73’467 25.7 % 66’178 90 %
8 449’167 85’398 19.0 % 50’296 59 %
9 1’043’242 134’337 12.9 % 104’311 78 %
10 3’950’815 410’817 10.4 % 385’773 94 %

total 6’047’061 462’960 7.7 % 420’220 91 %

Table 8: CL reserves R̂CL
i , Mack’s square-rooted conditional mean square errors of prediction and

MW’s square-rooted conditional mean square errors of prediction for all accident years i = 1, . . . , I.

(b) Mack’s square-rooted conditional mean square errors of prediction give us confidence bounds
around the CL reserves. We see that for the total claims reserves the one standard deviation
confidence bounds are 7.7%. The biggest uncertainties can be found for accident years 6, 7
and 8, where the one standard deviation confidence bounds are roughly 20% or even higher.

(c) MW’s square-rooted conditional mean square errors of prediction measure the contribution of
the next accounting year to the total (run-off) uncertainty given by Mack’s square-rooted
conditional mean square errors of prediction. For aggregated accident years, we see that 91%
of the total uncertainty is due to the next accounting year. This high value can be explained
by the fast claims settlement already discovered in Exercise 13.1, (a).
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Listing 2: R code for Exercise 13.4 (a).
1 ### Load the required packages
2 library ( readxl )
3 library ( ChainLadder )
4
5 ### Download the data from the link indicated on the exercise sheet
6 ### Store the data under the name " Exercise13Data .xls" in the same folder as this R code
7 ### Load the data
8 data <- read_excel (" Exercise13Data .xls", sheet =" Data_1 ", range =" B22:K31", col_names = FALSE )
9

10 ### Bring the data in the appropriate triangular form and label the axes
11 tri <- as. triangle (as. matrix (data ))
12 dimnames (tri )= list( origin =1: nrow(tri),dev =1: ncol(tri ))
13
14 ### Calculate the CL reserves and the corresponding mseps
15 M <- MackChainLadder (tri , est. sigma =" Mack ")
16
17 ### CL reserves and Mack ’s square - rooted mseps ( including illustrations )
18 M
19 plot(M)
20 plot(M, lattice =TRUE)
21
22 ### CL reserves , MW ’s square - rooted mseps and Mack ’s square - rooted mseps
23 CDR(M)
24
25 ### Mack ’s square - rooted mseps in % of the reserves
26 round (CDR(M)[ ,3]/ CDR(M)[ ,1] ,3)*100
27
28 ### MW ’s square - rooted mseps in % of Mack ’s square - rooted mseps
29 round (CDR(M)[ ,2]/ CDR(M)[ ,3] ,2)*100
30
31 ### Full uncertainty picture
32 CDR(M, dev =" all ")

Updated: December 6, 2019 7 / 7


