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Chapter 1

Measures and measurable mappings

Notation

Let Ω be a set, A ⊆ Ω.

2Ω power set of Ω, set of all subsets of Ω.

Ac complement of A.

A closure of A.

A◦ interior of A.

#A number of elements of A.

The terms function and mapping are used as synonyms. System, family and set all refer to
sets.

1.1 σ-fields, rings and Dynkin systems

Definition 1.1. Let Ω be a set. A family F of subsets of Ω is called σ-field (on Ω) if

(σ1) Ω ∈ F,

(σ2) A ∈ F =⇒ Ac ∈ F,

(σ3) An ∈ F for all n ∈ N =⇒
⋃∞

n=1 An ∈ F.

Example 1.2. 1. The power set 2Ω of Ω is a σ-field.

2. Let Ω′ be a set and F′ a σ-field on Ω′. For a mapping f : Ω → Ω′, the family

σ(f) := {f−1(A′) | A′ ∈ F′}

defines a σ-field.

3. Let Ω = N. Then F = {N, ∅, {5},N\{5}} is a σ-field on Ω.

Remark 1.3. In Analysis, the following useful statements have been proved, and we will use
them often throughout these lecture notes. Let Ω,Ω′ be sets, f : Ω → Ω′ a mapping and I an
arbitrary index set.
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1. Let Bi ⊆ Ω′ for all i ∈ I. Then

f−1
(⋂

i∈I

Bi

)
=

⋂
i∈I

f−1(Bi) und f−1
(⋃

i∈I

Bi

)
=

⋃
i∈I

f−1(Bi).

2. Let B ⊆ Ω′. Then f−1(Ω′\B) = Ω\f−1(B).

Theorem 1.4. Any intersection of (finitely or infinitely many) σ-fields on Ω is again a σ-field
on Ω.

Proof. Exercise.

This theorem implies the following important corollary.

Corollary 1.5. For any family E of subsets of Ω there exists the smallest σ-field σ(E) containing
E. This means, if G is a σ-field with E ⊆ G, then σ(E) ⊆ G.

Proof. Let Σ be the sets of all σ-fields containing E . Σ is non-empty, because it contains 2Ω,
for example. We set

σ(E) :=
⋂
F∈Σ

F.

σ(E) is also called the σ-field generated by E , and the family of sets E is called the generator
of σ(E).

Example 1.6. 1. Let Ω = N and E = {{5}}. The σ-field generated by E equals

σ(E) = {N, ∅, {5},N \ {5}}.

2. Let Ω = R and E = {[0,∞)}. The σ-field generated by E is

σ(E) = {R, ∅, [0,∞), (−∞, 0)}.

Remark 1.7. Condition (σ3) can be replaced by the condition

(σ3’) An ∈ F for all n ∈ N =⇒
⋂∞

n=1An ∈ F.

Definition 1.8. Let Ω be a set. A family R of subsets of Ω is called ring (on Ω), if

(R1) ∅ ∈ R,

(R2) A,B ∈ R =⇒ A \B ∈ R,

(R3) A,B ∈ R =⇒ A ∪B ∈ R.

If in addition Ω ∈ R, then R is called algebra.

Exercise 1.9. Prove the following statements.

1. Let R be a ring. If A,B ∈ R, then A ∩B ∈ R.

2. Let R ⊆ 2Ω. R is an algebra if and only if:
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(A1) Ω ∈ R,

(A2) A ∈ R =⇒ Ac ∈ R,

(A3) A,B ∈ R =⇒ A ∪B ∈ R.

Remark 1.10. Note that the difference between a σ-field and an algebra is that in (R3) only
finite unions are allowed, while in (σ3) countable unions are possible. Here the ”σ” means
”countable”.

Example 1.11. Let Ω = N. The system of sets A ⊆ N for which either A or Ac is finite is an
algebra, but not a σ-Algebra.

Definition 1.12. Let Ω be a set. A family D of subsets of Ω is called Dynkin system (on Ω) if

(D1) Ω ∈ D,

(D2) A,B ∈ D, A ⊆ B =⇒ B \ A ∈ D,

(D3) An ∈ D for all n ∈ N with An ∩ Am = ∅, m ̸= n =⇒
⋃∞

n=1An ∈ D.

Example 1.13. Each σ-field is a Dynkin system.

A family E of sets is called ∩-stable if

A,B ∈ E =⇒ A ∩B ∈ E

Theorem 1.14. A Dynkin system is a σ-field if and only if it is ∩-stable.

Proof. Since every σ-field is a Dynkin system, we only have to show that any ∩-stable Dynkin
system D is a is a σ-field

(σ1) follows by (D1) and (σ2) follows by (D2) with B = Ω. Property (σ3) is obtained as
follows. Let A,B ∈ D. Then A ∩B ∈ D by assumption, and

A ∪B = A ∪ (B\(A ∩B))

and
A ∩ (B\(A ∩B)) = ∅,

so (D3) implies that A ∪B ∈ D. Let now Dn ∈ D for all n ∈ N. We can write

∞⋃
n=1

Dn =
∞⋃
n=0

D′
n+1 \D′

n,

where D′
0 := ∅ and D′

n := D1 ∪ · · · ∪Dn ∈ D. The sets D′
n+1 \D′

n are pairwise disjoint, so (D3)
implies that

⋃∞
n=1 Dn ∈ D, and we obtain (σ3).

Theorem 1.4 also holds for Dynkin systems and rings. Therefore, for any family of sets E
there exists a smallest Dynkin system D(E) that contains E . We also call D(E) the Dynkin
system generated by E .

Theorem 1.15. Let E be a ∩-stable family of sets. Then

D(E) = σ(E).
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Proof. Every σ-field is a Dynkin system, so σ(E) is a Dynkin system which contains E . This
implies D(E) ⊆ σ(E). If we can show that D(E) is a σ-field, then we can conclude that
σ(E) ⊆ D(E), because σ(E) is the smallest σ-field containing E .

We now show that D(E) is ∩-stable, and then our claim follows by Theorem 1.14. Let
D ∈ D(E). We define

DD := {A ⊆ Ω |A ∩D ∈ D(E)}.
Now we verify that DD is a Dynkin system. Since E is ∩-stable, we know that E ⊆ DE for any
E ∈ E , and therefore D(E) ⊆ DE. For any E ∈ E and D ∈ D(E), it holds E ∩ D ∈ D(E).
This in turn means that E ⊆ DD, and therefore D(E) ⊆ DD for all D ∈ D(E). So D(E) is
∩-stable.

1.2 Additive and σ-additive contents

Definition 1.16. Let R be a ring on Ω. A mapping

µ : R → [0,∞]

is called content on (Ω,R) if

(I1) µ(∅) = 0,

(I2) for A ∩B = ∅, it holds µ(A ∪B) = µ(A) + µ(B).

The content µ is called σ-additive, if for An ∈ R, n ∈ N, with An ∩ Am = ∅, m ̸= n and⋃∞
n=1An ∈ R,

µ
( ∞⋃

n=1

An

)
=

∞∑
n=1

µ(An).

Remark. In Measure Theory and Probability Theory we use the following rules for computing
in R ∪ {−∞,+∞}:

1. a±∞ = ±∞+ a = ±∞ for a ∈ R,

2. +∞−∞ is not defined,

3. 0 · ∞ = 0,

4. a · ∞ = sign(a) · ∞ for a ∈ R\{0}.

Example 1.17. 1. Let R be a ring on Ω and ω ∈ Ω. Then

δω(A) =

{
0, ω ̸∈ A,

1, ω ∈ A,
A ∈ R

is a content.

2. We consider the ring from example 1.11. (Each algebra is a ring.) Then

A 7→

{
0, if A is finite,

∞, if Ac is finite,

is a content. It is not σ-additive.
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Proposition 1.18. Let µ be a content on R. Then for A,B ∈ R, the following statements are
true.

1. LetA,B ∈ R. Then µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B).

2. Let A,B ∈ R with A ⊆ B. Then µ(A) ≤ µ(B).

3. Let A,B ∈ R with A ⊆ B and µ(A) < ∞. Then µ(B \ A) = µ(B)− µ(A).

4. Let A1, . . . , An ∈ R. Then µ
(⋃n

i=1 Ai

)
≤

∑n
i=1 µ(Ai).

Proof. Exercise.

Notation. For a sequence of sets A,A1, A2, . . . we write An ↑ A, if A1 ⊆ A2 ⊆ . . . and A =⋃∞
n=1An. We write An ↓ A, if A1 ⊇ A2 ⊇ . . . and A =

⋂∞
n=1An.

Theorem 1.19 (Continuity of contents, part 1). Let µ be a content on a ring R. Then µ is
σ-additive if and only if for all An, A ∈ R with An ↑ A,

lim
n→∞

µ(An) = µ(A).

Proof. Assume first that µ σ-additive and An, A ∈ R with An ↑ A. We set A0 := ∅ and
Bn := An \ An−1, n = 1, 2, . . . . The Bn are pairwise disjoint. It holds An = B1 ∪ · · · ∪ Bn and⋃∞

n=1Bn =
⋃∞

n=1An = A, so

µ(A) =
∞∑
n=1

µ(Bn) = lim
N→∞

N∑
n=1

µ(Bn) = lim
N→∞

µ(AN).

To show the reverse direction, let An ∈ R be a sequence of disjoint sets with A =
⋃∞

n=1An ∈
R. We define Bn := A1 ∪ · · · ∪ An. Then Bn ↑ A, so µ(A) = limn→∞ µ(Bn). Finite additivity
of the content µ gives

µ(Bn) = µ(A1) + · · ·+ µ(An),

which proves the claim.

Theorem 1.20 (Continuity of contents, part 2). Let µ be a content on a ring R. If µ is
σ-additive, then

1. for any sequence An ∈ R with An ↓ A, A ∈ R and µ(A1) < ∞, it holds

lim
n→∞

µ(An) = µ(A).

2. for any sequence An ∈ R with An ↓ ∅ and µ(A1) < ∞,

lim
n→∞

µ(An) = 0.

If µ(A) < ∞ for A ∈ R, then the conditions ((1.) or (2.)) are equivalent to σ-additivity.
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Proof. It is obvious that (1.) implies (2.). Let An ∈ R be a sequence with An ↓ A ∈ R and
µ(A1) < ∞. Then also µ(An) < ∞ for all n and µ(A) < ∞, and µ(A1 \ An) = µ(A1)− µ(An)
due to Proposition 1.18 (3.) and (A1 \ An) ↑ (A1 \ A). Theorem 1.19 implies

µ(A1)− µ(A) = µ(A1 \ A) = lim
n→∞

µ(A1 \ An) = µ(A1)− lim
n→∞

µ(An),

which is (1.).
We now assume that µ(B) < ∞ for all B ∈ R and we show that (2.) implies the σ-additivity

of µ. For this we use Theorem 1.19. Let An ∈ R with An ↑ A ∈ R. Then A \ An ↓ ∅, and
because µ(A) < ∞, µ(An) < ∞, we obtain

0 = lim
n→∞

µ(A \ An) = µ(A)− lim
n→∞

µ(An).

We now consider a special ring on Ω = Rd. For a = (a1, . . . , ad), b = (b1, . . . , bd) we define
the half open rectangles

(a,b] := {x = (x1, . . . , xd) ∈ Rd | ai < xi ≤ bi, i = 1, . . . , d}.

We consider the set Rd of finite unions of rectangles, that is,

Rd :=
{ n⋃

k=1

(ak,bk] | n ∈ N, ak,bk ∈ Rd, k = 1, . . . , n
}
.

Theorem 1.21. Rd is a ring in Rd.

Proof. Exercise.

Remark 1.22. Each set in A ∈ Rd admits a representation A =
⋃n

k=1(ak,bk] with pairwise
disjoint rectangles.

Definition 1.23. A function H : Rd → [0,∞) is called rectangular monotone, if for all a1, a2 ∈
Rd with a1i ≤ a2i , i = 1, . . . , d, it holds

∆a2

a1H :=
∑

i1,...,id∈{1,2}

(−1)i1+···+idH(ai11 , . . . , a
id
d ) ≥ 0.

Theorem 1.24. Let H : Rd → [0,∞) be a rectangular monotone function. Then there exist a
unique content µ on Rd such that for each rectangle (a1, a2] ̸= ∅,

µ((a1, a2]) = ∆a2

a1H.

For all A ∈ Rd, it holds µ(A) < ∞.

Example 1.25. For a rectangle (a1, a2] ̸= ∅ we define its volume by

Vol((a1, a2]) =
d∏

i=1

(a2i − a1i ).

For H(x) =
∏d

i=1 xi, the volume satisfies Vol((a1, a2]) = ∆a2

a1H. The unique content on Rd

corresponding to H is called the Lebesgue content, and we also denote it by Vol.
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Exercise 1.26. Prove the claim in Example 1.25.

Proof of Theorem 1.24. Uniqueness: Let µ be such a content. Every set A ∈ Rd can be
represented as A =

⋃n
k=1(a

k,bk] with pairwise disjoint rectangles. Since µ is a content, we
know

µ(A) =
n∑

k=1

µ((ak,bk]) =
n∑

k=1

∆bk

akH,

so µ is defined uniquely by its values on rectangles.
Existence: We only consider the case d = 1. For A =

⋃n
k=1(ak, bk] ∈ R1 with pairwise disjoint

intervals, we set

µ(A) =
n∑

k=1

∆bk
ak
H =

n∑
k=1

(H(bk)−H(ak)).

We have to show that this definition does not depend on the representation of A.
For c ∈ (a, b],

µ((a, b]) = ∆b
aH = H(b)−H(a)

= H(b)−H(c) +H(c)−H(a) = ∆c
aH +∆b

cH = µ((a, c]) + µ((c, b]).
(1.1)

Let now A =
⋃m

l=1(cl, dl] be another representation of A with pairwise disjoint rectangles. For
all k, (ak, bk] =

⋃m
l=1(ak, bk]∩ (cl, dl] is a partition of (ak, bk] into disjoint intervals. We can now

apply (1.1) inductively and obtain

µ((ak, bk]) =
m∑
l=1

µ((ak, bk] ∩ (cl, dl]), k = 1, . . . , n.

But also

µ((cl, dl]) =
n∑

k=1

µ((ak, bk] ∩ (cl, dl]), l = 1, . . . ,m,

which proves the claim.
Properties of a content: For A,B ∈ Rd with A ∩ B = ∅, it holds by construction that
µ(A ∪B) = µ(A) + µ(B), so µ is a content on Rd.

Exercise 1.27. Prove the existence of the content µ in Theorem 1.24 for d = 2 or more
generally for all d.

Theorem 1.28. Let H : Rd → [0,∞) be a rectangular monotone function which is continuous
from the right in each argument, i.e. for all x = (x1, . . . , xd) ∈ Rd and i ∈ {1, . . . , d}, it holds

lim
s↓xi

H(x1, . . . , xi−1, s, xi+1, . . . , xd) = H(x).

Then the content µ on Rd from Theorem 1.24 is σ-additive.

Corollary 1.29. The Lebesgue content Vol on Rd is σ-additive.

Proof of Theorem 1.28. For all A ∈ Rd, we know that µ(A) < ∞. Due to Theorem 1.20 it
is therefore sufficient to show that for any sequence (An)n∈N ⊆ Rd with An ↓ ∅, we have
µ(An) → 0, n → ∞.
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Continuity from the right of H implies that for each rectangle (a,b],

µ((a,b]) = sup{µ((c,b]) | ci > ai, i = 1, . . . , d}. (1.2)

Let now (An)n∈N ⊆ Rd be a sequence with An ↓ ∅, and let ε > 0. Due to (1.2) we can choose
for each n ∈ N a Cn ∈ Rd such that

Cn ⊆ An, µ(Cn) ≥ µ(An)− ε/2n,

so that for Kn = C1 ∩ · · · ∩ Cn ,

µ(An \Kn) = µ
( n⋃

i=1

(An\Ci)
)
≤

n∑
i=1

µ(Ai \ Ci) =
n∑

i=1

(
µ(Ai)− µ(Ci)

)
≤

n∑
i=1

ε

2i
≤ ε.

Furthermore
⋂∞

n=1Kn ⊆
⋂∞

n=1 Cn ⊆
⋂∞

n=1An = ∅, so that (due to compactness of the Kn and
Kn+1 ⊆ Kn; nested intervals) there exists a n0 with Kn = ∅ for all n ≥ n0, so µ(An) < ε for all
n ≥ n0.

Remark. We here use the following variant of the nested intervals principle: Let (Kn)n∈N be a
sequence of compact sets in a metric space with Kn+1 ⊆ Kn and Kn ̸= ∅ for all n ∈ N. Then⋂

n∈N Kn ̸= ∅.
This can be proved as follows: For all n ∈ N choose xn ∈ Kn ⊂ K1. Because K1 is compact,
(xn)n∈N has a convergent subsequence (xnk

)k∈N with xnk
→ x0 ∈ K1. Assume that x0 ̸∈ Kn0

for some n0. Then also x0 ̸∈ Kn for all n ≥ n0. Because Kc
n0

is open, this implies d(x0, xn) ≥
d(x0, Kn) ≥ d(x0, Kn0) > 0 for all n ≥ n0, which contradicts convergence of the subsequence.
Hence x0 ∈

⋂
n∈N Kn.

1.3 General measures and the Lebesgue measure

Definition 1.30. Let F be a σ-field on Ω. A mapping µ : F → [0,∞] is called measure if

(M1) µ(∅) = 0,

(M2) An ∈ F, An ∩ Am = ∅, m ̸= n:

µ
( ∞⋃

n=1

An

)
=

∞∑
n=1

µ(An).

The triplet (Ω,F, µ) is called measure space.

Remark. A measure is a σ-additive content, which is defined on a σ-field.

Example 1.31. 1. Let Ω be a set and F a σ-field. For any ω ∈ Ω, δω defines a measure on
F; see also Example 1.17 (1.). This measure is called Dirac measure in ω.

2. Let Ω be a set and F a σ-field. For any A ∈ F, let #A be the number of its elements.
Then

A 7→ #A

defines a measure on F. It is called the counting measure.
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3. The Lebesgue content Vol on Rd is not a measure, because Rd is not a σ-field.

To derive the Lebesgue measure from the Lebesgue content, we need the following extension
theorem by Carathéodory.

Theorem 1.32 (Extension theorem). Let µ be a σ-additive content on a ring R on Ω. Then
there exists a measure µ̃ (at least one such measure) on σ(R) which extends µ.

The proof of this theorem relies on the notion of a outer measure.

Definition 1.33. A mapping µ∗ : 2Ω → [0,∞] is called outer measure, if

(M∗1) µ∗(∅) = 0,

(M∗2) A ⊆ B ⊆ Ω ⇒ µ∗(A) ≤ µ∗(B),

(M∗3) An ⊆ Ω, n = 1, 2, . . . ⇒ µ∗
(⋃∞

n=1 An

)
≤

∑∞
n=1 µ

∗(An).

A set A ⊆ Ω is called µ∗-measurable, if

µ∗(S) = µ∗(S ∩ A) + µ∗(S \ A), for all S ⊆ Ω. (1.3)

Theorem 1.34. Let µ∗ be an outer measure on Ω. Then the system F∗ of all µ∗-measurable
sets is a σ-field and the restriction of µ∗ to F∗ is a measure.

Proof. We first show that F∗ is a σ-field. (σ1) and (σ2) follow by (1.3). Let now An ∈ F∗,
n = 1, 2, . . . . We have to show that A :=

⋃∞
n=1An ∈ F∗. For this, let Bn := An \

⋃n−1
i=1 Ai. The

sequence Bn is disjoint and
⋃N

n=1Bn =
⋃N

n=1An. Let now S ⊆ Ω. Then,

µ∗(S) = µ∗(S ∩ A1) + µ∗(S ∩ Ac
1)

= µ∗(S ∩B1) + µ∗(S ∩ Ac
1 ∩ A2) + µ∗(S ∩ Ac

1 ∩ Ac
2)

= µ∗(S ∩B1) + µ∗(S ∩B2) + µ∗(S ∩ Ac
1 ∩ Ac

2)

= . . .

=
N∑

n=1

µ∗(S ∩Bn) + µ∗
(
S ∩

N⋂
n=1

Ac
n

)
≥

N∑
n=1

µ∗(S ∩Bn) + µ∗(S \ A),

because S ∩
⋂N

n=1A
c
n = S ∩

(⋃N
n=1An

)c ⊇ S \ A. With N → ∞ it follows

µ∗(S) ≥
∞∑
n=1

µ∗(S ∩Bn) + µ∗(S \ A) (1.4)

≥ µ∗
( ∞⋃

n=1

(S ∩Bn)
)
+ µ∗(S \ A)

= µ∗(S ∩ A) + µ∗(S \ A).
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The inequality µ∗(S) ≤ µ∗(S ∩A) + µ∗(S \A) is true for all A, S ⊆ Ω due to (M∗3), so A ∈ F∗

and we have shown that F∗ is a σ-field.
To show that µ∗ defines a measure on F∗, we consider a sequence An ∈ F∗ of pairwise disjoint

sets. Our construction above also applies to these An, and because they are disjoint, we have
Bn = An. Now we set S = A in (1.4) and obtain

µ∗(A) ≥
∞∑
n=1

µ∗(An).

The other inequality holds due to (M∗3).

Proof of Theorem 1.32. For a set Q ⊆ Ω we define

µ∗(Q) = inf
{ ∞∑

n=1

µ(An) | (An)n∈N ⊆ R with Q ⊆
∞⋃
n=1

An

}
.

Note that here, we define the infimum of the empty set as +∞. We now show that: (1.) µ∗ is
an outer measure, (2.) all sets in R are µ∗-measurable, and (3.) µ∗ and µ are equal on R.

First to (1.): (M∗1) and (M∗2) can be verified directly. Let now (Qn)n∈N ⊆ Ω be a sequence
of sets. We can assume that µ∗(Qn) < ∞ for all n ∈ N. (Otherwise (M∗3) is true.) Let ε > 0.
For all n, there exists a sequence (Ank)k∈N ⊆ R with

Qn ⊆
∞⋃
k=1

Ank, und
∞∑
k=1

µ(Ank) ≤ µ∗(Qn) + 2−nε.

Because of
⋃∞

n=1Qn ⊆
⋃∞

n=1

⋃∞
k=1 Ank, we know that

µ∗
( ∞⋃

n=1

Qn

)
≤

∞∑
n=1

∞∑
k=1

µ(Ank) ≤
∞∑
n=1

µ∗(Qn) + ε,

where we have used
∑∞

n=1 2
−n = 1. This shows (M∗3).

Then (2.): Let A ∈ R, Q ⊆ Ω and (Bn)n ⊆ R with Q ⊆
⋃∞

n=1Bn. Then,

∞∑
n=1

µ(Bn) =
∞∑
n=1

µ(Bn ∩ A) +
∞∑
n=1

µ(Bn \ A).

Because of Q ∩ A ⊆
⋃∞

n=1(Bn ∩ A) and Q \ A ⊆
⋃∞

n=1(Bn \ A), it follows
∞∑
n=1

µ(Bn) ≥ µ∗(Q ∩ A) + µ∗(Q\A)

and because the sequence (Bn) was arbitrary (Q ⊆
⋃∞

n=1 Bn), also

µ∗(Q) ≥ µ∗(Q ∩ A) + µ∗(Q\A).

And (3.): With the sequence A, ∅, ∅, . . . we obtain that µ∗(A) ≤ µ(A). Let (An)n ⊆ R with
A ⊆ ∪∞

n=1An. We set Bn = A ∩ (An\
⋃n−1

i=1 Ai) ∈ R. Then A =
⋃∞

n=1 Bn, and the sets Bn are
disjoint. The σ-additivity of µ gives

µ(A) =
∞∑
n=1

µ(Bn) ≤
∞∑
n=1

µ(An),

because Bn ⊆ An. So µ(A) ≤ µ∗(A).
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In conclusion, we can extend the Lebesgue content on Rd to a measure on σ(Rd). However,
we do not know if this extension is unique. In the proof of Theorem 1.32 only one such extension
is constructed. The following theorem gives an answer to this question.

Theorem 1.35. Let E be a ∩-stable generator of a σ-field F on Ω. Let further (En)n∈N ⊆ E
with En ↑ Ω. If µ1, µ2 are measures on F with

µ1(E) = µ2(E), E ∈ E

and
µ1(En) = µ2(En) < ∞, n ∈ N,

then µ1 = µ2 on F.

Proof. Let E ∈ E with µ1(E) = µ2(E) < ∞. The set of sets

DE := {D ∈ F | µ1(E ∩D) = µ2(E ∩D)}

is a Dynkin system (exercise). Because E is ∩-stable, it follows that E ⊆ DE, so alsoD(E) ⊆ DE.
From Theorem 1.15, we deduce that D(E) = σ(E) = F, so also F = DE, because DE ⊆ F. This
implies that

µ1(E ∩D) = µ2(E ∩D), für alle D ∈ F. (1.5)

Statement (1.5) in particular holds for E = En. It follows from En ↑ Ω that En ∩D ↑ D and
therefore, by Theorem 1.19,

µ1(D) = lim
n→∞

µ1(En ∩D) = lim
n→∞

µ2(En ∩D) = µ2(D), for all D ∈ F.

We now apply Theorem 1.35 to show that the Lebesgue content Vol can be extended to a
unique measure on σ(Rd). Let µ1, µ2 be two extensions of Vol to σ(Rd), which exist due to
Theorem 1.32. Because µ1, µ2 are equal on Rd, the prerequisites of Theorem 1.35 are satisfied
with En = ((−n, . . . ,−n), (n, . . . , n)]. (R is ∩-stable, because R is a ring.) Thus µ1 = µ2.
Definition 1.36. The σ-field B(Rd) := σ(Rd) is called Borel σ-
field on Rd. The measure which extends Vol to B(Rd) is called
Lebesgue measure on Rd, and we denote it by Ld.

The picture on the right shows the French mathematician Henri
Léon Lebesgue, 1875–1941. He is the founder of modern mea-
sure theory and integration theory and introduced the Lebesgue
measure in his dissertation in 1902.

Exercise 1.37. Let O be the system of open sets in Rd, A the system of closed sets in Rd and
K the system of compact sets in Rd.

1. Show that σ(O) = σ(A) = σ(K).

2. Show that B(Rd) = σ(O).

14



1.4 Measurable mappings and image measures

Definition 1.38. Let F1 be a σ-field on Ω1 and F2 a σ-field on Ω2. A mapping f : Ω1 → Ω2 is
called F1-F2-measurable, if

f−1(A) ∈ F1, for all A ∈ F2.

Example 1.39. Let c ∈ Ω2. The constant mapping f : Ω1 → Ω2, ω 7→ c is F1-F2-measurable.

Exercise 1.40. Let F be a σ-field on Ω and A ∈ F. We define the indicator function 1A of A
by

1A : Ω → R, ω 7→

{
1, if ω ∈ A,

0, if ω ̸∈ A.

Show that 1A is (F,B(R))-measurable.

Theorem 1.41. Let f : Ω1 → Ω2 be a F1-F2-measurable mapping and g : Ω2 → Ω3 a F2-F3-
measurable mapping. Then g ◦ f : Ω1 → Ω3 is a F1-F3-measurable mapping.

Proof. For all A ⊆ Ω3 (in particular, for all A ∈ F3),

(g ◦ f)−1(A) = f−1(g−1(A)).

This yields the claim.

Theorem 1.42. Let F2 = σ(A) for a system of sets A ⊆ 2Ω2. A mapping f : Ω1 → Ω2 is
F1-F2-measurable if and only if

f−1(A) ∈ F1, for all A ∈ A.

Proof. Let
A := {A ⊆ Ω2 | f−1(A) ∈ F1}.

A is a σ-field; see Example 1.2 (2.). We have to show that F2 ⊆ A. For this, it is sufficient to
show that A ⊆ A, but this holds by assumption.

Exercise 1.43. Let a ∈ R. Show that f : R → R, x 7→ x+ a is B(R)-B(R)-measurable.

Note that we only need sets Ω1, Ω2 and σ-fields to define measurability of mappings. The
term MEASUrability might be misleading, because MEASURES are irrelevant in its definition.
The next theorem shows that measurable mappings induce new measures, and in the next
section we will see that measurability enables us to integrate a function with respect to some
measure (i.e. to measure this function).

Theorem 1.44. Let f : Ω1 → Ω2 be a F1-F2-measurable mapping and µ a measure on F1. Then

µf : F2 → [0,∞], B 7→ µ(f−1(B))

is a measure on the σ-field F2 on Ω2. This measure is called the image measure of µ under f .

15



Proof. Due to µf (∅) = µ(f−1(∅)) = µ(∅) = 0, statement (M1) is true. Let (An)n∈N be a
sequence in F2 with Am ∩ An = ∅ for n ̸= m. Due to remark 1.3,

f−1
( ⋃
n∈N

An

)
=

⋃
n∈N

f−1(An).

Am ∩ An = ∅ implies that f−1(An) ∩ f−1(Am) = ∅, so

µf

( ⋃
n∈N

An

)
= µ

(
f−1

( ⋃
n∈N

An

))
= µ

( ⋃
n∈N

f−1(An)
)
=

∑
n∈N

µ(f−1(An)) =
∑
n∈N

µf (An)

and we obtain (M2).

Exercise 1.45. We consider the mapping f : R → R, x 7→ x2. What is the image measure of
the Dirac measure δ5 under f? What is the image measure of the counting measure under f?

If the σ-fields are clear from the context, we simply call a mapping f : Ω1 → Ω2 measurable
instead of F1-F2-measurable. On Rd one (almost) always takes the Borel σ-field B(Rd) as σ-field,
unless it is defined differently explicitly.

Let now Ω be a set and F a σ-field on Ω. To us, functions f : Ω → R̄ are of particular
interest, where R̄ := R ∪ {+∞,−∞}. Usually we define on R̄ the σ-field B̄, given by

B̄ := {A ⊆ R̄ | A ∩ R ∈ B(R)}.

Proposition 1.46. A mapping f : Ω → R̄ is measurable (i.e. F-B̄-measurable) if and only if
one of the following equivalent conditions holds:

{ω | f(ω) ≤ t} ∈ F1 for all t ∈ R,
{ω | f(ω) < t} ∈ F1 for all t ∈ R,
{ω | f(ω) ≥ t} ∈ F1 for all t ∈ R,
{ω | f(ω) > t} ∈ F1 for all t ∈ R.

Proof. We show that the system of sets Ē = {[−∞, a] | a ∈ R} generates the σ-field B̄, so
that 1.42 implies the first condition. With analogous proofs one can also show that the sets
{[−∞, a) | a ∈ R}, {[a,∞] | a ∈ R}, {(a,∞] | a ∈ R} generate B̄, which gives the other
conditions.

Clearly, Ē ⊆ B̄, so also σ(Ē) ⊆ B̄. For a, b ∈ R with a < b, it holds (a, b] = [−∞, b]\[−∞, a] ∈
σ(Ē), so B(R) ⊆ σ(Ē). Also, {−∞} =

⋂
n∈N[−∞,−n] ∈ σ(Ē), {+∞} =

⋂
n∈N[n,∞] ∈ σ(Ē).

Let now A ∈ B̄. Then A ∩ R ∈ B(R) ⊆ σ(Ē) and

A = (A ∩ R) ∪ (A ∩ {+∞,−∞}) ∈ σ(Ē).

For sets of the form {ω ∈ Ω | f(ω) has property E(w)}, we use the abbreviation

{f has property E} = {ω ∈ Ω | f(ω) has property E(ω)},

for example {f > 0} = {ω ∈ Ω | f(ω) > 0}. Sometimes, it is better to use the complete
notation so as not to be confused by the abbreviations!
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Theorem 1.47. Let f, g : Ω → R be measurable mappings. Then the sets {f < g}, {f ≤ g},
{f = g}, {f ̸= g} are all contained in F.

Proof. Clearly,

{f < g} =
⋃
r∈Q

(
{f < r} ∪ {r < g}

)
.

Due to Theorem 1.46, all sets of the type {f < r}, {r < g} for r ∈ Q in are contained in the
σ-field F, so also the countable union over Q. Moreover, {f ≤ g} = {f > g}c, {f = g} = {f ≤
g} ∩ {f ≥ g} and {f ̸= g} = {f = g}c.

Theorem 1.48. Let f, g : Ω → R̄ be measurable mappings, c ∈ R. Then,

1. the function cf : Ω → R̄, ω 7→ cf(ω) is measurable.

2. the function f + g : Ω → R̄, ω 7→ f(ω) + g(ω) is measurable.

Proof. If c = 0, then the first claim is clearly true. If c > 0 and a ∈ R, then for all t ∈ R,

{cf + a ≤ t} = {f ≤ (t− a)/c} ∈ F,

which implies the first claim and the measurability of cf + a. The case c < 0 is analogous. For
all t ∈ R,

{f + g ≤ t} = {f ≤ −g + t} ∈ F,

because −g + t is measurable due to the above considerations and Theorem 1.47.

Theorem 1.49. Let (fn)n∈N be a sequence of measurable sets, fn : Ω → R̄. Then,

1. infn≥1 fn and supn≥1 fn are measurable,

2. lim infn→∞ fn and lim supn→∞ fn are measurable.

Proof. 1. Follows by {supn≥1 fn ≤ t} =
⋂

n≥1{fn ≤ t} and similarly {infn≥1 fn ≥ t} =⋂
n≥1{fn ≥ t}.

2. It holds
lim sup
n→∞

fn = lim
n→∞

sup
m≥n

fm = inf
n

sup
m≥n

fm.

Use (1.). The claim for lim inf follows by similar arguments.

Theorem 1.50. Every continuous function f : Rd → Rk is measurable.

Proof. Preimages of open sets under continuous mappings are open.

The reverse statement of Theorem 1.50 is wrong. There are many more measurable map-
pings than there are continuous mappings; see the exercises.
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Chapter 2

Integration and product measures

Bernhard Riemann
1826–1866

Henry Léon Lebesgue
1875–1941

2.1 Integration with respect to measures

Let Ω be a set, F a σ-field on Ω and µ a measure on (Ω,F).

2.1.1 Integration of non-negative stepfunctions

Definition 2.1. A mapping f : Ω → [0,∞] is called non-negative stepfunction, if it is F-
measurable and only takes finitely many values.

Definition 2.2. For a set A ⊆ Ω we define the indicator function

1A : Ω → {0, 1}, ω 7→

{
1, if ω ∈ A,

0, if ω ̸∈ A.

A partition of Ω is a set of sets (Cj)j∈J such that Cj ∩ Ci = ∅ for j ̸= i and
⋃

j∈J Cj = Ω.

Proposition 2.3. 1. Let f be a non-negative stepfunction. Then there exists a partition
A1, . . . , An ∈ F and numbers c1, . . . , cn ∈ [0,∞], such that

f(ω) =
n∑

k=1

ck1Ak
(ω), ω ∈ Ω.

2. Let B1, . . . , Bn ∈ F and d1, . . . , dn ∈ [0,∞]. Then f =
∑n

k=1 dk1Bk
is a non-negative

stepfunction.

Proof. Exercise.

Lemma 2.4. Let f be a non-negative stepfunction. For two representations

f =
n∑

k=1

ck1Ak
=

m∑
l=1

dl1Bl
,

it holds
n∑

k=1

ckµ(Ak) =
m∑
l=1

dlµ(Bl).
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Proof. We can assume without loss of generality that the families of sets (Ak)k∈{1,...,n} and
(Bl)l∈{1,...,m} are partitions of Ω, because any finite family of sets can be separated into parti-
tions.

By assumption,

n∑
k=1

ckµ(Ak) =
n∑

k=1

ckµ(Ak ∩ Ω) =
n∑

k=1

ckµ
(
Ak ∩

m⋃
l=1

Bl

)
=

n∑
k=1

ckµ
( m⋃

l=1

(Ak ∩Bl)
)
=

n∑
k=1

m∑
l=1

ckµ(Ak ∩Bl).

If Ak∩Bl ̸= ∅, then f(ω) = ck = dl for ω ∈ Ak∩Bl, so in any case ckµ(Ak∩Bl) = dlµ(Ak∩Bl).
Hence,

n∑
k=1

ckµ(Ak) =
n∑

k=1

m∑
l=1

ckµ(Ak ∩Bl) =
n∑

k=1

m∑
l=1

dlµ(Ak ∩Bl) =
m∑
l=1

dlµ(Bl).

Lemma 2.4 justifies the following definition.

Definition 2.5. The µ-integral of a non-negative stepunction f =
∑n

k=1 ck1Ak
is defined as∫

f dµ :=
n∑

k=1

ckµ(Ak) ∈ [0,∞].

Proposition 2.6. Let f , g be two non-negative stepfunctions, α ∈ [0,∞]. Then,

1.
∫
(αf) dµ = α

∫
f dµ,

2.
∫
(f + g) dµ =

∫
f dµ+

∫
g dµ,

3. f ≤ g =⇒
∫
f dµ ≤

∫
g dµ.

Proof. Exercise. Hint: Use representations of f and g as in Proposition 2.3, (1.).

Example 2.7. Let (an)n∈N and (xn)n∈N be sequences of real numbers with an ≥ 0. We consider
the measure µ =

∑∞
n=1 anδxn on R. Then for a non-negative stepfunction f =

∑m
k=1 ck1Ak

,∫
f dµ =

m∑
k=1

ckµ(Ak) =
m∑
k=1

ck

∞∑
n=1

anδxn(Ak) =
∞∑
n=1

an

m∑
k=1

ck1Ak
(xn) =

∞∑
n=1

anf(xn).

Exercise 2.8. Is the function

f : R → R, x 7→

{
1, if x ∈ Q,

0, if x ̸∈ Q,

a non-negative stepfunction? If yes, what is its integral with respect to the Lebesgue measure
L1? What is its integral with respect to the Dirac measure δ1? What is its integral with respect
to µ =

√
2δ1 + δ√2?
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2.1.2 Integration of non-negative functions

Notation. Let (fn)n∈N be a sequence of functions, fn : Ω → R̄. We call (fn)n∈N a monotone
increasing sequence, if fn(ω) ≤ fn+1(ω), ω ∈ Ω, and we write fn ↑. Because limn→∞ fn(ω) =
supn fn(ω) =: f(ω) ∈ R̄, it is often written fn ↑ f , if there is a notation for the limit (in this
case f).

The following theorem shows that non-negative stepfunctions are useful for the approxima-
tion of general functions.

Theorem 2.9. For any measurable function f ≥ 0 there exist non-negative stepfunctions fn
such that fn ↑ f , that is, fn(ω) ≤ fn+1(ω) and

f(ω) = lim
n→∞

fn(ω) for all ω ∈ Ω.

Proof. We define

fn =
n2n−1∑
k=0

k2−n
1
A

(n)
k

+ n1B(n) ,

with

A
(n)
k = {ω ∈ Ω | k2−n ≤ f(ω) < (k + 1)2−n}

B(n) = {ω ∈ Ω | f(ω) ≥ n}.

Lemma 2.10. Let g and fn, n ≥ 1 be non-negative stepfunctions and fn ↑ f ≥ g. Then,

lim
n→∞

∫
fn dµ ≥

∫
g dµ. (2.1)

Corollary 2.11. Let f : Ω → [0,∞] be measurable and (fn)n∈N, (f̄m)m∈N two sequences of
non-negative stepfunctions fn ↑ f and f̄m ↑ f . Then,

lim
n→∞

∫
fn dµ = lim

m→∞

∫
f̄m dµ.

Proof. Due to Lemma 2.10 and fn ↑ f ≥ f̄m for all m ∈ N, we know that

lim
n→∞

∫
fn dµ ≥

∫
f̄m dµ,

so also limn→∞
∫
fn dµ ≥ limm→∞

∫
f̄m dµ. Interchanging the roles of fn and f̄m proves the

claim.

Corollary 2.11 shows that the following definition is sensible.

Definition 2.12. The µ-integral of a non-negative measurable function f is defined as∫
f dµ = lim

n→∞

∫
fn dµ ∈ [0,∞],

where (fn)n∈N is a sequence of non-negative stepfunctions with fn ↑ f . Such a sequence exists
by Theorem 2.9.
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Corollary 2.13. The integral of a measurable non-negative function f equals the supremum of∫
g dµ over all non-negative stepfunctions g ≤ f .

Proof of lemma 2.10. First notice that the limit above exists due to monotonicity of the se-
quence (

∫
fn dµ)n∈N. It may be equal to +∞. Let g =

∑m
l=1 dl1Bl

.

Case 1: If
∫
g dµ < ∞, then dlµ(Bl) < ∞ for all l ∈ {1, . . . ,m}. We can assume without loss

of generality that dl ∈ (0,∞) and µ(Bl) ∈ (0,∞) for all l ∈ {1, . . . ,m}. We set B̃ :=
⋃m

l=1Bl.
Then, µ(B̃) ≤

∑m
l=1 µ(Bl) < ∞.

For ε > 0 we define
An := {ω ∈ B̃ | fn(ω) ≥ g(ω)− ε}.

Then An ⊆ An+1 and
⋃

n An = B̃ (short: An ↑ B̃) and

fn = fn1An + fn1Ac
n
≥ fn1An ≥ (g − ε)1An .

The integral of non-negative stepfunctions is monotone and linear, so∫ (
fn + ε1An

)
dµ =

∫
fn dµ+ εµ(An)

≥
∫

g1An dµ =
m∑
l=1

dlµ(Bl ∩ An).

For n → ∞ we therefore obtain

lim
n→∞

∫
fn dµ+ εµ(B̃) ≥

m∑
l=1

dlµ(Bl) =

∫
g dµ.

Since µ(B̃) < ∞, the claim follows by ε → 0.

Case 2: Let now
∫
g dµ = ∞. Then there exists l0 such that dl0µ(Bl0) = ∞ and 0 < dl ≤ ∞,

0 < µ(Bl0) ≤ ∞. We choose x, y with 0 < x < dl0 and 0 < y < µ(Bl0). Define An := {ω ∈
Bl0 | fn(ω) > x}. Because of fn ↑ f ≥ g, it follows that An ↑ Bl0 , so µ(An) > y for all n large
enough. For these n it now follows that∫

fn dµ ≥ xµ(An) > xy,

so also limn→∞
∫
fn dµ ≥ xy. If dl = ∞, then let x → ∞; if µ(Bl0) = ∞, then let y → ∞.

Proposition 2.14. Let f, g : Ω → [0,∞] be measurable functions. Then,

1.
∫
cf dµ = c

∫
f dµ for all c ≥ 0,

2. f ≤ g =⇒
∫
f dµ ≤

∫
g dµ,

3.
∫
(f + g) dµ =

∫
f dµ+

∫
g dµ.

Proof. Exercise.

Theorem 2.15 (Monotone convergence). Let f , fn, n ∈ N be measurable non-negative func-
tions with fn ↑ f . Then,

lim
n→∞

∫
fn dµ =

∫
f dµ.
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Proof. For each n let (f
(k)
n )k∈N be a sequence of non-negative stepfunctions with f

(k)
n ↑ fn,

k → ∞. We define
g(k) := max

m∈{1,...,k}
f (k)
m .

The functions g(k) are also non-negative stepfunctions. It holds f
(k−1)
m ≤ f

(k)
m ≤ fm, so

g(k−1) = max
m∈{1,...,k−1}

f (k−1)
m ≤ max

m∈{1,...,k}
f (k)
m = g(k) ≤ max

m∈{1,...,k}
fm = fk.

Let g = limn→∞ g(n) and m ∈ N. For k ≥ m, f
(k)
m ≤ g(k), and so with k → ∞, it follows that

fm ≤ g ≤ f

for all m ∈ N, so f = g. With Proposition 2.14 (2.) and g(n) ≤ fn we get∫
f dµ =

∫
g dµ = lim

n→∞

∫
g(n) dµ ≤ lim

n→∞

∫
fn dµ.

Because of fn ≤ f , it holds
∫
fn dµ ≤

∫
f dµ, which proves the claim.

Example 2.16 (Continuation of example 2.7). Let again µ =
∑∞

k=1 akδxk
. Let f be a measur-

able non-negative function and fn ↑ f be non-negative stepfunctions. Then due to Theorem
2.15, ∫

f dµ = lim
n→∞

∫
fn dµ = lim

n→∞

∞∑
k=1

akfn(xk) =
∞∑
k=1

akf(xk).
1

We see that sums can be interpreted as integrals.

Theorem 2.17 (Fatou’s Lemma). Let fn, n ∈ N be measurable non-negative functions. Then,∫
lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
fn dµ.

Proof. Due to the theorem on measurability of limits (Theorem 1.49), f := lim infn→∞ fn ≥ 0
is a measurable function. Define gn := infm≥n fm. Then limn→∞ gn = lim infn→∞ fn = f , and
because gn ≤ gn+1, we can apply the monotone convergence theorem (Theorem2.15), which
gives ∫

f dµ =

∫
lim
n→∞

gn dµ = lim
n→∞

∫
gn dµ.

Since gn ≤ fm for n ≤ m, we obtain∫
gn dµ ≤ inf

m≥n

∫
fm dµ =⇒ lim

n→∞

∫
gn dµ ≤ lim

n→∞
inf
m≥n

∫
fm dµ = lim inf

n→∞

∫
fn dµ.

Exercise 2.18. Let (An)n∈N ⊆ F. Show that lim infn→∞ 1An is the indicator function of the
set

lim inf
n→∞

An :=
∞⋃
n=1

⋂
m≥n

Am.

Conclude that
µ(lim inf

n→∞
An) ≤ lim inf

n→∞
µ(An).

1In the last step the limits can be interchanged because limn→∞
∑∞

k=1 akfn(xk) =

limn→∞ limN→∞
∑N

k=1 akfn(xk) = supn∈N supN∈N
∑N

k=1 akfn(xk) = supN∈N supn∈N
∑N

k=1 akfn(xk) =

supN∈N
∑N

k=1 akf(xk) =
∑∞

k=1 akfn(xk).
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2.1.3 Integrals of measurable functions

Let now f : Ω → R̄ be a measurable function. Then also f+ := max{f, 0} and f− := −min{f, 0}
are measurable, and they are non-negative. Moreover,

f = f+ − f− und |f | = f+ + f−.

Definition 2.19. Let f : Ω → R̄ be a measurable function. We say that the integral of f exists,
if at least one of the values

∫
f+ dµ,

∫
f− dµ is finite. In this case, we define∫

f dµ :=

∫
f+ dµ−

∫
f− dµ ∈ [−∞,∞].

We call f µ-integrable if
∫
f+ dµ < ∞ and

∫
f− dµ < ∞. Because |f | = f+ + f−, the function

f is integrable if and only if
∫
|f | dµ < ∞.

Proposition 2.20. Let f, g : Ω → R̄ be integrable functions. Then,

1.
∫
cf dµ = c

∫
f dµ for all c ∈ R;

2. f ≤ g ⇒
∫
f dµ ≤

∫
g dµ;

3. f + g is integrable too, and
∫
(f + g) dµ =

∫
f dµ+

∫
g dµ;

4.
∣∣ ∫ f dµ| ≤

∫
|f | dµ.

Proof. For (1.)-(3.), apply the definition of the integral and Proposition 2.14. For (4.), use that
−|f | ≤ f ≤ |f | and apply (2.).

Definition 2.21 (Null sets). A set N ∈ F is called µ null set, if µ(N) = 0.

Definition 2.22 (Properties ’almost everywhere’). Let E(ω) be a property which may be true
or not for each single ω ∈ Ω. We say that is true E µ almost everywhere or µ almost surely, if
there exists a µ null set N ∈ F such that E is true for all ω ∈ Ω \N .

Example 2.23. Let f, g be measurable functions.

1. ,f = g µ almost everywhere means:
µ({f ̸= g}) = µ({ω | f(ω) ̸= g(ω)}) = 0, so there exists N := {ω | f(ω) ̸= g(ω)} ∈ F
with µ(N) = 0 and f(ω) = g(ω) for all ω ∈ Ω \N .

2. limn→∞ fn exists µ almost everywhere means:
The set {ω | limn→∞ fn(ω) does not exist} is a µ null set.

Proposition 2.24. Let f, g : Ω → R̄ be integrable functions. Then,

1. If f = 0 µ almost everywhere, then
∫
f dµ = 0.

2. If f = g µ almost everywhere, then
∫
f dµ =

∫
g dµ.

3. If f ≥ 0 µ almost everywhere and
∫
f dµ = 0, then f = 0 µ almost everywhere.
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Proof. 1. Let first f ≥ 0. Measurability of f implies that N := {f ̸= 0} ∈ F, and by
assumption µ(N) = 0. Set g = ∞1N . Then f ≤ g, so

0 ≤
∫

f dµ ≤
∫

g dµ = ∞ · 0 = 0.

If f is an arbitrary integrable function with f = 0 µ almost everywhere, then f+, f− are
non-negative measurable functions with f+ = 0 µ almost everywhere and f− = 0 µ almost
everywhere.

2. Apply (1.) to f − g.

3. If f ≥ 0 µ almost everywhere, then f− = 0 µ almost everywhere, so it only remains to
show that f+ = 0 µ almost everywhere. We define N := {f+ > 0} and An := {f+ ≥ 1/n},
n ∈ N. Then N,An ∈ F due to measurability of f+, and also N =

⋃
n∈N An. We will show

that µ(An) = 0, which concludes the proof.
Due to (1.) we obtain that

∫
f− dµ = 0, and f+ ≥ (1/n)1An , so

0 =

∫
f dµ =

∫
f+ dµ ≥

∫
1

n
1An dµ =

1

n
µ(An).

Exercise 2.25. Let f : Ω → R̄ be a µ-integrable function. Show that f is finite µ almost
everywhere.

2.1.4 Riemann and Lebesgue integrals

Let now Ω = Rd with the Borel σ-field F = B(Rd) and the Lebesgue measure µ = Ld; see
Section 1.3. Let f : Rd → R̄ be a Ld integrable function. The integral∫

f(x) dx :=

∫
f dLd =

∫
f(x) dLd(x) =

∫
f(x1, . . . , xd) dLd(x1, . . . , xd)

is called the Lebesgue integral of f . For Borel sets B ∈ B(Rd) we write∫
B

f(x) dx :=

∫
1B(x)f(x) dx.

To compute Lebesgue integrals, you will use your knowledge about Riemann integrals, which
is justified by the following theorem.

Theorem 2.26. Let f : [a, b] → R be a measurable function, −∞ < a < b < ∞. If f is
Riemann integrable, then f is Lebesgue integrable and the integrals are equal.

Proof. See Bauer, Mass- und Integrationstheorie, Satz 16.4.

The reverse statement of Theorem 2.26 is not true, as the following example shows.

Example 2.27. Es sei

f : [0, 1] → R, x 7→

{
1, x ∈ Q,

0, x ̸∈ Q.

f is measurable and equals 0 almost everywhere. So f is Lebesgue integrable with
∫
[0,1]

f(x) dx =

0. However, f is not Riemann integrable.
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2.2 Important theorems on integrals

Let Ω be a set, F a σ-field on Ω and µ a measure on (Ω,F).

Theorem 2.28 (Hölder’s inequality). Let p > 1, q > 1 with 1
p
+ 1

q
= 1, and f, g : Ω → R̄

measurable functions. Then,∫
|fg| dµ ≤

(∫
|f |p dµ

)1/p(∫
|g|q dµ

)1/q

. (2.2)

Proof. Let a > 0. Consider the function

h : (0,∞) → R, b 7→ ap

p
+

bq

q
− ab.

One can show that h attains a global minimum at b0 = a
1

q−1 and h(b0) = 0, so

ap

p
+

bq

q
≥ ab, for all a, b ≥ 0. (2.3)

If
∫
|f |p dµ or

∫
|g|q dµ equal +∞, then (2.2) is certainly true. If

∫
|f |p dµ = 0 (or

∫
|g|q dµ = 0),

then |f | = 0 almost surely, so also |fg| = |f ||g| = 0 almost surely and (2.2) is true. We can
therefore assume that

0 <

∫
|f |p dµ < ∞, 0 <

∫
|g|q dµ < ∞.

We set

a =
|f |

(
∫
|f |p dµ)1/p

, b =
|g|

(
∫
|g|q dµ)1/q

and apply (2.3). This gives

|fg| ≤
(1
p

|f |p∫
|f |p dµ

+
1

q

|g|q∫
|g|q dµ

)(∫
|f |p dµ

)1/p(∫
|g|q dµ

)1/q

.

Computing the integral on both sides yields Hölder’s inequality.

Corollary 2.29 (Cauchy-Schwarz inequality). For measurable functions f, g : Ω → R̄,∫
|fg| dµ ≤

√∫
f 2 dµ

∫
g2 dµ.

Theorem 2.30 (Lebesgue convergence theorem, dominated convergence theorem). Let (fn)n∈N
be a sequence of integrable functions such that limn→∞ fn =: f µ exists µ almost everywhere.
Let g be an integrable function with |fn| ≤ g for all n ∈ N. Then,∫

f dµ = lim
n→∞

∫
fn dµ

so in particular, f is integrable. The function g is called dominating function.
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Proof. Let A = {ω | limn→∞ fn(ω) = f(ω)}. Then A ∈ F and µ(Ac) = 0. On A, we know
that |f | ≤ g almost surely. Because µ(Ac) = 0 it follows that |f | ≤ g µ almost surely, and
integrability of g implies integrability of f .
Set f̃ := f1A and f̃n := fn1A. Then f̃n → f̃ for all ω and

∫
f dµ =

∫
f̃ dµ as well as∫

fn dµ =
∫
f̃n dµ. So we can assume that fn converges to f for all ω, and drop the ˜ for

notational convenience.
Because |fn − f | ≤ g + |f |, the Fatou Lemma (Theorem 2.17) implies that∫

g + |f | dµ =

∫
lim inf
n→∞

(g + |f | − |fn − f |) dµ ≤ lim inf
n→∞

∫
(g + |f | − |fn − f |) dµ

=

∫
g + |f | dµ− lim sup

n→∞

∫
|fn − f | dµ.

This gives

0 ≥ lim sup
n→∞

∫
|fn − f | dµ ≥ lim sup

n→∞
|
∫

fn dµ−
∫

f dµ| ≥ 0.

Theorem 2.31 (Integration with respect to image measures). Let g : Ω → R be a measurable
function and µg its image measure. For any measurable function f : R → [0,∞],∫

R
f dµg =

∫
Ω

f ◦ g dµ. (2.4)

Proof. First verify this formula for non-negative stepfunctions. Notice that if f : R → [0,∞] is
a non-negative stepfunction, then f ◦ g : Ω → [0,∞] is also a non-negative stepfunction, but on
Ω. Let (fn)n∈N be a sequence of non-negative stepfunctions with fn ↑ f . Then also fn◦g ↑ f ◦g,
so the formula follows by the definition of the integral.

Corollary 2.32. Formula (2.4) also holds for integrable f : R → R̄.

Proof. Decompose into positive and negative part.

The following proposition shows that one can use non-negative measurable functions to
define new measures.

Proposition 2.33. Let µ be a measure on (Ω,F), and let f : Ω → [0,∞] be a measurable
function. Then

λ(A) :=

∫
1Af dµ =

∫
A

f dµ

defines a measure on (Ω,F).

Proof. Exercise.

Definition 2.34. Let µ, λ be measures on (Ω,F). If the measure λ is given by

λ(A) =

∫
A

f dµ

for a measurable function f : Ω → [0,∞], then f is called a density of λ with respect to µ.
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Theorem 2.35 (Integration with respect to measures with densities). Assume that the measure
λ admits a density f with respect to µ. Then for each non-negative measurable (or integrable)
function g, ∫

g dλ =

∫
gf dµ.

Proof. Let first g =
∑n

k=1 ck1Ak
be a non-negative stepfunction. Then,∫

g dλ =
n∑

k=1

ckλ(Ak) =
n∑

k=1

ck

∫
1Ak

f dµ =

∫ n∑
k=1

ck1Ak
f dµ =

∫
gf dµ.

Let g be a non-negative measurable function and (gn)n∈N be a sequence of non-negative step-
functions gn ↑ g. Then also gnf ↑ gf , so the claim follows by the monotone convergence
theorem (Theorem 2.15). The case for integrable g follows by decomposition into positive and
negative part.

2.3 Product of two measures

Consider two measure spaces (Ω1,F1, µ1) and (Ω2,F2, µ2). We are interested in the product set

Ω = Ω1 × Ω2 = {(ω1, ω2) | ω1 ∈ Ω1, ω2 ∈ Ω2}.

Definition 2.36. The product σ-field F1 ⊗ F2 is given by

F1 ⊗ F2 := σ({A1 × A2 | A1 ∈ F1, A2 ∈ F2}).

Remark 2.37. Let Ω̃ be a set and F a σ-field on Ω̃. For two mappings f : Ω̃ → Ω1, g : Ω̃ → Ω2

we define the σ-field generated by f and g by

σ(f, g) = σ
(
σ(f) ∪ σ(g)

)
,

where σ(f) = {f−1(B) | B ∈ F1}, σ(g) = {g−1(B) | B ∈ F2} are defined as in Example 1.2,
part 2. The σ-field σ(f, g) is the smallest σ-field A such that f is A-F1-measurable and g is
A-F2-measurable.

Lemma 2.38. Let pi : Ω1 × Ω2 → Ωi, (ω1, ω2) 7→ ωi, i = 1, 2 be the i-th projection mapping.
The product σ-field F1⊗F2 is the smallest σ-field A such that pi is A-Fi-measurable for i = 1, 2.

Proof. Let A1 ∈ F1. Then,
p−1
1 (A1) = A1 × Ω2 ∈ F1 ⊗ F2,

so σ(p1) ⊆ F1 ⊗ F2. Analogously σ(p2) ⊆ F1 ⊗ F2, and therefore σ(p1, p2) ⊆ F1 ⊗ F2. On the
other hand, for A1 ∈ F1, A2 ∈ F2,

A1 × A2 = p−1
1 (A1) ∩ p−1

2 (A2) ∈ σ(p1, p2),

so F1 ⊗ F2 ⊆ σ(p1, p2). The claim follows by Remark 2.37.

Proposition 2.39. Let A1, A2 be generators of F1, F2, that is, F1 = σ(A1), F2 = σ(A2).
Assume that A1 contains a sequence E1,n ↑ Ω1 and A2 contains a sequence E2,n ↑ Ω2. Then,

F1 ⊗ F2 = σ({A1 × A2 | A1 ∈ A1, A2 ∈ A2}).
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Proof. We define E := {A1 × A2 | A1 ∈ A1, A2 ∈ A2}. For i = 1, 2,

pi is F1 ⊗ F2-Fi-measurable. ⇐⇒ p−1
i (Ai) ∈ F1 ⊗ F2, ∀Ai ∈ Ai.

For i = 1 and A1 ∈ A1, A1 ×E2,n ∈ E is true for all n ∈ N, so A1 ×E2,n ↑ A1 ×Ω2 ∈ σ(E), and
so p−1

1 (A1) = A1 × Ω2 ∈ σ(E), hence p1 is σ(E)-A1-measurable, and p2 is σ(E)-A2-measurable
by analogous arguments. Due to Lemma 2.38, we get F1 ⊗ F2 ⊆ σ(E).

Example 2.40. The Borel σ-field B(R2) on R2 is generated by the set of rectangles (a,b],
a = (a1, a2),b = (b1, b2) ∈ R2, and

(a,b] = (a1, b1]× (a2, b2],

so by Proposition 2.39, we obtain that B(R2) = B(R)⊗ B(R).

We now want to define a measure π on (Ω,F1 ⊗ F2) in such a way that

π(A1 × A2) = µ1(A1)µ2(A2), A1 ∈ F1, A2 ∈ F2. (2.5)

This is possible, but requires some preliminary results.

Definition 2.41. A measure µ on F is called σ-finite, if there exits a sequence An ↑ Ω with
µ(An) < ∞.

Remark. All important measures in this lecture are σ-finite, in particular the Lebesgue measure,
measures with densities with respect to the Lebesgue measure, and discrete measures with finite
values.

Theorem 2.42 (Uniqueness of product measures). Let A1, A2 be ∩-stable generators of F1,
F2, so F1 = σ(A1), F2 = σ(A2). Assume further that A1 contains a sequence A1,n ↑ Ω1,
µ1(A1,n) < ∞, and A2 contains a sequence A2,n ↑ Ω2, µ2(A2,n) < ∞. Then there exists at most
one measure π on F1 ⊗ F2 with property (2.5).

Proof. The system of sets {A1 × A2 | A1 ∈ A1, A2 ∈ A2} is also ∩-stable. It generates F1 ⊗ F2

due to Proposition 2.39. It holds A1,n × A2,n ↑ Ω = Ω1 × Ω2, and by (2.5) we obtain

π(A1,n × A2,n) = µ1(A1,n)µ2(A2,n) < ∞

so the claim follows by Theorem 1.35.

Definition 2.43. Let A ⊂ Ω1 × Ω2. For each ω1 ∈ Ω1 we define the ω1-cut of A by

Aω1 := {ω2 ∈ Ω2 | (ω1, ω2) ∈ A} ⊆ Ω2

and analogously for ω2 ∈ Ω2, ω2A := {ω1 ∈ Ω1 | (ω1, ω2) ∈ A} ⊆ Ω1.

Lemma 2.44. For A ∈ F1 ⊗ F2, it holds Aω1 ∈ F2 and ω2A ∈ F1 for all ω1 ∈ Ω1, ω2 ∈ Ω2.

Proof. Let ω1 ∈ Ω1. We define

A := {A ⊆ Ω | Aω1 ∈ F2}.

A is a σ-field (Exercise). For all A1 ∈ F1, A2 ∈ F2, it holds A1 × A2 ∈ A, so

F1 ⊗ F2 ⊆ A.
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Lemma 2.45. Assume that µ1, µ2 are σ-finite. Then for all A ∈ F1 ⊗ F2, the function

sA : Ω1 → [0,∞], ω1 7→ µ2(Aω1)

is F1-measurable, and analogously, the function

tA : Ω2 → [0,∞], ω2 7→ µ1(ω2A)

is F2-measurable.

Proof. We first show that sA is F1-measurable if µ2(Ω2) < ∞. Define

D := {A ∈ F1 ⊗ F2 | sA is F1-measurable.}

and show that D is a Dynkin system containing all sets of the form A1×A2, A1 ∈ F1, A2 ∈ F2.
Since {A1 × A2 | A1 ∈ F1, A2 ∈ F2} is ∩-stable, D = F1 ⊗ F2 follows by Theorem 1.15. Let
µ2 be σ-finite and Bn → Ω2 with µ2(Bn) < ∞ for all n ∈ N. For n ∈ N, µ2,n : F2 →
[0,∞), A 7→ µ2(A ∩ Bn) is a finite measure on F2. So for all A ∈ F1 ⊗ F2, the mapping
Ω1 → [0,∞], ω1 7→ µ2,n(Aω1) is F1-measurable, and

sup
n∈N

µ2,n(Aω1) = sup
n∈N

µ2(Aω1 ∩Bn) = µ2(Aω1).

So also Ω1 → [0,∞], ω1 7→ µ2(Aω1) is F1-measurable.

Theorem 2.46 (Existence of product measures). Assume that µ1, µ2 are σ-finite. There is a
unique measure π on F1 ⊗ F2 with property (2.5). For each A ∈ F1 ⊗ F2,

π(A) =

∫
µ2(Aω1) dµ1(ω1) =

∫
µ1(ω2A) dµ2(ω2).

We denote the product measure π by µ1 ⊗ µ2.

Proof. Let A ∈ F1 ⊗ F2. Due to Lemma 2.45, sA is a non-negative F1-measurable function on
Ω1. We define

π(A) :=

∫
sA dµ1.

Verify that π is a measure on F1 ⊗ F2 (Exercise). We now verify property (2.5). Let A1 ∈ F1,
A2 ∈ F2. Then,

π(A1 × A2) =

∫
sA1×A2 dµ1 =

∫
1A1µ2(A2) dµ1 = µ1(A2)µ2(A2).

Another measure on F1 ⊗ F2 is obtained by

π′(A) =

∫
tA dµ2 =

∫
µ1(ω2A) dµ2(ω2).

It always satisfies (2.5), so π = π′ by the theorem on uniqueness of product measures (Theorem
2.42).

Example 2.47. For the Lebesgue measure L2 on R2, we obtain that with (a,b] = (a1, b1] ×
(a2, b2],

L2((a,b]) = (b1 − a1)(b2 − a2) = L1((a1, b1])L1((a2, b2]),

so L2 = L1 ⊗ L1.
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Theorem 2.48 (Fubini’s Theorem). Let µ1, µ2 be σ-finite measures. Let f : Ω = Ω1 × Ω2 →
[0,∞] be a F1 ⊗ F2-measurable function. Then the function ω1 7→

∫
Ω2

f(ω1, ω2) dµ2(ω2) is
F1-measurable, and analogously for the other component, and∫

f d(µ1 ⊗ µ2) =

∫ ∫
f(ω1, ω2) dµ1(ω1) dµ2(ω2) =

∫ ∫
f(ω1, ω2) dµ2(ω2) dµ1(ω1).

An analogous statement holds for integrable functions.

Proof. See Bauer, Mass- und Integrationstheorie, Satz 23.3.

Remark 2.49. One can show that the product operation on σ-fields is associative, i.e. F1⊗(F2⊗
F3) = (F1 ⊗ F2) ⊗ F3. This justifies writing F1 ⊗ F2 ⊗ F3. For n σ-finite measures µ1, . . . , µn

on F1, . . . ,Fn one can show by induction that there exists a unique product π on F1 ⊗ · · · ⊗ Fn

with
π(A1 × · · · × An) = µ1(A1)× · · · × µn(An)

for all Ai ∈ Fi, i = 1, . . . , n.
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Chapter 3

Radon-Nikodym Theorem

3.1 Uniqueness of densities

Let Ω be a set and F a σ-field on Ω. In Section 1 we have shown the following theorem.

Theorem (Proposition 2.33). Let µ be a measure on (Ω,F), and f : Ω → [0,∞] a measurable
function. Then

λ(A) :=

∫
A

fdµ

defines a measure on (Ω,F).

This theorem motivated the following definition.

Definition (Definition 2.34). Let µ, λ be measures on (Ω,F). If the measure λ is given by

λ(A) =

∫
A

fdµ

for a measurable function f : Ω → [0,∞], then f is called density of λ with respect to µ.

The uniqueness of densities is described by the following theorem.

Theorem 3.1. Let µ be a σ-finite measure and assume that the measure λ admits density
f : Ω → [0,∞] with respect to µ. Then f is µ almost surely unique.

The proof of this theorem uses the following lemma.

Lemma 3.2. A measure µ is σ-finite if and only if there exists a µ-integrable function h : Ω → R
such that 0 < h(ω) < ∞ for all ω ∈ Ω.

Proof. Let µ be σ-finite, i.e. there exists a sequence (An)n∈N ⊆ F with An ↑ Ω and µ(An) < ∞
for all n ∈ N. We define εn := 2−n min{1, 1/µ(An)}. Then the function h :=

∑∞
n=1 εn1An

satisfies the claimed properties (Exercise). On the other hand, if h > 0 is µ-integrable, we set
An := {h ≥ 1/n} ∈ F. Since h > 0, it follows An ↑ Ω, and because 1An ≤ nh, we obtain

µ(An) =

∫
1An dµ ≤ n

∫
h dµ < ∞.
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Proof of Theorem 3.1. Step 1: We assume that λ(Ω) < ∞. Then
∫
fdµ = λ(Ω) < ∞. Let

g : Ω → [0,∞] be another density of λ with respect to µ. Because of
∫
gdµ = λ(Ω) < ∞, the

function g is µ-integrable. Consider

A = {f > g} ∈ F.

Then,

λ(A) =

∫
A

gdµ ≤
∫
A

fdµ = λ(A),

so ∫
A

(f − g)dµ = 0,

which implies that 1A(f − g) = 0 µ almost surely, so µ(A) = 0 because f − g > 0 on A.
Analogous arguments can be used for B = {f < g}.
Step 2: Let now µ(Ω) < ∞, but λ(Ω) = ∞. We use the following Lemma.

Lemma. There is a sequence of disjoint sets (Ωn)n∈N ⊆ F with Ω =
⋃∞

n=1 Ωn and the following
properties:

1. For all A ∈ F,

µ(A ∩ Ω1) = λ(A ∩ Ω1) = 0 or
(
µ(A ∩ Ω1) > 0 and λ(A ∩ Ω1) = ∞.

)
(3.1)

2. For n ≥ 2, λ(Ωn) < ∞.

Let g be another density of λ with respect to µ. We define A := {f > g}. For n ≥ 2, show
as in Step 1 (with A∩Ωn instead of A) that µ(A∩Ωn) = 0. Now we will show that 1Ω1f = ∞
µ almost surely. For k ∈ N,

λ({f ≤ k} ∩ Ω1) =

∫
{f≤k}

1Ω1f dµ ≤ kµ({f ≤ k} ∩ Ω1).

By (3.1) it follows that µ({f ≤ k} ∩ Ω1) = 0.

Proof of the Lemma. We define

Q := {B ∈ F | λ(B) < ∞}, α := sup
B∈Q

µ(B) < ∞.

Let (B′
n)n∈N ⊆ Q with limn→∞ µ(B′

n) = α. Since Q is closed under finite unions, we have that
Bn := B′

1∪ · · · ∪B′
n ∈ Q. Define B0 :=

⋃
n∈N Bn ∈ F. Then Bn ↑ B0 and µ(B0) = α. We define

for n ≥ 2
Ω1 := Ω\B0 Ω2 := B1, Ωn+1 = Bn\Bn−1.

Now we show that (3.1) is satisfied. Let A ∈ F with λ(A ∩ Ω1) < ∞. For all n ∈ N, it holds
Bn ∪ (A ∩ Ω1) ∈ Q, so µ(Bn ∪ (A ∩ Ω1)) ≤ α. Therefore,

α + µ(A ∩ Ω1) = µ(B0) + µ(A ∩ Ω1) = µ(B0 ∪ (A ∩ Ω1)) = lim
n→∞

µ(Bn ∪ (A ∩ Ω1)) ≤ α

which implies that µ(A ∩ Ω1) = 0 and thus (3.1).
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Step 3: Let now µ be σ-finite and h as in Lemma 3.2. The measure

F → [0,∞], A 7→
∫
A

h f dµ

admits density f with respect to the finite measure

ν : F → [0,∞], A 7→
∫
A

h dµ,

so f is unique ν almost everywhere. Because h > 0, the inequality µ(A) > 0 is true if and only
if ν(A) > 0, so f is also µ almost surely unique.

3.2 Existence of densities

We now turn to the question under what conditions a measure λ admits a density with respect
to µ. A necessary condition is the following. Assume that λ admits the density f with respect
to µ. Let A ∈ F be a set with µ(A) = 0, so 1A = 0 µ almost everywhere and therefore 1Af = 0
µ almost everywhere. So,

λ(A) =

∫
1Afdµ = 0.

This motivates the following definition.

Definition 3.3. Let λ, µ be measures on a measurable space (Ω,F). The measure λ is called
absolutely continuous with respect to µ, if for all A ∈ F,

µ(A) = 0 =⇒ λ(A) = 0,

i.e. every µ null set is also a λ null set.

Exercise 3.4. Which of the measures on (R,B(R)) are absolutely continuous with respect to
each other?

µ1 = δ1, µ2 =
∞∑
n=1

δn, µ3 = L1, µ4 = L1(· ∩ [0,∞)).

The following important theorem in probability theory shows that in many cases absolute
continuity is not only a necessary but also a sufficient condition for the existence of densities.

Theorem 3.5 (Radon-Nikodym Theorem). Let λ be a measure and µ a σ-finite meausre on a
measurable space (Ω,F). Then the following statements are equivalent.

1. λ admits a density with respect to µ.

2. λ is absolutely continuous with respect to µ.

The proof requires the following lemma.

Lemma 3.6. Let η and ν be finite measures on (Ω,F) with ν(Ω) < η(Ω). Then there exists a
set Ω′ ∈ F with

ν(Ω′) < η(Ω′)

and
ν(Ω′ ∩ A) ≤ η(Ω′ ∩ A), for all A ∈ F.
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Proof. The mapping
δ : F → R, A 7→ δ(A) := η(A)− ν(A)

is bounded because −ν(Ω) ≤ δ(A) ≤ η(Ω). If infA∈F δ(A) ≥ 0, we can choose Ω′ = Ω and the
proof is complete. Otherwise, define inductively two sequences (An)n∈N and (Ωn)n∈N of sets, as
explained as follows. We set A0 := ∅ and Ω0 := Ω \ A0 = Ω. If now An, Ωn are defined, we set

αn := inf
A∈F

δ(A ∩ Ωn).

If αn ≥ 0, choose An+1 = ∅ and Ωn+1 = Ωn = Ωn \ An+1. If αn < 0, then there exists A ∈ F
with δ(A ∩ Ωn) ≤ αn/2. We define An+1 = A ∩ Ωn and Ωn+1 = Ωn \ An+1.

The sets in the sequence (An)n∈N are pairwise disjoint. Therefore the series
∑∞

n=0 δ(An)
converges (to η(∪An)− ν(∪An)), which implies limn→∞ δ(An) = 0. This gives limn→∞ αn = 0.
We set Ω′ =

⋂∞
n=0Ωn. The sequence (Ωn)n∈N is monotone decreasing, so (by continuity of the

measures η and ν)
lim
n→∞

δ(Ωn) = δ(Ω′).

We now show that Ω′ satisfies the two claimed properties. By construction of the sequence we
know that δ(An) ≤ 0, so

δ(Ωn+1) = δ(Ωn)− δ(An+1) ≥ δ(Ωn) ≥ · · · ≥ δ(Ω0) = δ(Ω) > 0.

This gives δ(Ω′) = limn→∞ δ(Ωn) > 0. Let now A ∈ F. By A ∩ Ω′ = A ∩ Ω′ ∩ Ωn for all n, we
conclude δ(A∩Ω′) ≥ αn for all n, so because limn→∞ αn = 0 we obtain that δ(A∩Ω′) ≥ 0.

Proof of Theorem 3.5. The direction ”‘1. =⇒ 2.”’ was proved before Definition 3.3. We now
show the reverse direction ”‘2. =⇒ 1.”’. The proof is separated into three parts.
Step 1: Assume that the measures µ and λ are finite. Let G be the set of all measurable
functions g : Ω → [0,∞] with ∫

A

gdµ ≤ λ(A), for all A ∈ F.

The set G is non-empty, because it contains the function which is constant zero. For two
functions g, h ∈ G, it also holds max{g, h} ∈ G, because∫

A

max{g, h}dµ =

∫
A∩{g≥h}

gdµ+

∫
A∩{g<h}

hdµ ≤ λ(A ∩ {g ≥ h}) + λ(A ∩ {g < h}) = λ(A).

(3.2)
For all g ∈ G,

∫
gdµ ≤ λ(Ω) < ∞, so also

γ := sup
g∈G

∫
gdµ < ∞

and there exists a sequence (g′n)n∈N ⊆ G with limn→∞
∫
g′ndµ = γ. Because of (3.2),

gn := max{g′1, . . . , g′n} ∈ G

and g′n ≤ gn implies
∫
g′ndµ ≤

∫
gndµ, so also limn→∞

∫
gndµ = γ. The monotone convergence

theorem now yields f := supn gn ∈ G as well as
∫
fdµ = γ. We now show that λ admits the

density f with respect to µ. We define

τ(A) = λ(A)−
∫
A

fdµ, A ∈ F.
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By construction of f , we know that τ(A) ≥ 0, and τ is a finite measure which is absolutely
continuous with respect to µ by assumption. We have to show that τ = 0. Assume for a
contradiction that τ(Ω) > 0. Then µ(Ω) > 0 by absolute continuity and so

β :=
τ(Ω)

2µ(Ω)
> 0,

hence τ(Ω) = 2βµ(Ω) > βµ(Ω). Lemma 3.6 applied to η = τ and ν = βµ yields a set Ω′ ∈ F
with

βµ(Ω′) < τ(Ω′)

and
βµ(Ω′ ∩ A) ≤ τ(Ω′ ∩ A), for all A ∈ F.

We define f0 = f + β1Ω′ . Then f0 ∈ G, because∫
A

f0dµ =

∫
A

fdµ+ βµ(Ω′ ∩ A) ≤
∫
A

fdµ+ τ(A) = λ(A), A ∈ F.

It holds µ(Ω′) > 0, because µ(Ω′) = 0 would imply τ(Ω′) = 0, in contradiction to τ(Ω′) >
βµ(Ω′). On the other hand, it now follows that∫

Ω

f0dµ =

∫
Ω

fdµ+ βµ(Ω′) = γ + βµ(Ω′) > γ

and this is a contradiction to the construction of γ. So we have shon that τ = 0.
Step 2: Assume that µ(Ω) < λ(Ω) ≤ ∞. We skip the details.
Step 3: We now allow that µ(Ω) = ∞, but we assume that µ is σ-finite. Also here we skip the
details.
The missing parts can be found in Bauer, Mass- und Integrationstheorie, Satz 17.10.

Exercise 3.7. Find the densities of the measures in Exercise 3.4 which are absolutely contin-
uous with respect to each other.
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