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Chapter 1

Measures and measurable mappings

Notation

Let 2 be a set, A C €.

2 power set of €2, set of all subsets of €.
A¢ complement of A.

A closure of A.

A° interior of A.

#A number of elements of A.

The terms function and mapping are used as synonyms. System, family and set all refer to
sets.

1.1 o-fields, rings and Dynkin systems
Definition 1.1. Let Q be a set. A family § of subsets of Q is called o-field (on ) if
(1) Q€ 3,
(02) Ae§ = A°€F,
(03) A,eFforallneN = (J A, €53
Example 1.2. 1. The power set 22 of ) is a o-field.

2. Let € be a set and § a o-field on €. For a mapping f: Q — ', the family

o(f) ={f(A) [ A" e F'}
defines a o-field.
3. Let @ =N. Then § = {N,0,{5},N\{5}} is a o-field on Q.

Remark 1.3. In Analysis, the following useful statements have been proved, and we will use
them often throughout these lecture notes. Let €, be sets, f: Q — Q' a mapping and [ an
arbitrary index set.



1. Let B; C Y for all i € I. Then

(O B) =N By wa o (UB) = s,

el el el el
2. Let B C . Then f~'(\B) = Q\f(B).

Theorem 1.4. Any intersection of (finitely or infinitely many) o-fields on € is again a o-field
on 2.

Proof. Exercise. m
This theorem implies the following important corollary.

Corollary 1.5. For any family £ of subsets of Q) there exists the smallest o-field o(E) containing
E. This means, if G is a o-field with € C G, then o(€) C G.

Proof. Let ¥ be the sets of all o-fields containing £. ¥ is non-empty, because it contains 2,
for example. We set

(&) = ﬂ 3.

Fex
]

o(€) is also called the o-field generated by £, and the family of sets £ is called the generator
of o(E).

Example 1.6. 1. Let Q =N and £ = {{5}}. The o-field generated by £ equals
o(€) = {N,0,{5}, N\ {5}}.
2. Let Q@ =R and £ = {[0,00)}. The o-field generated by & is
(&) = {R,0,[0,00), (=00, 0)}.

Remark 1.7. Condition (¢3) can be replaced by the condition
(03) A,eFforalneN = [, A4,€53.
Definition 1.8. Let Q be a set. A family QR of subsets of  is called ring (on ), if
(R1) 0 € R,
(R2) A\ BeR = A\Be®R,
(R3) ABech = AUBch
If in addition €2 € R, then R is called algebra.
Exercise 1.9. Prove the following statements.

1. Let R be aring. If A, B € R, then AN B € fA.

2. Let ! C 2% R is an algebra if and only if:

>



(A1) Qe R,
(A2) Ae R = A°eR,
(A3) ABeR = AUBEe®R.

Remark 1.10. Note that the difference between a o-field and an algebra is that in (R3) only

N N

finite unions are allowed, while in (¢3) countable unions are possible. Here the ”¢” means
”countable”.

Example 1.11. Let 2 = N. The system of sets A C N for which either A or A€ is finite is an
algebra, but not a o-Algebra.

Definition 1.12. Let €2 be a set. A family © of subsets of € is called Dynkin system (on Q) if
(D1) Qe®,

(D2) ABe®, ACB = B\AecD,

(D3) A, e®Dforallne Nwith A,NA,=0,m#n — U, 4,€D.

Example 1.13. Each o-field is a Dynkin system.

A family & of sets is called N-stable if
A Beé — ANnBef

Theorem 1.14. A Dynkin system is a o-field if and only if it is N-stable.

Proof. Since every o-field is a Dynkin system, we only have to show that any N-stable Dynkin
system 2 is a is a o-field

(1) follows by (D1) and (02) follows by (D2) with B = Q. Property (c3) is obtained as
follows. Let A, B € ©. Then AN B € ® by assumption, and

AUB =AU (B\(AN B))

and
AN (B\(ANB)) =0,

so (D3) implies that AU B € ©. Let now D,, € ® for all n € N. We can write

U Dn = U D;H-I\D;w

n=1 n=0
where Djy := 0 and D}, := D;U---UD,, € ©. The sets D/, \ D, are pairwise disjoint, so (D3)
implies that |J)~, D,, € ©, and we obtain (03). O

Theorem 1.4 also holds for Dynkin systems and rings. Therefore, for any family of sets £
there exists a smallest Dynkin system ©(E) that contains £. We also call ©(E) the Dynkin
system generated by E.

Theorem 1.15. Let £ be a N-stable family of sets. Then



Proof. Every o-field is a Dynkin system, so o(£) is a Dynkin system which contains €. This
implies ®(€) C o(€). If we can show that ©(E) is a o-field, then we can conclude that
(&) CD(E), because o(E) is the smallest o-field containing &.
We now show that ©(&) is N-stable, and then our claim follows by Theorem 1.14. Let
D € ©(&). We define
Dp ={ACQIAND D&}

Now we verify that ©p is a Dynkin system. Since £ is N-stable, we know that £ C ® g for any
E € &, and therefore () C Dp. Forany £ € £ and D € ©(E), it holds EN D € D(E).
This in turn means that £ C ®p, and therefore D(E) C Dp for all D € D(E). So D(E) is
M-stable. 0

1.2 Additive and o-additive contents

Definition 1.16. Let R be a ring on ). A mapping
R — [0, oc]
is called content on (Q,R) if
(11) p(®) =0,
(I2) for AN B =), it holds u(AU B) = u(A) + u(B).
The content p is called o-additive, if for A, € R, n € N, with 4, N A,, = 0, m # n and

U, A%,
N( U An) = ZM(AH>
n=1 n=1

Remark. In Measure Theory and Probability Theory we use the following rules for computing
in RU {—o0,+00}:

1. atoo=200+a==+c for a € R,

2. 400 — 00 is not defined,

3. 0-00=0,

4. a- o0 =sign(a) - oo for a € R\{0}.
Example 1.17. 1. Let R be a ring on 2 and w € ). Then

0, w¢A,
6W(A):{1 Lo Aew

1S a content.

2. We consider the ring from example 1.11. (Each algebra is a ring.) Then

0, if A is finite,
A
oo, if A¢is finite,

is a content. It is not o-additive.



Proposition 1.18. Let p be a content on R. Then for A, B € R, the following statements are
true.

1. LetA, B € R. Then u(AU B) 4+ u(AN B) = u(A) + u(B).
2. Let A, B € R with A C B. Then u(A) < u(B).
3. Let A, B € R with A C B and p(A) < co. Then u(B\ A) = u(B) — u(A).
4. Let Ay, ... A, € R, Then p( Ui, Ai) < Yoy u(4y).
Proof. Exercise. O

Notation. For a sequence of sets A, Aj, Ag,... we write A, T A, if Ay C Ay C ... and A =
U2 A, Wewrite 4, L A if A; DA D ... and A=), A,

Theorem 1.19 (Continuity of contents, part 1). Let u be a content on a ring R. Then u is
o-additive if and only if for all A,, A € R with A, T A,

lim u(A,) = p(A).

n—oo

Proof. Assume first that p o-additive and A,, A € R with 4, T+ A. We set Ay := () and
B, :=A,\A,_1,n=1,2,.... The B, are pairwise disjoint. It holds A, = By U---U B,, and
Unzi Bo = U2 An = A, s0

p(A) = p(By) = lim > u(B,) = lim p(Ay).

N—oo

To show the reverse direction, let A,, € R be a sequence of disjoint sets with A = [J>7, 4, €
M. We define B,, := A;U---UA,. Then B, T A, so u(A) = lim,,_, u(B,). Finite additivity
of the content u gives
w(Br) = p(Ay) + -+ p(An),

which proves the claim. O

Theorem 1.20 (Continuity of contents, part 2). Let p be a content on a ring R. If p is
o-additive, then

1. for any sequence A, € R with A, L A, A € R and u(A;) < 0o, it holds

lim 11(A,) = p(A).

n—o0

2. for any sequence A,, € R with A, | 0 and pu(A;) < oo,

lim p(A,) =0.

n—o0

If w(A) < oo for A € R, then the conditions ((1.) or (2.)) are equivalent to o-additivity.



Proof. 1t is obvious that (1.) implies (2.). Let A, € R be a sequence with A4, | A € R and
p(Ay) < oo. Then also u(A,) < oo for all n and p(A) < oo, and u(A; \ A,) = pu(A4r) — u(A,)
due to Proposition 1.18 (3.) and (A; \ 4,,) T (41 \ 4). Theorem 1.19 implies

p(A) = p(A) = p(Ar\ A) = lim pu(Ay\ Ay) = p(Ar) — lim p(Ay),

which is (1.).

We now assume that u(B) < oo for all B € R and we show that (2.) implies the o-additivity
of p. For this we use Theorem 1.19. Let A, € R with A, T A € ®R. Then A\ A, | 0, and
because p(A) < oo, u(A,) < 0o, we obtain

0= lim p(A\ A,) = p(A) — lim p(A,).

00 n—o0
O

We now consider a special ring on Q = R%. For a = (a1,...,a4), b = (by,...,bs) we define

the half open rectangles
(a,b] :={x=(21,...,29) ER| @y < x; < bs,i=1,...,d}.
We consider the set 3¢ of finite unions of rectangles, that is,
R — { O(ak,bk] |neN,az by € RL k= 1n}
k=1

Theorem 1.21. R? is a ring in RY.
Proof. Exercise. m

Remark 1.22. Each set in A € R? admits a representation A = |J,_,(ay, by] with pairwise
disjoint rectangles.

Definition 1.23. A function H : R? — [0, c0) is called rectangular monotone, if for all a®,a® €
R? with a} < a?,i=1,...,d, it holds

ASH == > (=1l alf) >0,

Theorem 1.24. Let H : R — [0,00) be a rectangular monotone function. Then there exist a
unique content i on R such that for each rectangle (a*,a?] # (),

p((al,a?)) = AZH.
For all A € R4, it holds u(A) < oo.

Example 1.25. For a rectangle (a', a%] # () we define its volume by

d

Vol((a!,a*)) = [J(a? — a}).

i=1

For H(x) = [[, z;, the volume satisfies Vol((a',a?]) = A% H. The unique content on 9R¢

corresponding to H is called the Lebesgue content, and we also denote it by Vol.

9



Exercise 1.26. Prove the claim in Example 1.25.

Proof of Theorem 1.24. Uniqueness: Let u be such a content. Every set A € R¢ can be
represented as A = (J;_,(a*, b¥] with pairwise disjoint rectangles. Since p is a content, we

know
n

u(A) = 3 (e, bH) = ST AN H,
k=1 k=1
so u is defined uniquely by its values on rectangles.
Existence: We only consider the case d = 1. For A = |J;_, (ax, bx] € R' with pairwise disjoint
intervals, we set

pA) =) T ARH = (H(by) — H(ax)).

We have to show that this definition does not depend on the representation of A.
For ¢ € (a, b],

u((a,b)) = ALH = H(b) - H(a)

~ H(b) = H(e) + H(c) - H(a) = ALH + AYH = p((a,d)) + p((e,).

Let now A = ;- (c;, dj] be another representation of A with pairwise disjoint rectangles. For
all k, (a, bp] = U~ (ak, be] N (¢, d)] is a partition of (ag, by] into disjoint intervals. We can now
apply (1.1) inductively and obtain

m

pl(ar, b)) = pl(ar, bl N (e di]), k=1,...,n.

=1

But also .

pl(endi)) = p((ar, bi) N (e, di)), 1=1,...,m,

k=1

which proves the claim.
Properties of a content: For A, B € R¢ with AN B = 0, it holds by construction that
(AU B) = u(A) + p(B), so p is a content on R<. O

Exercise 1.27. Prove the existence of the content p in Theorem 1.24 for d = 2 or more
generally for all d.

Theorem 1.28. Let H : RY — [0,00) be a rectangular monotone function which is continuous
from the right in each argument, i.e. for all x = (xq,...,14) € R and i € {1,...,d}, it holds

?f;l_H(iUl, e Til1, 8, iy, - -, Tg) = H ().

Then the content ju on R from Theorem 1.24 is o-additive.
Corollary 1.29. The Lebesgue content Vol on R? is o-additive.

Proof of Theorem 1.28. For all A € R? we know that u(A) < oo. Due to Theorem 1.20 it
is therefore sufficient to show that for any sequence (A,),en € R with A, | 0, we have
w(Ay) = 0, n — oo.

10



Continuity from the right of H implies that for each rectangle (a, b,

p((a, b)) =sup{u((c,b]) | ¢ > a;,i=1,...,d}. (1.2)

Let now (A, )neny € e be a sequence with A,, | 0, and let € > 0. Due to (1.2) we can choose
for each n € N a C,, € R? such that

Cn C A, u(Cp) > u(A,) —e/2,
so that for K, =Cin---NnC, ,

(A, (CJ ANG)) < iu(Ai VG =3 (A (@) <5 <

i=1 i=1

3

Furthermore ()2, K, € (o2, Cn € o2y An = 0, so that (due to compactness of the K, and
K, 1 C K,; nested intervals) there exists a ng with K,, = () for all n > nyg, so u(4,) < ¢ for all
n > no. ]

Remark. We here use the following variant of the nested intervals principle: Let (K, ),en be a
sequence of compact sets in a metric space with K,,,; C K, and K,, # ) for all n € N. Then

mnGN Kn 7& Q)
This can be proved as follows: For all n € N choose z, € K, C K;. Because K; is compact,

(n)nen has a convergent subsequence (z,, )geny With z,, — o € K;. Assume that xy € K,
for some ngy. Then also xg € K, for all n > ny. Because K7, is open, this implies d(xg, x,) >
d(xg, Ky) > d(x, Kno) > 0 for all n > ng, which contradicts convergence of the subsequence.

Hence zg € ),y Kn

1.3 General measures and the Lebesgue measure

Definition 1.30. Let § be a o-field on Q. A mapping u: § — [0, o0] is called measure if
(M1) (@) =0,

(U =2 nca

The triplet (2, F, 1) is called measure space.
Remark. A measure is a o-additive content, which is defined on a o-field.

Example 1.31. 1. Let © be a set and § a o-field. For any w € §2, ¢,, defines a measure on
§; see also Example 1.17 (1.). This measure is called Dirac measure in w.

2. Let 2 be a set and § a o-field. For any A € §, let #A be the number of its elements.
Then
A #A

defines a measure on §. It is called the counting measure.

11



3. The Lebesgue content Vol on %R is not a measure, because R? is not a o-field.

To derive the Lebesque measure from the Lebesgue content, we need the following extension
theorem by Carathéodory.

Theorem 1.32 (Extension theorem). Let u be a o-additive content on a ring R on Q. Then
there exists a measure i (at least one such measure) on o(R) which extends .

The proof of this theorem relies on the notion of a outer measure.
Definition 1.33. A mapping p*: 2% — [0, 00| is called outer measure, if
(M*1) p*(0) =0,
(M*2) ACBCQ = p*(A) <p*(B),
(M*3) A, CQn=12.. = M*(U;’;l An> <% (A).
A set A C Q is called p*-measurable, if
p(S) =p (SNA) +pu(S\A), forall SCQ. (1.3)

Theorem 1.34. Let u* be an outer measure on ). Then the system §* of all pu*-measurable
sets is a o-field and the restriction of u* to §* is a measure.

Proof. We first show that §* is a o-field. (01) and (02) follow by (1.3). Let now A, € F*,
n=1,2,.... We have to show that A :={J>, A, € . For this, let B, := A4, \ U;:ll A;. The
sequence B,, is disjoint and ngl B, = UnN:1 A,. Let now S C Q. Then,

p(S) = p (SN AL + p* (SN AY)
p(S N By) + p (SNATN Ay) + p*(S N A N AS)
p (SN By) + p* (SN Bs) + p*(SNA{N AS)

M=

1(S 0B, + (Sm ﬁA;)

1 n=1

n

WE

= ) W50 Bn) 4 (S\ A),

n=1

because S Nh_; AS = 5N (Ufj:l A,) D S\ A With N — oo it follows
§(S) > (S0 B 4 (5 4) (14)
n=1

>t (USNBY) + (S 4)

§H(S 1A+ (S \ A).

12



The inequality p*(S) < p*(SNA) + p*(S\ A) is true for all A, S C Q due to (M*3), so A € §*
and we have shown that §* is a o-field.
To show that p* defines a measure on §*, we consider a sequence A, € §* of pairwise disjoint

sets. Our construction above also applies to these A,,, and because they are disjoint, we have
B, = A,. Now we set S = A in (1.4) and obtain

A) = (A
n=1
The other inequality holds due to (M*3). O
Proof of Theorem 1.32. For a set () C ) we define

— inf { iM(An) | (Ap)nen C 9 with Q C G An}.
n=1 n=1

Note that here, we define the infimum of the empty set as +00. We now show that: (1.) u* is
an outer measure, (2.) all sets in R are p*-measurable, and (3.) p* and u are equal on .

First to (1.): (M*1) and (M*2) can be verified directly. Let now (Q,)nen € Q be a sequence
of sets. We can assume that p*(Q,) < oo for all n € N. (Otherwise (M*3) is true.) Let € > 0.
For all n, there exists a sequence (A.x)reny € R with

Because of |J,~, @, € U, Uk 1 Ak, we know that

u"(HQn) ZZM nh <ZM (@n) +¢,

n=1 k=1

where we have used Y >° 27" = 1. This shows (M*3).
Then (2.): Let A e R, Q C Q and (B,), € R with @ C |J,~, B,. Then,

> w(B)=> B, NA)+> (B

Because of QNACJ2 (BoNA)and Q\ A C " (B, \ A), it follows

Zu ) > 1 (Q N A) + 1 (Q\A)

and because the sequence (B,,) was arbitrary (Q C |-, B,), also

pH(Q) = (@ NA) + 1 (Q\A).

And (3.): With the sequence A, 0,0, ... we obtain that p*(A) < u(A). Let (A,)n, € R with
AC U A, Weset B, = AN (A4,\ U" " A;) € M. Then A = |J>°, B, and the sets B, are
disjoint. The o-additivity of u gives

=S B <3 (AL
n=1 n=1
because B,, C A,. So pu(A) < u*(A). O

13



In conclusion, we can extend the Lebesgue content on ¢ to a measure on o(R¢). However,
we do not know if this extension is unique. In the proof of Theorem 1.32 only one such extension
is constructed. The following theorem gives an answer to this question.

Theorem 1.35. Let £ be a N-stable generator of a o-field § on Q. Let further (Ey)neny € €
with E, T Q. If u1, ps are measures on § with

m(E) =mw(E), Eef

and
:ul(En) = M2(En) <00, ncE Na

then py = po on §.
Proof. Let E € € with p(E) = pe(E) < oo. The set of sets

Dp={DeF|m(END)=u(END)}

is a Dynkin system (exercise). Because £ is N-stable, it follows that £ C D g, so also D(€) C Dp.
From Theorem 1.15, we deduce that D(€) = 0(€) = §, so also § = D g, because Dp C §F. This
implies that

pi(END)=p(END), firalleD € §. (1.5)

Statement (1.5) in particular holds for E = E,,. It follows from E, 1 Q that £, N D 1 D and
therefore, by Theorem 1.19,

w1 (D) = lim py(E, N D)= lim ps(E, N D) = ps(D), forall DeF.
n—oo

n—oo

]

We now apply Theorem 1.35 to show that the Lebesgue content Vol can be extended to a
unique measure on o(R?). Let p1, ps be two extensions of Vol to o(R?), which exist due to
Theorem 1.32. Because i1, o are equal on SR?, the prerequisites of Theorem 1.35 are satisfied
with E, = ((—n,...,—n),(n,...,n)]. (R is N-stable, because R is a ring.) Thus p; = uo.
Definition 1.36. The o-field B(R?) := ¢(R?) is called Borel o-
field on RY. The measure which extends Vol to B(RY) is called
Lebesque measure on RY, and we denote it by £9.

The picture on the right shows the French mathematician Henri
Léon Lebesgue, 1875-1941. He is the founder of modern mea-
sure theory and integration theory and introduced the Lebesgue
measure in his dissertation in 1902.

Exercise 1.37. Let O be the system of open sets in R?, A the system of closed sets in R? and
K the system of compact sets in R?,

1. Show that ¢(O) = o(A) = o(K).
2. Show that B(R?) = ¢(0).

14



1.4 Measurable mappings and image measures

Definition 1.38. Let §; be a o-field on €; and §2 a o-field on Q5. A mapping f: 2; — Qs is
called §1-§o-measurable, if

f_l(A) € 31, for all A € %2.
Example 1.39. Let ¢ € 25. The constant mapping f: €2y — €2, w — ¢ is §1-F2-measurable.

Exercise 1.40. Let § be a o-field on Q2 and A € §. We define the indicator function 1, of A
by
1, ifweA,

1,:Q—>R, w )
0, ifwé¢gA.
Show that 1,4 is (§, B(R))-measurable.

Theorem 1.41. Let f: Q7 — Qo be a §1-§2-measurable mapping and g: Qs — Q3 a F2-53-
measurable mapping. Then go f: Qy — Q3 is a §1-§3-measurable mapping.

Proof. For all A C Qg (in particular, for all A € §F3),
(go f)7H(A) = fH (g7 (A).
This yields the claim. ]

Theorem 1.42. Let §o = o(A) for a system of sets A C 2%2. A mapping f: Q1 — Qy is
$1-82-measurable if and only if

YA €F, foral Ae A.

Proof. Let
A:={AC Q| f 1Az}

2 is a o-field; see Example 1.2 (2.). We have to show that §» C 2. For this, it is sufficient to
show that A C 2, but this holds by assumption. O

Exercise 1.43. Let a € R. Show that f: R — R,z +— x + a is *B(R)-B(R)-measurable.

Note that we only need sets €21, {25 and o-fields to define measurability of mappings. The
term MEASUrability might be misleading, because MEASURES are irrelevant in its definition.
The next theorem shows that measurable mappings induce new measures, and in the next
section we will see that measurability enables us to integrate a function with respect to some
measure (i.e. to measure this function).

Theorem 1.44. Let f: Q1 — €y be a §1-§2-measurable mapping and jv a measure on 1. Then
pp: §2 = [0,00), B pu(fH(B))

1s a measure on the o-field Fo on s. This measure is called the image measure of p under f.

15



Proof. Due to us(0) = ,u( L)) = (@) = 0, statement (M1) is true. Let (A,)nen be a
sequence in §o with A,, N A, = 0 for n # m. Due to remark 1.3,
“(UJa)=Ur
neN neN

AN A, = 0 implies that f~1(A,) N f~1(An) =0, so

(U An) =e(r (U Aa) =u( U 40) = 31 4n) = 3 nsAn)

neN neN neN
and we obtain (M2). O

Exercise 1.45. We consider the mapping f : R — R,z + x?. What is the image measure of
the Dirac measure 05 under f? What is the image measure of the counting measure under f7

If the o-fields are clear from the context, we simply call a mapping f: €2y — {25 measurable
instead of §1-Fa-measurable. On R one (almost) always takes the Borel o-field B(R?) as o-field,
unless it is defined differently explicitly.

Let now € be a set and § a o-field on . To us, functions f: Q — R are of particular
interest, where R := R U {400, —00}. Usually we define on R the o-field B, given by

B:={ACR|ANR € BR)}.

Proposition 1.46. A mapping f: Q — R is measurable (i.e. F-B-measurable) if and only if
one of the following equivalent conditions holds:

{w] flw) <ty e§1 forallteR,
{w| flw) <ty eF foralteR,
{w| flw) >t} €F1 forallteR,
{w] flw) >t} eF1 forallteR.

Proof. We show that the system of sets & = {[~00,a] | a € R} generates the o-field B, so
that 1.42 implies the first condition. With analogous proofs one can also show that the sets
{[~00,a) | a € R}, {[a,c] | a € R}, {(a,00] | a € R} generate B, which gives the other
conditions.

Clearly, £ C B, soalso o(€) C B. For a,b € Rwith a < b, it holds (a, b] = [~oc0, b]\[~00,d] €
o(€), so B(R) C o(£). Also, {—o0} = ,en[—00, —n] € a( ©), {+00} = N,enln 0] € a(€).
Let now A € B. Then ANR € B(R) C ¢(€) and

A=(ANR)U (AN {+o00,—x}) € o(&).

For sets of the form {w € Q| f(w) has property E(w)}, we use the abbreviation

{f has property F} = {w € Q| f(w) has property E(w)},

for example {f > 0} = {w € Q| f(w) > 0}. Sometimes, it is better to use the complete
notation so as not to be confused by the abbreviations!
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Theorem 1.47. Let f,g : Q2 — R be measurable mappings. Then the sets {f < g}, {f < g},
{f =g}, {f # g} are all contained in §.

Proof. Clearly,
U<a=U{r<rtulr<g).

reQ

Due to Theorem 1.46, all sets of the type {f < r}, {r < g} for r € Q in are contained in the
o-field §, so also the countable union over Q. Moreover, {f < g} ={f > g}, {f =9} ={f <

gy 0 {f =z gy and {f # g} = {f = g}* O
Theorem 1.48. Let f,g: Q@ — R be measurable mappings, ¢ € R. Then,

1. the function cf: Q — R,w > cf(w) is measurable.

2. the function f +g: Q — R,w+— f(w) + g(w) is measurable.

Proof. 1f ¢ = 0, then the first claim is clearly true. If ¢ > 0 and a € R, then for all t € R,

{cfta<ty={f<(t—a)/c} €7,

which implies the first claim and the measurability of c¢f 4+ a. The case ¢ < 0 is analogous. For
all t € R,

{frg<t}={f<—g+t} €T,

because —g + t is measurable due to the above considerations and Theorem 1.47. [
Theorem 1.49. Let (f,)nen be a sequence of measurable sets, f,,: Q — R. Then,

1. inf,>y f, and sup,>, fn are measurable,

2. liminf, o f, and limsup,,_, . fn are measurable.

Proof. 1. Follows by {sup,>; fn < t} = (5 {fn < t} and similarly {inf,>, f, > t} =
Mza{fn > 1}
2. It holds

limsup f,, = lim sup f,, = inf sup f,.
n—00 n—00 m>n " m>n

Use (1.). The claim for liminf follows by similar arguments.

Theorem 1.50. Every continuous function f: R — R* is measurable.
Proof. Preimages of open sets under continuous mappings are open. O

The reverse statement of Theorem 1.50 is wrong. There are many more measurable map-
pings than there are continuous mappings; see the exercises.
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Chapter 2

Integration and product measures

Bernhard Riemann Henry Léon Lebesgue
18261866 1875-1941

2.1 Integration with respect to measures

Let Q be a set, § a o-field on Q and p a measure on (€, F).

2.1.1 Integration of non-negative stepfunctions

Definition 2.1. A mapping f: Q — [0,00] is called non-negative stepfunction, if it is F-
measurable and only takes finitely many values.

Definition 2.2. For a set A C ) we define the indicator function

1, ifweA,

Tya: Q2 —40,1 —
48201}, e {0, ifwe A
A partition of Q is a set of sets (C});es such that C; N C; = () for j # i and U, C; = Q.

Proposition 2.3. 1. Let f be a non-negative stepfunction. Then there exists a partition
Ay, ... Ay € F and numbers ¢y, ..., ¢, € [0,00], such that

flw) = chﬂAk(W), w € .
=1

2. Let By,...,B, € § and dy,...,d, € [0,00]. Then f = > 7_, dilp, is a non-negative
stepfunction.

Proof. Exercise. m

Lemma 2.4. Let f be a non-negative stepfunction. For two representations

f= chﬂAk = ZdlﬂBl,
k=1 =1

it holds

n

crp(Ar) =Y duy(By).
=1

k=1

18
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tions.
By assumption,

Ckﬂ(U(Ak N Bl)> = Z Ck/L(Ak N Bl)

k=1 =1 k=1 I=1

If AyNB; # 0, then f(w) = ¢ = d; for w € AN By, so in any case cpu( AN B)) = djp(Ar N By).
Hence,

3

chu Ak = Z ck,u Ak N Bl) = Z Z dl,u(Ak N Bl) = Zdl/L(Bl)
=1

k=1 1=1 k=1 1=1

Lemma 2.4 justifies the following definition.

Definition 2.5. The p-integral of a non-negative stepunction f =Y 7, ¢;14, is defined as

/fdﬂ = ZCkM(Ak) € [0, 00].

Proposition 2.6. Let f, g be two non-negative stepfunctions, o € [0,00]. Then,
1 [(af)dp=co [ fdp,
2. [(f+g)du= [ fdu+ [gdp,
3. f<g = [fdu< [gdu
Proof. Exercise. Hint: Use representations of f and g as in Proposition 2.3, (1.). O

Example 2.7. Let (an)neN and (z,)nen be sequences of real numbers with a,, > 0. We consider
the measure p =Y~ a,d,, on R. Then for a non-negative stepfunction f =>"7" ¢;la,,

o0 m

/fdﬂ = Z Cklu(Ak’) = Z Ck Z anéa:n Ak Z Qn, Z Ck:I]-Ak xn Z anf(xn)
k=1 k=1 =1 n=1 n=1

Exercise 2.8. Is the function

1, ifxeqQ,

fR=>R, z— )
0, ifz&Q,

a non-negative stepfunction? If yes, what is its integral with respect to the Lebesgue measure
L'? What is its integral with respect to the Dirac measure §;? What is its integral with respect
to = V28 + 6 57
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2.1.2 Integration of non-negative functions

Notation. Let (fn)nen be a sequence of functions, f,: Q — R. We call (f,)nen a monotone
increasing sequence, if f,(w) < foi1(w), w € Q, and we write f,, T. Because lim,, o fn(w) =
sup,, fo(w) = f(w) € R, it is often written f, 1 f, if there is a notation for the limit (in this
case f).

The following theorem shows that non-negative stepfunctions are useful for the approxima-
tion of general functions.

Theorem 2.9. For any measurable function f > 0 there exist non-negative stepfunctions f,

such that f, 1 f, that is, f,(w) < for1(w) and
flw) = nh_g)lo fo(w)  for allw € €.

Proof. We define

n2"—1

fn — Z k‘2*"]lAl(€n) +nlgwm,
k=0

with
A —{w e Q| k27" < flw) < (k+1)27"}
B™ ={we Q]| fw)>n}

O
Lemma 2.10. Let g and f,, n > 1 be non-negative stepfunctions and f, T f > g. Then,
lim [ f,du> /gdu. (2.1)
n—oo

Corollary 2.11. Let f: Q — [0,00] be measurable and (fn)nen, (fi)men two sequences of
non-negative stepfunctions f, T f and f,, T f. Then,

n—oo

lim [ f,dp = lim /fm dye.
m—0o0
Proof. Due to Lemma 2.10 and f, 1 f > f,, for all m € N, we know that
i [ fudp > [ Fudn
n—oo

so also lim, oo [ fodp > limy, oo [ fin dp. Interchanging the roles of f, and f,, proves the
claim. =

Corollary 2.11 shows that the following definition is sensible.

Definition 2.12. The pu-integral of a non-negative measurable function f is defined as

[ ran=tim [ fadue .0

where (f,)nen is a sequence of non-negative stepfunctions with f,, 7 f. Such a sequence exists
by Theorem 2.9.
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Corollary 2.13. The integral of a measurable non-negative function f equals the supremum of
[ gdp over all non-negative stepfunctions g < f.

Proof of lemma 2.10. First notice that the limit above exists due to monotonicity of the se-

quence ([ fndp)nen. It may be equal to +o00. Let g = > " d1p,.

Case 1: If [ gdu < oo, then dju(B;) < oo for all I € {1,...,m}. We can assume without loss
of generality that d; € (0,00) and pu(B;) € (0,00) for all { € {1,...,m}. We set B :=J;", B.
Then, u(B) < 37, w(By) < 0.
For € > 0 we define .
A, ={we B| folw) > g(w) —e}.
Then A,, C 4,14 and |, 4, = B (short: A, T B) and
Jn = fnﬂAn + fnﬂA% > fnlAn > (g - 5)]lAn‘

The integral of non-negative stepfunctions is monotone and linear, so

/(fn+€]lAn) du:/fndu—i—g,u(An)
Z/ghn dp =Y dy(Bi N Ay).
=1

For n — oo we therefore obtain

m

hm/fndu+€u Z (By) /gdu

Since ju(B) < 0o, the claim follows by & — 0.

Case 2: Let now [ gdu = oo. Then there exists [y such that dj,u(By,) = oo and 0 < d; < oo,
0 < u(By,) < 0o. We choose z,y with 0 < z < dj, and 0 < y < pu(By,). Define 4, := {w €
By, | fu(w) > x}. Because of f, 1 f > g, it follows that A, 1 By,, so u(A,) >y for all n large
enough. For these n it now follows that

/fn dpu > zp(A,) > zy,

so also limy, oo [ fndp > zy. If d = oo, then let & — oo; if pu(By,) = oo, then let y — co. O
Proposition 2.14. Let f,g: Q — [0, 00] be measurable functions. Then,

1 [efdu=c /[ fdu forallc>0,

2. f<g = [fdu< [gdpy,

3. [(f+g)du= [ fdu+ [gdpu.
Proof. Exercise. O]

Theorem 2.15 (Monotone convergence). Let f, f., n € N be measurable non-negative func-

tions with f, 1 f. Then,
lim [ f,dp = / rdp.

n—oo



Proof. For cach n let (f{")ren be a sequence of non-negative stepfunctions with fi 1 f,.,
k — oo. We define

) — (k)
g7 =y T

The functions ¢ are also non-negative stepfunctions. It holds fﬁf < f,gf ) < fin, SO

(k=1) _ max f(k_l) < max fff) = g(k) < max fu = fi

g mef{l,...k—1} """ T mefl,..k} me{l,....k}

Let g = lim,,_,oc ¢™ and m € N. For k > m, f,(f) < g™ and so with k — oo, it follows that

fm<g<f
for all m € N, so f = g. With Proposition 2.14 (2.) and g™ < f, we get

/fd,u:/gd,u: lim /g(")dug lim /fndu.
n—oo n—oo

Because of f,, < f, it holds [ f, du < [ fdp, which proves the claim. O

Example 2.16 (Continuation of example 2.7). Let again =Y, | axds,. Let f be a measur-
able non-negative function and f,, T f be non-negative stepfunctions. Then due to Theorem
2.15,

[ran=tim [ fadp= lim 3" afulon) = 3 anfo)
k=1 k=1

We see that sums can be interpreted as integrals.

Theorem 2.17 (Fatou’s Lemma). Let f,, n € N be measurable non-negative functions. Then,
/lim inf f, dp < lim inf/fn dp.
n—oo n—o0

Proof. Due to the theorem on measurability of limits (Theorem 1.49), f := liminf, ,. f, > 0
is a measurable function. Define g, := inf,,>, f,,. Then lim, ., ¢, = liminf,_,, f, = f, and
because g, < gni1, we can apply the monotone convergence theorem (Theorem2.15), which

gives
/fduz/ lim g, dp = lim /gndu-
n—oo n—oo

Since g, < f,, for n < m, we obtain

/gndug inf /fmdu = lim /gndu < lim in /fmdu:hminf/fn dp.
m>n n— 00 n—oo m>n n—00
]

Exercise 2.18. Let (A,)nen € §. Show that liminf, .., 14, is the indicator function of the

set -
lim inf A, := U ﬂ A,,.

n=1m>n
Conclude that
p(liminf A,) < liminf u(A,).
n—oo n—oo

'In the last step the limits can be interchanged because lim,_ oo Yo, @k fn(2k) =
. . N N N
limy, o0 impy 00 Zkzl akfn(xk) = SUPpeNSUPNeN Zk:1 apfo(rr) = SUPNeN SUPpeN Ek:1 akfn(xk)
N 00
SUPNen D1 Ak S (Tk) = D p_y arfn(@k).
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2.1.3 Integrals of measurable functions

Let now f: Q — R be a measurable function. Then also f; := max{f,0} and f_ := —min{f,0}
are measurable, and they are non-negative. Moreover,

f=f—f wd [fl=f+f.

Definition 2.19. Let f: Q — R be a measurable function. We say that the integral of f exists,
if at least one of the values [ fi dp, [ f-—dp is finite. In this case, we define

[ran=[rean= [ran el

We call f p-integrable if [ fidp < oo and [ f-du < co. Because |f| = fy + f-, the function
f is integrable if and only if [ |f|dy < co.

Proposition 2.20. Let f,g: Q — R be integrable functions. Then,
1. [efdp=c /[ fdu for all c € R;
2. f<g = [fdu< [gdy;
8. [+ g is integrable too, and [(f +g)dp= [ fdu+ [ gdu;
4 | [ fdul < [1f]dp.

Proof. For (1.)-(3.), apply the definition of the integral and Proposition 2.14. For (4.), use that
—|fI < f < |fl and apply (2.). O

Definition 2.21 (Null sets). A set N € § is called pu null set, if u(N) = 0.

Definition 2.22 (Properties 'almost everywhere’). Let E(w) be a property which may be true
or not for each single w € (2. We say that is true E pu almost everywhere or p almost surely, if
there exists a p null set N € § such that E is true for all w € Q\ N.

Example 2.23. Let f, g be measurable functions.

1. ,f = g p almost everywhere means:

WL # gb) = pl{w | f(w) # glw)}) = 0, s0 there exists N = {w | f() # g()} € 3
with p#(N) =0 and f(w) = g(w) for all w € Q\ N.

2. lim,, . f, exists pu almost everywhere means:
The set {w | lim, s fn(w) does not exist} is a p null set.

Proposition 2.24. Let f,g: Q — R be integrable functions. Then,
1. If f =0 p almost everywhere, then [ fdu = 0.
2. If f = g p almost everywhere, then [ fdu= [ gdpu.

8. If f >0 p almost everywhere and [ fdp =0, then f =0 p almost everywhere.
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Proof. 1. Let first f > 0. Measurability of f implies that N := {f # 0} € §, and by
assumption u(N) = 0. Set g = coly. Then f < g, so

OS/fd,uS/gdu:oo-Ozo.

If f is an arbitrary integrable function with f = 0 p almost everywhere, then f,, f_ are
non-negative measurable functions with f, = 0 u almost everywhere and f_ = 0 p almost

everywhere.
2. Apply (1.) to f —g.
3. If f >0 p almost everywhere, then f_ = 0 p almost everywhere, so it only remains to

show that f, = 0 p almost everywhere. We define N := {f, > 0} and A, := {f. > 1/n},
n € N. Then N, A,, € § due to measurability of f,, and also N = __y A,. We will show
that p(A,) = 0, which concludes the proof.

Due to (1.) we obtain that [ f_du =0, and f; > (1/n)14,, so

0—/fdu /f+du>/ 1, dp_iu(An).

Exercise 2.25. Let f : Q — R be a p-integrable function. Show that f is finite p almost
everywhere.

neN

[]

2.1.4 Riemann and Lebesgue integrals

Let now Q = R? with the Borel o-field § = B(R?) and the Lebesgue measure u = L% see
Section 1.3. Let f: R? — R be a £? integrable function. The integral

/f ) dx —/fdﬁd /f )AL (x /f Ty, ..., xq) ALY 2y, ..., xg)

is called the Lebesgue integral of f. For Borel sets B € B(R?) we write

/B fla)doi= [ La(e) (o) do

To compute Lebesgue integrals, you will use your knowledge about Riemann integrals, which
is justified by the following theorem.

Theorem 2.26. Let f: [a,b] — R be a measurable function, —oo < a < b < oo. If f is
Riemann integrable, then f is Lebesque integrable and the integrals are equal.

Proof. See Bauer, Mass- und Integrationstheorie, Satz 16.4. O]
The reverse statement of Theorem 2.26 is not true, as the following example shows.

Example 2.27. Es sei

1, zeQ,

0, z¢&Q.

f is measurable and equals 0 almost everywhere. So f is Lebesgue integrable with f[O,l] f(z)dz =
0. However, f is not Riemann integrable.

f:10,1] = R, x|—>{
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2.2 Important theorems on integrals

Let © be a set, § a o-field on 2 and p a measure on (2, F).

Theorem 2.28 (Holder’s inequality). Let p > 1, ¢ > 1 with ]lo —i—é =1, and f,g: 2 = R
measurable functions. Then,

Jisotan< ( [1sran)”( [roan)™ (2.2

Proof. Let a > 0. Consider the function

a? bl
h: (0,00) = R, b+~ — + — —ab.
p q

One can show that h attains a global minimum at by = a7 T and h(by) = 0, so

a? b

— + —>ab, foralla,b>0. (2.3)

p q
If [|f[Pdpor []g|?duequal +o0, then (2.2) is certainly true. If [ |f|Pdu =0 (or [|g|?du = 0),
then |f| = 0 almost surely, so also |fg| = |f||g| = 0 almost surely and (2.2) is true. We can
therefore assume that

0</]f|pdu<oo,0</]g]qdu<oo.

We set
| f] |9

pp— A -

(P dp)tre” (J lgl* dp)*/a
and apply (2.3). This gives

|fgl < <%f||ff|f|’pdu +3f‘|gg‘|qqdu)(/|f|pdu)l/p(/Ig\qdu>1/q.

Computing the integral on both sides yields Holder’s inequality. O

Corollary 2.29 (Cauchy-Schwarz inequality). For measurable functions f,g: Q — R,

/|fg|du§ \//fzdu/gzdu.

Theorem 2.30 (Lebesgue convergence theorem, dominated convergence theorem). Let (f,,)nen
be a sequence of integrable functions such that lim, ., f, =: f p exists p almost everywhere.
Let g be an integrable function with |f,| < g for alln € N. Then,

/fduzggrgo/fndu

so in particular, f is integrable. The function g is called dominating function.
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Proof. Let A = {w | lim, 00 fu(w) = f(w)}. Then A € § and p(A°) = 0. On A, we know
that |f| < g almost surely. Because p(A¢) = 0 it follows that |f| < g u almost surely, and
integrability of g implies integrability of f.
Set f := fla and f, := f,la. Then f, — f for all w and [ fdu = [ fdu as well as
[ fadp = [ fodu. So we can assume that f, converges to f for all w, and drop the ™ for
notational convenience.

Because | f, — f| < g+ |f|, the Fatou Lemma (Theorem 2.17) implies that

[ o 1r1dn = [ timint(q + 151 1~ ) de < imint [ (g+171 = 1~ f1) o
~ [+ 1f1au=timsup [ 17, - slap

n—oo
This gives
0= timsup [ 14, — S du=timsup| [ g [ faul > 0.

n—oo n—o0

]

Theorem 2.31 (Integration with respect to image measures). Let g: Q@ — R be a measurable
function and p, its image measure. For any measurable function f: R — [0, ool

/RfdMQZ/Qfog dp. (2.4)

Proof. First verify this formula for non-negative stepfunctions. Notice that if f: R — [0, o0] is
a non-negative stepfunction, then fog: Q — [0, 00| is also a non-negative stepfunction, but on
Q. Let (fn)nen be a sequence of non-negative stepfunctions with f,, 1 f. Then also f,og 1 fog,
so the formula follows by the definition of the integral. ]

Corollary 2.32. Formula (2.4) also holds for integrable f: R — R.
Proof. Decompose into positive and negative part. O

The following proposition shows that one can use non-negative measurable functions to
define new measures.

Proposition 2.33. Let p be a measure on (Q,F), and let f: Q — [0,00] be a measurable

function. Then
A(A) ::/ILAfdu:Afdu

Proof. Exercise. O

defines a measure on (2, F).

Definition 2.34. Let 1, A be measures on (2, ). If the measure A is given by

AA) = [ Fap

for a measurable function f: Q — [0, 00], then f is called a density of A\ with respect to p.
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Theorem 2.35 (Integration with respect to measures with densities). Assume that the measure
A admits a density f with respect to . Then for each non-negative measurable (or integrable)

function g,
Joar=[aran

Proof. Let first g = >_)'_, ¢, 14, be a non-negative stepfunction. Then,

/gd)\:chA(Ak) :ch/ﬂAkfdu:/chﬂAkfdu:/gfdu.
k=1 k=1 k=1

Let g be a non-negative measurable function and (g,),en be a sequence of non-negative step-
functions ¢, 1T ¢g. Then also g,f 1T ¢gf, so the claim follows by the monotone convergence
theorem (Theorem 2.15). The case for integrable g follows by decomposition into positive and
negative part. O

2.3 Product of two measures

Consider two measure spaces (21, §1, p1) and (Qg, §2, p2). We are interested in the product set
Q= Ql X QQ = {(wl,wg) | wy € Ql,WQ € QQ}
Definition 2.36. The product o-field §1 ® §» is given by

F1@F2 :=0({A1 x Ay | A1 € F1, A € Fa}).

Remark 2.37. Let Q be a set and § a o-field on Q. For two mappings f: Q — Q, g: Q — O,
we define the o-field generated by f and g by

o(f.g) =o(o(f)Ual(yg)),

where o(f) = {f"Y(B) | B € §1}, 0(9) = {g7*(B) | B € §2} are defined as in Example 1.2,
part 2. The o-field o(f,g) is the smallest o-field A such that f is A-§;-measurable and g is
A-Fo-measurable.

Lemma 2.38. Let p; : Q1 X Qo — Q;, (w1, ws) — wy, i = 1,2 be the i-th projection mapping.
The product o-field §1®F2 is the smallest o-field A such that p; is A-F;-measurable fori = 1,2.

Proof. Let A; € §1. Then,
pl_l(/h) = A X Qs € F1 @ Fo,

so o(p1) € §1 ® Fa. Analogously o(py) C F1 ® §2, and therefore o(p1,p2) C F1 @ §2. On the
other hand, for A; € §1, Ay € Fo,

Ay x Ay = pT (A1) Np;y H(Az) € o(p1,p2),
50 §1 ® §2 C o(p1,p2). The claim follows by Remark 2.37. O

Proposition 2.39. Let Ay, Ay be generators of §1, §2, that is, §1 = o(A1), T2 = 0(Az).
Assume that Ay contains a sequence Ey, Ty and Ay contains a sequence Es,, T Qq. Then,

F1@F2=0({A1 x Ay | A; € Ay, Ay € Ap}).
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Proof. We define € := {A; x Ay | Ay € A1, Ay € Ay} For i =1,2,
pi is §1 ® Fo-Ti-measurable. <= p;t(A;) € F1 @ Fo, VA; € A,

Fori=1and A; € Ay, Ay X Ey,, € € is true for all n € N, so Ay X Ey,, T A1 x sy € 0(€), and
so py H(Ay) = A; X Qy € 0(€), hence p; is 0(€)-A;-measurable, and p, is o(&)-As-measurable
by analogous arguments. Due to Lemma 2.38, we get § ® §2 C o(&). O

Example 2.40. The Borel o-field B(R?) on R? is generated by the set of rectangles (a,b],
a = (a1,a),b = (b1,by) € R?, and

(a,b] = (a1, b1] x (az, bs),
so by Proposition 2.39, we obtain that B(R?) = B(R) ® B(R).
We now want to define a measure 7 on (£, §; ® F2) in such a way that
(A} X Ag) = u1(A1)pua(As), Ay € F1, As € Fo. (2.5)
This is possible, but requires some preliminary results.

Definition 2.41. A measure y on § is called o-finite, if there exits a sequence A, 1 ) with
1(A,) < oc.

Remark. All important measures in this lecture are o-finite, in particular the Lebesgue measure,
measures with densities with respect to the Lebesgue measure, and discrete measures with finite
values.

Theorem 2.42 (Uniqueness of product measures). Let A;, As be N-stable generators of §1,
§2, so §1 = o(A1), §2 = o(As). Assume further that Ay contains a sequence Ay, T §,
p1(Ay ) < oo, and Ay contains a sequence As,, T Qa, po(Azy,) < 0o. Then there exists at most
one measure ™ on §1 ® Fo with property (2.5).

Proof. The system of sets {A; x Ay | A € Ay, A € Ay} is also N-stable. It generates §; ® o
due to Proposition 2.39. It holds A;, x Ay, T Q = Q; x Qy, and by (2.5) we obtain

(A X Agpn) = a1 (Arn)p2(Azn) < 00
so the claim follows by Theorem 1.35. [
Definition 2.43. Let A C €y x €. For each w; € 2; we define the wy-cut of A by

Ay, = {ws € Qo | (w1,wq) € A} C
and analogously for wy € Qy, ,, A 1= {w; € Q1 | (w1, ws) € A} C Q.
Lemma 2.44. For A € §1 ® &2, it holds A, € §2 and ,,A € F1 for all wy € 1, wy € Q.
Proof. Let wy € €. We define

A:={ACQ| A, €T}
A is a o-field (Exercise). For all A; € §1, Az € o, it holds A; x Ay € 2, so
S1®F2 €A
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Lemma 2.45. Assume that py, po are o-finite. Then for all A € §1 ® §2, the function
sa: 0 = [0,00],  wy > pa(Ay,)
18 §1-measurable, and analogously, the function
ta: Qo —[0,00], wo > p1(w,A)
18 §o-measurable.
Proof. We first show that s, is §1-measurable if us(€2s) < 0o. Define
D:={A€F ®F2| sa is Fi-measurable.}

and show that ® is a Dynkin system containing all sets of the form A; x Ay, A; € F1, As € §o.
Since {A; X Ay | Ay € F1, Az € Fo} is N-stable, ® = §F; ® Fo follows by Theorem 1.15. Let
po be o-finite and B,, — Qy with us(B,) < oo for all n € N. For n € N, pg,, : o2 —
[0,00), A — p2(AN B,) is a finite measure on Fo. So for all A € F ® Fo, the mapping
Q; — [0,00],w1 — p2n(Aw,) is §1-measurable, and

sup :LLQ,n(AM) = sup ,U’Q(AM N Bn) = M2(Aw1>'
neN neN

So also € — [0, 00], w;y +— pa(Ay,) is F1-measurable. O

Theorem 2.46 (Existence of product measures). Assume that j1, pe are o-finite. There is a
unique measure T on §1 ® §o with property (2.5). For each A € §1 ® Fo,

r(A) = / pi2(Ay) dpn () = / 11 (1n A) dptawz).

We denote the product measure m by p3 @ po.

Proof. Let A € §; ® §2. Due to Lemma 2.45, s, is a non-negative §;-measurable function on
;. We define

7(A) = /SA dyus.

Verify that 7 is a measure on §; ® §2 (Exercise). We now verify property (2.5). Let A; € §1,
Ay € §o. Then,

(A x Ay) = /SAMAQ dpy = / La, po(Ag) duy = pa(Az)pa(As).

Another measure on §; ® §» is obtained by

() = [ tadi = [ 1) diai).
It always satisfies (2.5), so m = 7’ by the theorem on uniqueness of product measures (Theorem

2.42). 0

Example 2.47. For the Lebesgue measure £? on R?, we obtain that with (a,b] = (ay, b;] X
<a27 b2]7
L*((a,b]) = (by — a1)(ba — az) = L ((a1, ba]) L' ((az, b)),

so L2=L'® L
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Theorem 2.48 (Fubini’s Theorem). Let 1, puo be o-finite measures. Let f: Q = Oy X Qy —
[0,00] be a §1 ® Fo-measurable function. Then the function wy +— sz f(wi, ws) dug(wsy) is
S1-measurable, and analogously for the other component, and

/fd(lh@ﬂz) ://f<W1,W2)d[L1(W1)d/L2(OJ2) ://f(w1aw2)dﬂ2(w2)dﬂl(w1)~

An analogous statement holds for integrable functions.
Proof. See Bauer, Mass- und Integrationstheorie, Satz 23.3. n

Remark 2.49. One can show that the product operation on o-fields is associative, i.e. §1 ® (F2 ®
§3) = (§1 ® F2) ® F3. This justifies writing §; ® §2 @ §3. For n o-finite measures pq, ..., t,
on §1,...,8, one can show by induction that there exists a unique product T on §1 ® - ® §p
with

m(Ay x - x Ap) = pi(Ay) X - X pn(4y)

forall A; € §i,i=1,...,n.

30



Chapter 3

Radon-Nikodym Theorem

3.1 Uniqueness of densities
Let €2 be a set and § a o-field on 2. In Section 1 we have shown the following theorem.

Theorem (Proposition 2.33). Let u be a measure on (£, F), and f : Q — [0,00] a measurable
function. Then

AA) = / fdu
A
defines a measure on (£, F).
This theorem motivated the following definition.

Definition (Definition 2.34). Let u, A be measures on (€2,§). If the measure A is given by

\A) = [ s

for a measurable function f : Q — [0, 00], then f is called density of A with respect to pu.
The uniqueness of densities is described by the following theorem.

Theorem 3.1. Let pu be a o-finite measure and assume that the measure \ admits density
f:Q — [0, 00| with respect to . Then f is u almost surely unique.

The proof of this theorem uses the following lemma.

Lemma 3.2. A measure p is o-finite if and only if there exists a p-integrable function h : Q@ — R
such that 0 < h(w) < oo for all w € Q.

Proof. Let u be o-finite, i.e. there exists a sequence (A, )neny C § with A, 1 Q and p(A4,) < oo
for all n € N. We define ¢, := 27" min{1,1/u(A,)}. Then the function h := >~ e,14,

satisfies the claimed properties (Exercise). On the other hand, if h > 0 is p-integrable, we set
A, :={h>1/n} € F. Since h > 0, it follows A, T Q, and because 1,4, < nh, we obtain

w(Ay) :/]lAnd,uSn/hd,u<oo.
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Proof of Theorem 3.1. Step 1: We assume that A\(Q2) < oo. Then [ fdu = A(Q2) < oco. Let
g : 2 — [0,00] be another density of A with respect to p. Because of [ gdu = M\(Q) < oo, the
function g is p-integrable. Consider

A={f>g} e
Then,
AM%jAMuSAﬁm=MM,
SO

/A(f—g)dMZO,

which implies that 14(f — ¢g) = 0 g almost surely, so u(A) = 0 because f —g > 0 on A.
Analogous arguments can be used for B = {f < g}.
Step 2: Let now p(€2) < oo, but A(2) = co. We use the following Lemma.

Lemma. There is a sequence of disjoint sets (p)nen C § with Q =, Q, and the following
properties:

1. Forall A€ g,

p(ANQ) =XANQ) =0 or <,LL(A NQ) >0and \(ANQ,) = oo.) (3.1)

2. Forn > 2, \(2,) < occ.

Let g be another density of A with respect to u. We define A := {f > g}. For n > 2, show
as in Step 1 (with AN, instead of A) that u(ANQ,) = 0. Now we will show that 1g, f = 0o
i almost surely. For k& € N,

MBI @) = [ L fdu < hu((f <K} ng).
{f<k}

By (3.1) it follows that u({f < k}NQy) =0.

Proof of the Lemma. We define

Q:={BefF|ANB) <o}, a:=suppB)<oo.
BeQ

Let (B],)neny € Q with lim,, o p(B],) = a. Since Q is closed under finite unions, we have that
B, :=B{U---UB/ € Q. Define By .=, .y Bn € §. Then B, T By and pu(By) = a. We define
forn > 2

neN

0 = Q\Bo Qo =By, Quu = Bn\Bnq-

Now we show that (3.1) is satisfied. Let A € § with A(AN Q) < oo. For all n € N, it holds
B, U(AN) € Q,s0 u(B, U(ANQ)) < a. Therefore,

a4+ w(ANQ) = w(By) + p(ANQ) =w(BoU(ANQ)) = JLIE]OM(BR UAND)) <a

which implies that (AN Q) =0 and thus (3.1). O

32



Step 3: Let now p be o-finite and A as in Lemma 3.2. The measure

3 = [0,00], A>—>/hfdu
A

admits density f with respect to the finite measure
v:g§ — 0,00, Ar—>/hdu,
A

so f is unique v almost everywhere. Because h > 0, the inequality p(A) > 0 is true if and only
if v(A) > 0, so f is also p almost surely unique. H

3.2 Existence of densities

We now turn to the question under what conditions a measure A admits a density with respect
to p. A necessary condition is the following. Assume that A admits the density f with respect
to u. Let A € § be a set with u(A) =0, so 14 = 0 p almost everywhere and therefore 14f =0
i almost everywhere. So,

AMA) = /]lAfdu = 0.
This motivates the following definition.

Definition 3.3. Let A, u be measures on a measurable space (€2,§). The measure \ is called
absolutely continuous with respect to pu, if for all A € §F,

p(A)=0 = XA =0,
i.e. every p null set is also a A null set.

Exercise 3.4. Which of the measures on (R, B(R)) are absolutely continuous with respect to
each other?

o0
M1 :617 M?ZZ(STH M3 = 17 M4:£1<m[0700))
n=1
The following important theorem in probability theory shows that in many cases absolute
continuity is not only a necessary but also a sufficient condition for the existence of densities.

Theorem 3.5 (Radon-Nikodym Theorem). Let A be a measure and ju a o-finite meausre on a
measurable space (Q,§). Then the following statements are equivalent.

1. X admits a density with respect to p.
2. X is absolutely continuous with respect to p.
The proof requires the following lemma.

Lemma 3.6. Let n and v be finite measures on (€2, F) with v(Q2) < n(Q). Then there exists a
set Q' € § with
v(Y) < (%)
and
v NA) <nQNA), foralAecg.
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Proof. The mapping
J:§ =R, A 6(A) :=n(A) —v(A)
is bounded because —v(2) < 6(A) < n(Q). If inf4c56(A) > 0, we can choose ' = Q and the
proof is complete. Otherwise, define inductively two sequences (A, )nen and (£2,,)nen of sets, as
explained as follows. We set Ay := () and Qg := Q\ Ag = Q. If now A, Q, are defined, we set
oy, = inf J(ANQ,).
AeF

If a, > 0, choose A1 =0 and Q,11 = Q, = Q, \ Api1. If , < 0, then there exists A € §
with 6(ANQ,) < «a,/2. We define A, ;11 = ANQ, and Q11 = Qp, \ Apsr.

The sets in the sequence (A,),en are pairwise disjoint. Therefore the series ) §(A,)
converges (to n(UA,) — v(UA,)), which implies lim,, ,,, 0(A,,) = 0. This gives lim,, o o, = 0.
We set Q' =", ,. The sequence (€2,,),en is monotone decreasing, so (by continuity of the
measures 7 and v)

lim 5(Q,) = 5().

n—oo

We now show that €' satisfies the two claimed properties. By construction of the sequence we
know that 0(A,) <0, so

0(Qn11) = 0(Q) = 0(Anya) 2 6(Q) = - 2 6(8) = 5(€2) > 0.

This gives 0(2) = lim, 00 6(€2,) > 0. Let now A € §. By AN = AnQ' NQ, for all n, we
conclude §(ANQ) > a,, for all n, so because lim,,_,, o, = 0 we obtain that 6(ANQ) > 0. O

Proof of Theorem 3.5. The direction ”‘1. = 2.”” was proved before Definition 3.3. We now
show the reverse direction ”‘2. = 1.”’. The proof is separated into three parts.

Step 1: Assume that the measures p and A\ are finite. Let G be the set of all measurable
functions ¢ : Q@ — [0, co] with

/ gdp < A(A), for all A € §.
A

The set G is non-empty, because it contains the function which is constant zero. For two
functions g, h € G, it also holds max{g, h} € G, because

/ max{g, h}du = / gdu —i—/ hdp < MAN{g>h})+AXAN{g < h})=AA).
A An{g>h} An{g<h}

(3.2)
For all g € G, [ gdu < () < o0, so also

vzzsup/gdu<oo

9€g
and there exists a sequence (g},)neny € G with lim,,_,« [ ghdp = . Because of (3.2),
gn :=max{g},...,q,} €G

and ¢/, < g,, implies [ g/, du < [ gndpu, so also lim, .~ [ g,dp = . The monotone convergence
theorem now yields f :=sup, g, € G as well as [ fdu = ~v. We now show that A admits the
density f with respect to u. We define

(A) = M(A) — /Afdu, Aeg.
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By construction of f, we know that 7(A) > 0, and 7 is a finite measure which is absolutely
continuous with respect to p by assumption. We have to show that 7 = 0. Assume for a
contradiction that 7(€2) > 0. Then p(€2) > 0 by absolute continuity and so

Q)
= @)

hence 7(€2) = 26u(82) > Su(S?). Lemma 3.6 applied to n = 7 and v = Su yields a set ¥ € §
with

> 0,

Bu(QY) < (&)
and
Bu(¥NA) <7(Q2NA), foral AeF.

We define fy = f + flq. Then f, € G, because

[ todn= [ gawssu@an) < [ faprr =2, aes
A A A

It holds u(€Q') > 0, because p(2) = 0 would imply 7(€') = 0, in contradiction to 7(€') >
Bu(€). On the other hand, it now follows that

/ fodp = / fdp+ Bu(Q) = v+ Bu(Y) >~
Q Q

and this is a contradiction to the construction of 7. So we have shon that 7 = 0.

Step 2: Assume that u(Q) < A(Q) < oo. We skip the details.

Step 3: We now allow that u(€2) = oo, but we assume that p is o-finite. Also here we skip the
details.

The missing parts can be found in Bauer, Mass- und Integrationstheorie, Satz 17.10. O]

Exercise 3.7. Find the densities of the measures in Exercise 3.4 which are absolutely contin-
uous with respect to each other.
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