Chain-ladder method: dynamic run-off uncertainty analysis

Mario V. Wüthrich
RiskLab, ETH Zurich
Swiss Finance Institute Professor

joint work with
Michael Merz (University of Hamburg)

June 2, 2016
ASTIN Colloquium, Lisbon
Outline

• Chain-ladder method

• Claims development result

• Examples
Chain-ladder algorithm

<table>
<thead>
<tr>
<th>accident year i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>1'216</td>
<td>1'347</td>
<td>1'786</td>
<td>2'281</td>
<td>2'656</td>
<td>2'909</td>
<td>3'283</td>
<td>3'587</td>
<td>3'754</td>
<td>3'921</td>
</tr>
<tr>
<td>2005</td>
<td>798</td>
<td>1'051</td>
<td>1'215</td>
<td>1'349</td>
<td>1'655</td>
<td>1'926</td>
<td>2'132</td>
<td>2'287</td>
<td>2'567</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>1'115</td>
<td>1'387</td>
<td>1'930</td>
<td>2'177</td>
<td>2'513</td>
<td>2'931</td>
<td>3'047</td>
<td>3'182</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>1'052</td>
<td>1'321</td>
<td>1'700</td>
<td>1'971</td>
<td>2'298</td>
<td>2'645</td>
<td>3'003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>808</td>
<td>1'029</td>
<td>1'229</td>
<td>1'590</td>
<td>1'842</td>
<td>2'150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>1'016</td>
<td>1'251</td>
<td>1'698</td>
<td>2'105</td>
<td>2'385</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>948</td>
<td>1'108</td>
<td>1'315</td>
<td>1'487</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>917</td>
<td>1'082</td>
<td>1'484</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>1'001</td>
<td>1'376</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>841</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $C_{i,j}$ = cumulative claim of accident year i and development year j.

- $\mathcal{D}_t = \{C_{i,j}; \ i + j \leq t\}$ = observations at time t.

- Chain-ladder (CL) algorithm is based on the (regression) assumption

 $$C_{i,j+1} \approx f_j C_{i,j},$$

 for CL factors f_j not depending on accident year i.

Ci,j to be predicted
Stochastic models underlying the CL algorithm

- CL algorithm is not based on a stochastic model (deterministic algorithm).

- We need a stochastic representation to quantify prediction uncertainty.

- Stochastic models introduced providing the CL reserves:
 - Mack’s distribution-free CL model (1993)
 - Poisson and over-dispersed Poisson (ODP) model of Renshaw-Verrall (1998)
 - Bayesian CL models by Gisler (2006), Bühlmann et al. (2009)
 - Gamma-gamma Bayesian CL model by Merz-Wüthrich (2008, 2014)
Bayesian chain-ladder (BCL) model

Model assumptions (gamma-gamma BCL model).
Assume there are fixed given variance parameters $\sigma^2_0, \ldots, \sigma^2_{J-1}$.

- Conditionally, given CL parameters $F = (F_0, \ldots, F_{J-1})$:
 - $\star (C_{i,j})_{j=0,\ldots,J}$ independent (in i) and Markovian (in j) with gamma innovations
 - with for all $1 \leq i \leq I$ and $0 \leq j \leq J - 1$

\[
\begin{align*}
\mathbb{E} [C_{i,j+1} | C_{i,j}, F] &= F_j C_{i,j}, \\
\text{Var} (C_{i,j+1} | C_{i,j}, F) &= \sigma_j^2 F_j^2 C_{i,j}.
\end{align*}
\]

- The components of F^{-1} are independent and gamma distributed.

This model has the CL property: $C_{i,j+1} \approx F_j C_{i,j}$, for given CL factors F_j.

\square
Bayesian chain-ladder (BCL) model

Model assumptions (gamma-gamma BCL model).
Assume there are fixed given variance parameters $\sigma_0^2, \ldots, \sigma_{J-1}^2$.

- Conditionally, given CL parameters $F = (F_0, \ldots, F_{J-1})$:
 - $(C_{i,j})_{j=0,\ldots,J}$ independent (in i) and Markovian (in j) with gamma innovations
 - with for all $1 \leq i \leq I$ and $0 \leq j \leq J - 1$

 \[
 \mathbb{E} [C_{i,j+1} | C_{i,j}, F] = F_j C_{i,j},
 \]
 \[
 \text{Var} (C_{i,j+1} | C_{i,j}, F) = \sigma_j^2 F_j^2 C_{i,j}.
 \]

- The components of F^{-1} are independent and gamma distributed.

▷ This model has the CL property: $C_{i,j+1} \approx F_j C_{i,j}$, for given CL factors F_j.

\[\Box\]
BCL predictor

- Predictors can be calculated explicitly in the above model for observations D_t.

- BCL predictor at time $t \geq I > J$ for non-informative priors

$$\hat{C}_{i,J}^{(t)} = \mathbb{E}[C_{i,J}|D_t] = C_{i,t-i} \prod_{j=t-i}^{J-1} \hat{f}_j^{(t)} ,$$

with CL factor estimators

$$\hat{f}_j^{(t)} = \frac{\sum_{i=1}^{t-j-1} C_{i,j+1}}{\sum_{i=1}^{t-j-1} C_{i,j}} .$$
CL claims prediction

<table>
<thead>
<tr>
<th>accident year i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>1'216</td>
<td>1'347</td>
<td>1'786</td>
<td>2'281</td>
<td>2'656</td>
<td>2'909</td>
<td>3'283</td>
<td>3'587</td>
<td>3'754</td>
<td>3'921</td>
</tr>
<tr>
<td>2005</td>
<td>798</td>
<td>1'051</td>
<td>1'215</td>
<td>1'349</td>
<td>1'655</td>
<td>1'926</td>
<td>2'132</td>
<td>2'287</td>
<td>2'567</td>
<td>2'681</td>
</tr>
<tr>
<td>2006</td>
<td>1'115</td>
<td>1'387</td>
<td>1'930</td>
<td>2'177</td>
<td>2'513</td>
<td>2'931</td>
<td>3'047</td>
<td>3'182</td>
<td>3'424</td>
<td>3'577</td>
</tr>
<tr>
<td>2007</td>
<td>1'052</td>
<td>1'321</td>
<td>1'700</td>
<td>1'971</td>
<td>2'298</td>
<td>2'645</td>
<td>3'003</td>
<td>3'214</td>
<td>3'458</td>
<td>3'612</td>
</tr>
<tr>
<td>2008</td>
<td>808</td>
<td>1'029</td>
<td>1'229</td>
<td>1'590</td>
<td>1'842</td>
<td>2'150</td>
<td>2'368</td>
<td>2'534</td>
<td>2'727</td>
<td>2'848</td>
</tr>
<tr>
<td>2009</td>
<td>1'016</td>
<td>1'251</td>
<td>1'698</td>
<td>2'015</td>
<td>2'385</td>
<td>2'733</td>
<td>3'010</td>
<td>3'221</td>
<td>3'465</td>
<td>3'619</td>
</tr>
<tr>
<td>2010</td>
<td>948</td>
<td>1'108</td>
<td>1'315</td>
<td>1'487</td>
<td>1'731</td>
<td>1'983</td>
<td>2'184</td>
<td>2'337</td>
<td>2'514</td>
<td>2'626</td>
</tr>
<tr>
<td>2011</td>
<td>917</td>
<td>1'082</td>
<td>1'484</td>
<td>1'769</td>
<td>2'058</td>
<td>2'358</td>
<td>2'597</td>
<td>2'779</td>
<td>2'990</td>
<td>3'123</td>
</tr>
<tr>
<td>2012</td>
<td>1'001</td>
<td>1'376</td>
<td>1'776</td>
<td>2'116</td>
<td>2'462</td>
<td>2'821</td>
<td>3'106</td>
<td>3'324</td>
<td>3'577</td>
<td>3'736</td>
</tr>
<tr>
<td>2013</td>
<td>841</td>
<td>1'039</td>
<td>1'341</td>
<td>1'598</td>
<td>1'859</td>
<td>2'130</td>
<td>2'346</td>
<td>2'510</td>
<td>2'701</td>
<td>2'821</td>
</tr>
</tbody>
</table>

$\hat{f}_{ij}^{(t)}$ | 1.2343 | 1.2904 | 1.1918 | 1.1635 | 1.1457 | 1.1013 | 1.0702 | 1.0760 | 1.0444 |

What about prediction uncertainty?

Consider the conditional mean square error of prediction (MSEP)

$$
\text{msep}_{C_{i,j}|\mathcal{D}_t} \left(\hat{C}_{i,j}^{(t)} \right) = \mathbb{E} \left[\left(C_{i,j} - \hat{C}_{i,j}^{(t)} \right)^2 \mid \mathcal{D}_t \right].
$$
Conditional MSEP formula

- Conditional MSEP can be calculated explicitly and exactly in the above model.

Conditional MSEP for non-informative priors for single accident years i:

$$
\text{msep}_{C_i,J|D_t} \left(\hat{C}_{i,J}^{(t)} \right) = \left(\hat{C}_{i,J}^{(t)} \right)^2 \left(\sum_{j=t-i}^{J-1} \left[\frac{\sigma_j^2}{\hat{C}_{i,j}^{(t)}} + \frac{\sigma_j^2}{\sum_{\ell=1}^{t-j-1} C_{\ell,j}} \right] + o \left(\frac{\sigma_\ell^2}{C_{k,\ell}} \right) \right).
$$

- This is identical to the famous Mack formula (1993) up to:
 * a different variance parametrization, and
 * and a correction term of order $o \left(\sigma_\ell^2 / C_{k,\ell} \right)$.

- Aggregation over accident years i is similar.
Outline

• Chain-ladder method
• Claims development result
• Examples
Claims development result (1/2)

- Conditional MSEP formula above considers the total prediction uncertainty over the entire run-off (static view).

- Solvency considerations require a dynamic view: possible changes in predictions over the next accounting year(s).

\[\text{end point of path (static view)} \iff \text{whole path behavior (dynamic view)} \]

- Define the claims development result of accounting year \(t + 1 > I \) by

\[
\text{CDR}_i(t + 1) = \hat{C}_{i,J}^{(t+1)} - \hat{C}_{i,J}^{(t)}.
\]
Claims development result (2/2)

<table>
<thead>
<tr>
<th>accident year</th>
<th>development year</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>0 1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>2005</td>
<td>798 1'051 1'215 1'349 1'655 1'926 2'132 2'287 2'567 *</td>
</tr>
<tr>
<td>2006</td>
<td>1'115 1'387 1'930 2'177 2'513 2'931 3'047 3'182 *</td>
</tr>
<tr>
<td>2007</td>
<td>1'052 1'321 1'700 1'971 2'298 2'645 3'003 *</td>
</tr>
<tr>
<td>2008</td>
<td>808 1'029 1'229 1'590 1'842 2'150 *</td>
</tr>
<tr>
<td>2009</td>
<td>1'016 1'251 1'698 2'105 2'385 *</td>
</tr>
<tr>
<td>2010</td>
<td>948 1'108 1'315 1'487 *</td>
</tr>
<tr>
<td>2011</td>
<td>917 1'082 1'484 *</td>
</tr>
<tr>
<td>2012</td>
<td>1'001 1'376 *</td>
</tr>
<tr>
<td>2013</td>
<td>841 *</td>
</tr>
</tbody>
</table>

▷ Martingale property of \((\hat{C}_{i,J}^{(t)})_{t\geq I}\) implies

\[
\mathbb{E} \left[\text{CDR}_{i}(t + 1) \mid \mathcal{D}_t \right] = \mathbb{E} \left[\hat{C}_{i,J}^{(t+1)} - \hat{C}_{i,J}^{(t)} \bigg| \mathcal{D}_t \right] = 0.
\]

▷ Solvency: study the one-year uncertainty

\[
msep_{\text{CDR}_{i}(t+1)|\mathcal{D}_t}(0) = \mathbb{E} \left[(\text{CDR}_{i}(t + 1) - 0)^2 \bigg| \mathcal{D}_t \right].
\]
Conditional MSEP can be calculated explicitly and exactly in the above model.

Conditional MSEP for non-informative priors for single accident years i:

$$\text{mse}_{\text{CDR}_i(t+1)|D_t(0)} = \left(\hat{C}_{i,J}(t) \right)^2$$

$$\times \left(\left[\frac{\sigma_{t-i}^2}{C_{i,t-i}} + \frac{\sigma_{t-i}^2}{\sum_{\ell=1}^{i-1} C_{\ell,t-i}} + \sum_{j=t-i+1}^{J-1} \alpha_j^{(t)} \frac{\sigma_j^2}{\sum_{\ell=1}^{t-j-1} C_{\ell,j}} \right] + o \left(\frac{\sigma_{\ell}^2}{C_{k,\ell}} \right) \right),$$

with (credibility) weight

$$\alpha_j^{(t)} = \frac{C_{t-j,j}}{\sum_{\ell=1}^{t-j} C_{\ell,j}} \in (0, 1].$$

This is identical to Merz-Wüthrich formula (2008) up to the differences mentioned above.
Total uncertainty vs. one-year uncertainty

Total uncertainty:

$$\text{mse}_{pC_{i,J}|D_t} \left(\hat{C}_{i,J}^{(t)} \right) \approx \left(\hat{C}_{i,J}^{(t)} \right)^2 \sum_{j=t-i}^{J-1} \left[\frac{\sigma_j^2}{\hat{C}_{i,j}^{(t)}} + \frac{\sigma_j^2}{\sum_{\ell=1}^{t-j-1} C_{\ell,j}} \right].$$

One-year uncertainty:

$$\text{mse}_{CDR_i(t+1)|D_t} (0) \approx \left(\hat{C}_{i,J}^{(t)} \right)^2 \times \left[\frac{\sigma_{t-i}^2}{\hat{C}_{i,t-i}^{(t)}} + \frac{\sigma_{t-i}^2}{\sum_{\ell=1}^{i-1} C_{\ell,t-i}} + \sum_{j=t-i+1}^{J-1} \alpha_j^{(t)} \frac{\sigma_j^2}{\sum_{\ell=1}^{t-j-1} C_{\ell,j}} \right].$$

Process uncertainty, parameter estimation uncertainty and its reduction in time.
Residual uncertainty for remaining accounting years

This suggests for accounting year \(t + 2 \):

\[
\mathbb{E} \left[\text{msep}_{\text{CDR}_i(t+2)} \big| \mathcal{D}_{t+1}(0) \big| \mathcal{D}_t \right] \\
\approx \left(\widehat{C}_{i,J}^{(t)} \right)^2 \left[\frac{\sigma^2_{t-i+1}}{\widehat{C}_{i,t-i+1}^{(t)}} + \left(1 - \alpha_{t-i+1}^{(t)}\right) \frac{\sigma^2_{t-i+1}}{\sum_{\ell=1}^{i-2} C_{\ell,t-i+1}} \right] \\
+ \left(\widehat{C}_{i,J}^{(t)} \right)^2 \sum_{j=t-i+2}^{J-1} \left[\alpha_{j-1}^{(t)} \left(1 - \alpha_{j}^{(t)}\right) \frac{\sigma^2_{j}}{\sum_{\ell=1}^{t-j-1} C_{\ell,j}} \right].
\]

This can be derived analytically and iterated!

It allocates the total MSEP formula across different accounting periods, i.e., this provides a run-off of risk pattern.

This was shown in Röhr (2013), Merz-Wüthrich (2014), Diers et al. (2016) and Gisler (2016).
Outline

- Chain-ladder method
- Claims development result
- Examples
Expected run-off of claims reserves is faster than the one of underlying risks.

Legal environment is important for run-off.
> Different lines of business behave differently (short- and long-tailed business).
Conclusions and implementation

- The one-year uncertainty formula was generalized to arbitrary accounting years.
- This allocates the total uncertainty formula across accounting years.
- This improves risk margin calculations under Solvency II.
- Standard approximation techniques typically under-estimate run-off risk.

- CRAN R package: ChainLadder