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Chapter 1

Basic concepts of probability theory

1.1 Probability spaces

Definition 1.1. Let Ω be a set and F a σ-field on Ω.
A measure P on F with P(Ω) = 1 is called probability
measure. The triplet (Ω,F,P) is called a probability
space.

The notion of probability spaces dates back to the Rus-
sian mathematician Andrey Kolmogorov, 1903–1987.
By introducing probability spaces in 1933, he laid the
foundation of modern probability theory.

Copyright is with MFO

Example 1.2 (Tossing dice). 1. We would like to define a probability space which models
the result of tossing a die. The sample space is Ω = {1, . . . , 6}. We use the σ-field F = 2Ω,
i.e. the family of all subsets of Ω, and we assume that each number is rolled with equal
probability, that is,

P({ω}) = 1

6
, ω ∈ Ω.

This already defines P uniquely. It holds

P(A) =
#A

6
, A ⊆ {1, . . . , 6}.

Subsets A ⊆ Ω describe events. For example, A = {2, 4, 6} is the event of rolling an even
number.

2. We now toss two dice. So we select Ω = {1, . . . , 6}×{1, . . . , 6} = {(i, j) | i, j ∈ {1, . . . , 6}},
F = 2Ω and we define P by

P({ω}) = 1

36
, ω ∈ Ω.

In this case we can observe more interesting events, such as the sum of both numbers
rolled being equal to an even number. We will return to this example later.

Both examples are discrete probability spaces (Ω is at most countable). You have seen many
more examples of discrete probability spaces in the combinatorics and probability lecture.

Example 1.3 (Wheel of fortune). We consider a wheel of fortune with the numbers [0, 2π)
marked on its border. We want to describe the following random experiment: We push the
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wheel of fortune, and it stops at a number ω ∈ [0, 2π). Hence the sample space is Ω = [0, 2π).
We assume that all outcomes are equally likely, so the probability of any interval [a, b] ⊆
[0, 2π) should be proportional to its length. We have seen that the Lebesgue-Measure satisfies
exactly this property. We therefore choose the Borel-σ-field1 F = B([0, 2π)) on [0, 2π) and
P = 1

2π
L1|[0,2π) as the (rescaled) Lebesgue-measure on [0, 2π).

In probability theory the following expressions are used:

• Ω is called sample space, Stichprobenraum oder Ergebnisraum,

• the elements ω ∈ Ω denote outcomes,

• the sets A ∈ F are called events,

• P(A) is the probability of A.

• An event A occurs P almost surely, if P(A) = 1.

Certain operations on sets can now be interpreted, for example:

• Ac = Ω \ A : ”‘A does not occur”’,

• ∪Ai : ”‘at least one of Ai happens”’,

• ∩Ai : ”‘all of Ai happen”’.

1.2 Random variables and expected values

Let (Ω,F,P) be a probability space.

Definition 1.4. A F-B(Rd) measurable mapping X = (X1, . . . , Xd) : Ω → Rd is called random
vector. If d = 1, we also call X random variable.

Since the Borel-σ-field is generated by all cuboids, it is sufficient to require

{
ω | X(ω) ∈

d∏
i=1

(ai, bi]
}
∈ F, for all a1 ≤ b1, . . . , ad ≤ bd.

This is also equivalent to

{
ω | X(ω) ∈

d∏
i=1

(−∞, ti]
}
∈ F, for all t1, . . . , td ∈ R.

Exercise 1.5. Show that X = (X1, . . . , Xd) is a random vector if and only if X1, . . . , Xd are
random variables.

Remark. If a random variable X is a non-negative stepfunction, then it is also called simple
random variable.

1The Borel-σ-field B(A) on a set A ∈ B(R) is defined as B(A) := {A ∩B | B ∈ B(R)}. The measure L1|A is
the Lebesgue measure restricted to B(A).
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Definition 1.6. The image measure PX of a random vector X = (X1, . . . , Xd) is a probability
measure on B(Rd) and it is called the distribution of X. It is given by

PX : B(Rd) → [0, 1], A 7→ PX(A) := P(X−1(A)) = P(X ∈ A) = P
(
{ω ∈ Ω | X(ω) ∈ A}

)
.

The distributions PX1 , . . . ,PXd
of the components X1, . . . , Xd of X are called marginal distri-

butions. If X has distribution PX , we write X ∼ PX .

If we know the distribution of a random vector, we can compute the probability of all events
of the type X−1(A) = {X ∈ A} for A ∈ B(Rd).

Example 1.7 (Continuation of example 1.2). We consider again the toss of two dice, that is,
Ω = {1, . . . , 6} × {1, . . . , 6}, F = 2Ω and P({ω}) = 1

36
, ω ∈ Ω. We set

X : Ω → R, (i, j) 7→ i− j.

The random variable X gives the difference of the number rolled with the first die and the
number rolled with the second one. The possible values of this difference are−5,−4, . . . , 0, . . . , 4, 5.
For k ∈ {−5, . . . , 5} we can compute pk := P(X = k). For example, p0 = P(X = 0) = 6/36 =
1/6 and p−5 = P(X = −5) = 1/36. The distribution of X is given by

PX(A) = P(X ∈ A) =
∑

k∈A∩{−5,...,5}

pk =
5∑

k=−5

pkδk(A),

where δk is the Dirac measure; see the lecture notes on measure theory (examples 1.17 and
1.13).

Definition 1.8. A random vector X : Ω → Rd is called

• absolutely continuous, if its distribution PX admits a density with respect to the Lebesgue
measure Ld.

• singular, if there exists a Lebesgue null set N with P(X ∈ N) = 1.

• discrete, if there exists a countable set M with P(X ∈M) = 1.

In particular, discrete random vectors are singular.

Remark 1.9. The considerations of Example 1.7 hold under more general conditions. The
distribution of a discrete random vector with values in (xk)k∈N and probabilities pk = P(X = xk)
is given by

PX =
∑
k∈N

pkδxk
.

Example 1.10 (Uniform distribution). Let A ∈ B(Rd) be a Borel set with Lebesgue measure
0 < Ld(A) < ∞. A random vector X is called uniformly distributed on A, if its distribution
admits the density

f : Rd → [0, 1), x 7→ f(x) =
1

Ld(A)
1A(x).

Exercise 1.11. Are there any random variables that are at the same time discrete and abso-
lutely continuous? Find an example or prove that this is not possible.
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Definition 1.12. The expected value (or expectation) E(X) of a random variable X : Ω → R
is defined as the integral

E(X) :=

∫
XdP,

if it exists. If E(|X|) <∞, then X is called integrable. The k-th moment of X is the expected
value E(Xk), if it exists. If E(|X|2) <∞, then X is called square integrable. The expected value
of a random vector X = (X1, . . . , Xd) : Ω → Rd is defined as E(X) = (E(X1), . . . ,E(Xd)), if
the expectations E(Xi), i = 1, . . . , d all exist.

Theorem 1.13 (Lyapunoff’s inequality). Let 0 < s < t and let X be a random variable. Then,

(E(|X|s))1/s ≤ (E(|X|t))1/t.

In particular, Xs is integrable for all 0 < s < t if X t is integrable.

Proof. We set r = t/s > 1 and r′ = t/(t − s) > 1. Then 1
r
+ 1

r′
= 1 and Hölder’s inequality

(lecture notes on measure theory) implies that for Y = |X|s,

E(|Y · 1|) ≤ (E(|Y |r))1/r(E(|1|r′))1/r′ = (E(|X|t))s/t,

which proves the claim.

Remark 1.14. Theorem 1.13 shows that square integrable random variables are always inte-
grable. Moreover, if the components of a random vector X = (X1, . . . , Xd) are square inte-
grable, then XiXj is integrable for all i, j ∈ {1, . . . , d}.

Exercise 1.15. Prove the second part of Remark 1.14.

According to the theorem on integration with respect to image measures (lecture notes on
measure theory), it holds for any measurable function h : Rd → R that

E(h(X)) =

∫
Ω

h ◦X dP =

∫
Rd

h dPX ,

if the integrals exist. Hence, the expected value of random vector X only depends on its
distribution PX . In order to compute expectations, we therefore only need to know how to
integrate with respect to measures on Rd.

Example 1.16 (Continuation of example 1.7). Let the random vector X be defined as in
Example 1.7. Its distribution is PX =

∑5
k=−5 pkδxk

. According to example 2.16 in the lecture
notes on measure theory, we can compute the expected value of X as follows:

E(X) =

∫
X dP =

∫
x dPX =

5∑
k=−5

kpk.

Definition 1.17. For an integrable random variable X, its variance is defined as

Var(X) := E
[
(X − E(X))2

]
= E(X2)− (E(X))2.

LetX = (X1, . . . , Xd) be a random vector vector with square integrable componentsX1, . . . , Xd.
The matrix Γ = ΓX = (ΓX

ij )i,j=1,...,d with entries

ΓX
ij = Cov(Xi, Xj) = E

[
(Xi − E(Xi))(Xj − E(Xj))

]
= E(XiXj)− E(Xi)E(Xj)

is called the covariance matrix of X.
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Example 1.18 (Standard normal distribution). Let

φ : R → R, x 7→ 1√
2π
e−x2/2.

It holds
∫
φ(x) dx = 1 (compare combinatorics and probability lecture), hence

PX : B(R) → [0,∞], A 7→
∫
A

φ(x) dx

defines the distribution of a random variable X by proposition 2.33 in the lecture notes on
measure theory.2 By applying the theorem on the integration with respect to image measures,
we obtain

E(X) =

∫
xdPX =

∫
xφ(x) dx =

1√
2π

∫ ∞

−∞
xe−x2/2 dx = 0

and

Var(X) =

∫
(x− E(X))2dPX =

∫
x2φ(x) dx =

1√
2π

∫ ∞

−∞
x2e−x2/2 dx = · · · = 1.

The normal distribution was discovered in the 18th century by de Moivre and Laplace as
limiting distribution of the Binomial distribution. It is also called Gaussian distribution, after
Karl Friedrich Gauss, who investigated this distribution.

The normal distribution is of central importance in probability theory and will appear
throughout this course. It is worthwhile to learn the corresponding formulae by heart.

Remark 1.19. As with the standard normal distribution, there is the following more general
result on the computation of expected values. If a random vector X is absolutely continuous,
i.e. its distribution PX admits a density f with respect to the Lebesgue measure, then Theorem
2.35 in the lecture notes on measure theory implies that for any measurable function h : Rd → R,
if E(h(X)), then

E(h(X)) =

∫
Rd

h(x) dPX(x) =

∫
Rd

h(x)f(x) dx.

Exercise 1.20. LetX be an absolutely continuous random variable with density f = (1/4)1[−1,3].
Compute E(X2).

Definition 1.21 (Cumulative distribution function). Let X = (X1, . . . , Xd) be a random vec-
tor. The cumulative distribution function (or distribution function) FX of X is given by

FX : Rd → [0, 1], (t1, . . . , td) 7→ FX(t1, . . . , td) = P(X1 ≤ t1, . . . , Xd ≤ td).

The distribution functions FX1 , . . . , FXd
are called marginal distribution functions.

2To prove the existence of the random variable X, we can choose (R,B(R),PX) as probability space and set
X = id.
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The distribution of a random vector X is a probability measure PX : B(Rd) → [0, 1], while
its distribution function is a mapping FX : Rd → [0, 1]

Remark 1.22 (Discrete distributions). A discrete random variable X takes values in a countable
set (xk)k∈N, that is

FX(t) =
∑
xk≤t

P(X = xk).

Usually, one rather describes the summands pk = P(X = xk) instead of FX itself; see Example
1.7.

Example 1.23 (Poisson distribution). A random variable X with

P(X = k) = e−λλ
k

k!
, k = 0, 1, . . .

is called Poisson distributed. We write X ∼ POIS(λ). This is a distribution for rare events
(accidents, radioactive decay, and so on).

It holds

E(X) =
∞∑
i=0

(e−λλ
i

i!
)i = e−λ

∞∑
i=1

λi

(i− 1)!
= e−λλeλ = λ.

For the second moment, we obtain

E(X2) = e−λ

∞∑
i=1

λi

i!
i2 = e−λ

∞∑
i=1

λi

i!
[i(i− 1) + i]

= e−λ

[
λ2

∞∑
j=0

λj

j!
+ λ

∞∑
j=0

λj

j!

]
= e−λ(λ2 + λ)eλ = λ2 + λ.

This implies
Var(X) = E(X2)− λ2 = λ.

Remark 1.24 (Absolutely continuous distributions). Let PX be the distribution of a random
vector X with density f with respect to the Lebesgue measure Ld; see also Example 1.18. Then
the distribution function FX satisfies

FX(t1, . . . , td) =

∫ td

−∞
· · ·
∫ t1

−∞
f(y1, . . . , yd) dy1 · · · dyd.

Therefore, a measurable non-negative function f : Rd → [0,∞] is the density of a distribution
on Rd, if ∫

Rd

f(x) dx = 1.

If f is continuous at x, then

f(x) =
∂dFX

∂x1 · · · ∂xd
(x).

In that way, densities can be computed from distribution functions.
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Example 1.25 (Continuation of example 1.18, normal distribution). The distribution function
of the standard normal distribution is

Φ(t) =

∫ t

−∞
φ(x) dx =

1√
2π

∫ t

−∞
e−x2/2 dx.

Φ is a special function and it is tabulated. It holds Φ(−t) = 1− Φ(t).
We define the normal distribution with parameters µ ∈ R and σ > 0 as the distribution

with density

f(x) =
1

σ
φ
(x− µ

σ

)
=

1

σ
√
2π
e−(x−µ)2/(2σ2).

The corresponding distribution function F is given by

F (t) = Φ
(x− µ

σ

)
.

Let the random variable X admit this distribution. One can verify that

E(X) = µ, Var(X) = σ2,

so the expected value of X is µ, and the variance equals σ2. We denote X ∼ N (µ, σ2).

Exercise 1.26. Let the random variable X be absolutely continuous with density f(x) =
ce−|x−a|/b, where a ∈ R and b > 0. Determine c and the distribution function of X.

Proposition 1.27. Let X be a random vector with distribution function FX . Then,

1. FX is rectangular monotone;

2. limxi→−∞ FX(x1, . . . , xd) = 0 for all i ∈ {1, . . . , d}, limmini xi→∞ FX(x) = 1;

3. FX is continuous from the right in each of its components, that is, for all x = (x1, . . . , xd) ∈
Rd and i ∈ {1, . . . , d} it holds lims↓xi

FX(x1, . . . , xi−1, s, xi+1, . . . , xd) = FX(x).

Proof. Exercise.

Remark 1.28. For a random variable X and its distribution function FX , the properties in
Proposition 1.27 simplify to:

1. FX is monotone increasing;

2. limt→−∞ FX(t) = 0, limt→∞ FX(t) = 1;

3. FX is continuous from the right.

In general the problem is the reverse: Given FX , we would like to find a suitable probability
space realizing FX . Luckily, the reverse statement of Proposition 1.27 is true as well.

Theorem 1.29. Let F : Rd → [0, 1] be a function satisfying 1.-3. from Proposition 1.27. Then
there exists a unique probability measure P : B(Rd) → [0, 1] with P((−∞, x1]×· · ·×(−∞, xd]) =
F (x) for all x = (x1, . . . , xd) ∈ Rd.
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Proof. Since F is rectangular monotone, Theorem 1.24 in the lecture notes on measure theory
implies that there exists a unique content P̃ on Rd such that for any cuboid (a1, a2] ̸= ∅, it
holds

P̃((a1, a2]) = ∆a2

a1F.

In particular, P̃(A) < ∞ for all A ∈ Rd. Together with Theorem 1.28 in the lecture notes on
measure theory, property 3. implies that P̃ is σ additive. Due to Carathéodory ’s extension
Theorem, there exists a measure P on σ(Rd) = B(Rd) that extends P̃. We obtain that for each
x = (x1, . . . , xd) ∈ Rd,

P((−∞, x1]× · · · × (−∞, xd]) = P
( ⋃
n∈N

(−n, x1]× · · · × (−n, xd]
)

= lim
n→∞

P
(
(−n, x1]× · · · × (−n, xd]

)
= F (x) + lim

n→∞

∑
i1,...,id∈{1,2}

(i1,...,id )̸=(2,...,2)

(−1)i1+···+idF (ai11 , . . . , a
id
d ) = F (x),

using assumption 2. with a1 = (−n, . . . ,−n) and a2 = x. Assumption 2. also implies P(Rd) =
limn→∞ F (n, . . . , n) = 1, hence each P is a probability measure. Since Rd is a ring, Theorem
1.35 in the lecture notes on measure theory implies that P is unique.

Example 1.30. If a random variable X is uniformly distributed on [0, 1], then its distribution
admits the density

f(x) = 1[0,1](x), x ∈ R,

and we obtain the distribution function

FX(t) = 1[0,1](t) t+ 1(1,∞)(t), t ∈ R.

More generally, a distribution with density f(x) = 1/(b − a)1[a,b](x), x ∈ R, is called uniform
distribution on [a, b], and we denote X ∼ UNIF[a, b]. Let X ∼ UNIF[a, b]. Then,

E(X) =

∫ b

a

1

b− a
· x dx =

1

b− a

x2

2

]b
a
=
a+ b

2
.

and

E(X2) =
1

b− a

∫ b

a

x2 dx =
b3 − a3

3(b− a)
=
b2 + ab+ a2

3
.

Thus

Var(X) = E(X2)−
(
a+ b

2

)2

=
b2 − 2ab+ a2

12
=

(b− a)2

12
.

Example 1.31 (Cauchy distribution). The distribution function of the Cauchy distribution is

F (x) =
1

π
(arctanx+

π

2
),

hence its density equals

f(x) = F ′(x) =
1

π(1 + x2)
.
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Let X be Cauchy distributed. We first compute

E(X+) =

∫ ∞

0

xf(x) dx =
1

π

∫ ∞

0

x

1 + x2
dx =

1

2π
log(1 + x2)

]∞
0

= ∞.

By symmetry it holds E(X−) = ∞, so the expected value of the Cauchy distribution does not
exist.

Example 1.32 (Continuous singular distribution). There exist singular distributions with
continuous distribution functions!

We recursively define a sequence (Fn)n∈N of distribution functions. For all n let Fn(x) = 0
for x ≤ 0 and Fn(x) = 1 for x ≥ 1. For x ∈ [0, 1], we set F0(x) = x and

Fn+1(x) =


1
2
Fn(3x), falls x ∈ [0, 1/3],

1
2
, falls x ∈ [1/3, 2/3],

1
2
+ 1

2
Fn(3x− 2), falls x ∈ [2/3, 1].

The functions Fn are continuous distribution functions. Moreover, it holds

max
x∈[0,1]

|Fn+1(x)− Fn(x)| ≤
1

2
max
x∈[0,1]

|Fn(x)− Fn−1(x)|,

so the triangle inequality implies that (Fn)n∈N is a Cauchy sequence in the supremum norm on
[0, 1]. Hence there is a continuous limiting function F , which is also a distribution function.
We now show that the corresponding distribution is singular.

We claim that Fn|[0,1] is constant on a length of (1/3)
∑n−1

k=0(2/3)
k. Moreover, all constant

pieces of Fn are also constant pieces of Fn+1. This implies that F is constant on a length of

1

3

∞∑
k=0

(2
3

)k
=

1

3

1

1− 2
3

= 1

so a random variable with distribution function F only attains values in a set with Lebesgue
measure zero.

We now show the claim that Fn|[0,1] is constant on a length of (1/3)
∑n−1

k=0(2/3)
k by induction.

For n = 1, this is obvious. By definition, the length of the constant pieces of Fn+1|[0,1] is

1

3
+

2

3
{Length of the constant pieces of Fn|[0,1]} =

1

3
+

2

3

1

3

n−1∑
k=0

(2
3

)k
=

1

3

n∑
k=0

(2
3

)k
.

1.3 Independence

Let (Ω,F,P) be a probability space and I an arbitrary index set.

Definition 1.33. A family (Ai)i∈I ⊆ F of events is called independent, if for all n ∈ N and all
finite subsets {i1, . . . , in} ⊆ I,

P(Ai1 ∩ · · · ∩ Ain) = P(Ai1) · · ·P(Ain).
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Example 1.34 (Continuation of example 1.2). We now throw two dice, i.e. Ω = {1, . . . , 6} ×
{1, . . . , 6} = {(i, j) | i, j ∈ {1, . . . , 6}}, F = 2Ω and P({ω}) = 1

36
, ω ∈ Ω. Consider the events

A1 :=”‘Odd number in the first toss”’,

A2 :=”‘Odd number in the second toss”’,

A3 :=”‘Sum of the two numbers is odd”’.

The set {A1, A2, A3} is not independent, but the sets {A1, A2}, {A1, A3} and {A2, A3} are all
independent.

Pairwise independence does not imply independence!

Example 1.35 (Continuation of example 1.3). We consider Ω = [0, 2π) and P = 1
2π
L1|[0,2π).

Then {[0, π], [π, 2π)} is not independent, but {[0, 2π), [0, π]} is.

We will now extend Definition 1.33.

Definition 1.36. Let (Ai)i∈I be a family of sets of events Ai ⊆ F. The family is called
independent, fi for any finite subset {i1, . . . , in} ⊆ I and any choice of events

Aik ∈ Aik , k = 1, . . . , n

the family of events (Ai1 , . . . , Ain) is independent.

Exercise 1.37. Let A1,A2 ⊆ F with A1 ⊆ A2. Show that

{A1,A2} is independent ⇐⇒ P(A) = 0 oder P(A) = 1 for all A ∈ A1.

Definition 1.38. A family {Xi | i ∈ I} of random vectors is called independent, if for any
finite subset {i1, . . . , in} ⊆ I and all Borel sets A1, . . . , An ∈ B(Rd),

P(Xi1 ∈ A1, . . . , Xin ∈ An) = P(Xi1 ∈ A1) · · ·P(Xin ∈ An).

Remark 1.39. Verify that {Xi | i ∈ I} is independent if and only if {σ(Xi) | i ∈ I} is
independent, where

σ(X) := {X−1(A) | A ∈ B(Rd)}
is the σ-field generated by X.

Let X, Y be two independent random variables on a probability space (Ω,F,P). The
corresponding distributions PX , PY are probability measures on (R,B(R)). Independence
means that for all A,B ∈ B(R), it holds

PX(A)PY (B) = P(X ∈ A)P(Y ∈ B) = P(X ∈ A, Y ∈ B) = P(X,Y )(A×B), (1.1)

where P(X,Y ) denotes the distribution of the random vector (X, Y ) : Ω → R2. The unique
product measure PX ⊗ PY on B(R2) hence equals the distribution of the random vector
(X, Y ) : Ω → R2 with independent components X and Y . Product measures therefore guaran-
tee the existence of a probability space with two independent random variables with arbitrary
distributions. Since the generation of product measures is associative, this argument can be
extended to show the existence of probability spaces with finitely many independent random
variables (with arbitrary distributions).
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Theorem 1.40. Random variables X1, . . . , Xd are independent if and only if for all t1, . . . , td ∈
R,

FX(t1, . . . , td) = FX1(t1) · · ·FXd
(td),

where X = (X1, . . . , Xd).

Proof. Exercise. Hint: Use the theorem on the uniqueness of product measures to show that for
d = 2, P(X1,X2) = PX1 ⊗ PX2 . The proof for general d uses the associativity of the generation
of product measures.

Corollary 1.41. IF X1, . . . , Xd are independent absolutely continuous random variables with
densities fXi

, i = 1, . . . , d, then X = (X1, . . . , Xd) is absolutely continuous with density

f(x1, . . . , xd) = fX1(x1) · · · fXk
(xd).

Example 1.42 (Multivariate normal distribution). IfX1, . . . , Xd are independent and standard
normally distributed, then X = (X1, . . . , Xd) admits the density

fX(x1, . . . , xd) = φ(x1)φ(x2) · · ·φ(xd) =
1

(2π)d/2
e−

1
2
(x2

1+···+x2
d) =

1

(2π)d/2
e−

1
2
∥x∥2 ,

where x = (x1, x2, . . . , xd) ∈ Rd. The random vector X = (X1, X2, . . . , Xd) admits a d-
dimensional standard normal distribution. We now consider a linear transformation Y :=
AX + b with an invertible (d× d)-matrix A and b ∈ Rd. Let g : Rd → Rd denote the mapping
g(y) = A−1(y − b). For an open subset B ⊆ Rd, the transformation theorem (see Analysis
lecture) implies that

P(Y ∈ B) = P(AX + b ∈ B) = P(X ∈ g(B))

=

∫
g(B)

fX(x) dx =

∫
B

fX(g(y))|J(y)| dy,

where J(y) = detA−1 is the determinant of the Jacobian matrix of g. We set Γ = AA⊤. Then
Γ is a symmetric, positive definite matrix, det Γ = (detA)2, and

∥A−1y∥2 = ⟨Γ−1y, y⟩,

so the distribution of Y admits the density

fY (y) =
1

(2π)d/2
√
det Γ

e−
1
2
⟨Γ−1(y−b),y−b⟩. (1.2)

Note that here we use the fact that the open sets generate B(Rd), so we can apply Theorem
1.35 from the lecture notes on measure theory. A distribution with this type of density is called
d-dimensional normal distribution.

Proposition 1.43. Let g, h : Rd → R be measurable functions and X, Y independent random
vectors. Then Z := h(X) and W := g(Y ) are independent.

Proof. For any A,B ∈ B(R),

P(Z ∈ A,W ∈ B) = P(X ∈ h−1(A), Y ∈ g−1(B))

= P(X ∈ h−1(A))P(Y ∈ g−1(B))

= P(Z ∈ A)P(W ∈ B).
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Theorem 1.44. Let X and Y be integrable random variables. If X and Y are independent,
then

E(XY ) = E(X)E(Y ).

Proof. Step 1: Let X and Y be simple random variables, i.e. non-negative stepfunctions
X =

∑n
k=1 ck1Ak

, Y =
∑m

l=1 dl1Bl
with pairwise different ck, dl. Then,

E(XY ) = E
( n∑

k=1

m∑
l=1

ckdl 1Ak
1Bl︸ ︷︷ ︸

=1Ak∩Bl

)
=

n∑
k=1

m∑
l=1

ckdlP(Ak ∩Bl) =
n∑

k=1

m∑
l=1

ckdlP(Ak)P(Bl),

because Ak ∈ σ(X) and Bl ∈ σ(Y ) and X and Y are independent; see Remark 1.39. But now

n∑
k=1

m∑
l=1

ckdlP(Ak)P(Bl) =
n∑

k=1

ckP(Ak)
m∑
l=1

dlP(Bl) = E(X)E(Y ).

Step 2: Let now X, Y ≥ 0 and (Xn)n∈N, (Yn)n∈N be sequences of simple random variables with
Xn ↑ X, Yn ↑ Y , as constructed in the proof of Theorem 2.9 in the lecture notes on measure
theory, that is, Xn = fn(X), Yn = fn(Y ) with

fn : R → R, x 7→
n2n−1∑
k=0

k2−n
1[k2−n,(k+1)2−n)(x) + n1[n,∞)(x).

The functions fn are measurable, so by Proposition 1.43, Xn = fn(X) and Yn = fn(Y ) are also
independent for all n. By the definition of the integral, we obtain

E(XY ) = lim
n→∞

E(XnYn) = lim
n→∞

E(Xn)E(Yn)

= lim
n→∞

E(Xn) lim
n→∞

E(Yn) = E(X)E(Y ).

Step 3: In general,

XY = (X+ −X−)(Y+ − Y−) = (X+Y+ +X−Y−)− (X+Y− +X−Y+),

so

E(XY ) = E(X+)E(Y+) + E(X−)E(Y−)− E(X+)E(Y−)− E(X−)E(Y+)

= [E(X+)− E(X−)][E(Y+)− E(Y−)] = E(X)E(Y ).

Example 1.45. Let X be distributed according to a d-dimensional standard normal distribu-
tion, and let Y := AX+ b with an invertible (d×d)-matrix A and b ∈ Rd. Then the covariance
matrix of X is ΓX = Id, where Id denotes the d-dimensional unit matrix. It holds

E(Y ) = AE(X) + b = b, ΓY = AΓXA⊤ = AA⊤,

so the matrix Γ = AA⊤ in (1.2) is the covariance matrix ΓY .
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1.4 Sums of independent random variables

Let X and Y be independent random variables. We are interested in the distribution of their
sum, that is, of the random variable

Z := X + Y.

Since X, Y are independent, their joint distribution is given by P(X,Y ) = PX ⊗ PY . By
applying Fubini’s Theorem, we can compute the distribution of Z. Let A ∈ B(R).. Then,

PZ(A) = P(Z ∈ A) = E(1A(X + Y ))

=

∫
1A(x+ y) d(PX ⊗PY )(x, y) =

∫ ∫
1A(x+ y) dPX(x) dPY (y)

=

∫ ∫
1−y+A(x) dPX(x) dPY (y) =

∫
PX(−y + A) dPY (y),

where −y +A := {−y + a | a ∈ A}. The measure PZ is called the convolution PX ∗PY of PX

and PY ,

(PX ∗PY )(A) :=

∫
PX(−y + A) dPY (y).

Exercise 1.46. LetX and Y be independent and discrete with values in Z. We set Z := X+Y .
Let P(X = k) =: pk and P(Y = k) =: qk, k ∈ Z. Show that

P(Z = k) =
∑
j∈Z

qjpk−j, k ∈ Z.

Example 1.47. Let X ∼ POIS(λ), Y ∼ POIS(µ), that is, pi = e−λ λi

i!
and qj = e−µ µj

j!
, i, j ∈ N0.

Then,

P(Z = k) = e−(λ+µ)

k∑
i=0

λiµk−i

i!(k − i)!
=
e−(λ+µ)

k!

k∑
i=0

(
k

i

)
λiµk−i = e−(λ+µ) (λ+ µ)k

k!
,

so the sum Z of two independent Poisson random variables is again Poisson distributed with
parameter λ+ µ.

Exercise 1.48. Let X and Y be independent and absolutely continuous with densities f and
g. We set Z := X + Y . Show that for A ∈ B(R),

PZ(A) =

∫
1A(z)

∫
f(z − y)g(y) dy dz,

and conclude that Z is absolutely continuous with density∫
f(z − y)g(y) dy, z ∈ R.

Example 1.49 (Normal distributions). Let X ∼ N (0, σ2) and Y ∼ N (0, τ 2) be independent,
that is

f(x) =
1√
2πσ

e−
x2

2σ2 , g(y) =
1√
2πτ

e−
y2

2τ2 .
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In the expression f(t)g(z − t), an exponential function with the exponent k

−1

2

(
t2

σ2
+

(z − t)2

τ 2

)
= −1

2

[
σ2 + τ 2

σ2τ 2

(
t− σ2z

σ2 + τ 2

)2

+
z2

σ2 + τ 2

]
appears. Integrate over t by using∫ ∞

−∞
exp

(
− x2

2α2

)
dx =

√
2πα

where α2 = σ2τ 2/(σ2 + τ 2). Then

h(z) = f ∗ g(z)

=
1

2πστ
exp

(
− z2

2(σ2 + τ 2)

)∫ ∞

−∞
exp

(
− 1

2α2

(
t− σ2z

σ2 + τ 2

)2
)

dt

=
1√

2π(σ2 + τ 2)
exp

(
− z2

2(σ2 + τ 2)

)
.

The random variable Z = X + Y is therefore again normally distributed, more precisely
N (0, σ2 + τ 2).

Exercise 1.50. Show that any linear combination of the components of a normally distributed
random vectors is normally distributed on R.

Exercise 1.51. Let X and Y be independent standard normal random variables. Compute
the density of the distribution of Z = X2 + Y 2.
Hint: You may use ∫ z

0

1√
(z − u)u

du = π, z > 0.

1.5 Infinite products of probability spaces

The associativity in the generation of product measures implies the existence of probability
spaces on which we can define finitely many independent random variables. However, we
would often like to define sequences (that is, infinitely many) of random variables. One can
show that for any sequence of random variables (Xn)n∈N, Xn : Ωn → R with distributions PXn ,
n ∈ N, there exists a probability space (Ω,F,P) and a sequence of random variables (X̃n)n∈N
with X̃n : Ω → R and distributions PX̃n

= PXn . To this end, one considers the product space
Ω =

∏∞
n=1Ωn with a suitable product σ-field and a suitable product measure. We will consider

this construction only in a special case.
We construct a probability space which models the random experiment of tossing a coin

infinitely many times. In the n-th independent experiment, the coin shows head with probability
qn ∈ [0, 1] (encoded as 1) and tail with probability 1− qn (encoded as 0). That is, we consider

Ω := {(ωn)n∈N | ωn ∈ {0, 1}} = {0, 1}N,

the set of all 0-1-sequences.3 We call a set Z ⊆ Ω of 0-1-sequences a cylinder set, it there exist
m ∈ N and C ⊆ {0, 1}m such that

Z = {(ωn)n∈N | (ω1, . . . , ωm) ∈ C}.
3This is an uncountable set; see lectures on Analysis.
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We call (m,C) representation of Z. Attention! The representation (m,C) of a cylinder set is
not unique.

Lemma 1.52. The set Z consisting of all cylinder sets is a ring.

Proof. It is obvious that ∅ ∈ Z. Let Y, Z ∈ Z with representations

Y = {(ωn)n∈N | (ω1, . . . , ωm) ∈ B}, Z = {(ωn)n∈N | (ω1, . . . , ωk) ∈ C},

where B ⊆ {0, 1}m, C ⊆ {0, 1}k. We can assume that m ≤ k. Then with B′ = B × {0, 1}k−m,
it holds

Y = {(ωn)n∈N | (ω1, . . . , ωk) ∈ B′},

so
Y \ Z =

{
(ωn)n∈N | (ω1, . . . , ωk) ∈ B′ \ C

}
,

Z \ Y =
{
(ωn)n∈N | (ω1, . . . , ωk) ∈ C \B′},

Y ∪ Z =
{
(ωn)n∈N | (ω1, . . . , ωk) ∈ B′ ∪ C

}
.

For all m ∈ N, let now pm : {0, 1}m → [0, 1] be defined as

pm(y) = qy11 (1− q1)
1−y1 . . . qymm (1− qm)

1−ym .

Remark 1.53. The product measure on {0, 1}m is given by

2{0,1}
m → [0, 1], C 7→

∑
y∈C

pm(y).

Lemma 1.54. The function

P̃ : Z → [0, 1], Z 7→ P̃(Z) =
∑
y∈CZ

pmZ
(y)

defines a σ additive content on Z, where CZ ⊂ {0, 1}mZ is a representation of the cylinder set
Z. It holds P̃(Ω) = 1.

Proof. First verify that the definition of P̃(Z) does not depend on the representation of Z
(Exercise). Let now Y, Z ∈ Z with representations B ⊆ {0, 1}m, C ⊆ {0, 1}k. Let m ≤ k.
Then Y ∩ Z = ∅ implies that B × {0, 1}k−m ∩ C = ∅, so P̃(Y ∪ Z) = P̃(Y ) + P̃(Z). Clearly,
P̃(Ω) = 1, because Ω admits the representation (1, {0, 1}). If (Zn)n∈N is a sequence in Z with
Zn ∩ Zk = ∅ and Z :=

⋃
n∈N Zn ∈ Z, then only finitely many Zn can be non-empty, because Z

is a cylinder set, so the σ-additivity is a direct consequence of the additivity.

Due to the measure extension theorem by Carathéodory and Theorem 1.35 in the lecture
notes on measture theory, there exists a unique probability measure P on σ(Z) that extends P̃.

Example 1.55 (Infinite toss of coin). Assume q = qm, i.e. the probability of head (1) is equal
in each toss. Then for y ∈ {0, 1}m,

pm(y) = p#{i | yi=1}(1− p)#{i | yi=0} = p
∑m

j=1 yj(1− p)m−
∑m

j=1 yj .
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Example 1.56 (Geometric distribution). We consider the probability space from Example
1.55, that is, Ω = {0, 1}N. X shall denote the waiting time until the first success (head,
encoded as 1) in a sequence of coin tosses, i.e.

X(ω) = min{k ∈ N | ω1, . . . , ωk = 0, ωk+1 = 1}.

Because {X = k} is a cylinder set, we directly obtain

P(X = k) = (1− p)kp.

We denote this distribution as X ∼ GEOM(p).
Taking the derivative of

∑∞
i=0 x

i = (1 − x)−1 (Analysis: computing with power series), we
obtain

∑∞
i=1 ix

i−1 = (1− x)−2 and
∑∞

i=1 i(i− 1)xi−2 = 2(1− x)−3, so

E(X) = p
∞∑
j=1

(1− p)jj = p(1− p)
∞∑
j=1

(1− p)j−1j =
p(1− p)

p2
=

1− p

p

E(X2) = p
∞∑
j=1

(1− p)jj2 = p
∞∑
j=1

(1− p)j[j(j − 1) + j]

= p
(
2(1− p)2p−3 + (1− p)p−2

)
= 2

(1− p)2

p2
+

1− p

p
.

Therefore,

Var(X) = E(X2)−
(
1− p

p

)2

=
(1− p)2

p2
+

1− p

p
=

1− p

p2
.
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Chapter 2

Convergence of random variables

2.1 Important inequalities

Theorem 2.1 (Markov’s inequality). Let X be a random variable and ϵ > 0. Then,

P(|X| ≥ ε) ≤ E(|X|)
ε

.

Proof. It holds
E(|X|) ≥ E(|X|1{|X|≥ε}) ≥ εP(|X| ≥ ε).

Corollary 2.2 (Chebyshev’s inequality). If the variance of X exists, then for all ε > 0,

P(|X − E(X)| ≥ ε) ≤ Var(X)

ε2
.

Proof. With Y = (X − E(X))2, it holds

P(|X − E(X)| ≥ ε) = P(Y ≥ ε2) ≤ E(Y )

ε2
.

Corollary 2.3 (Generalized Markov inequality). Let g be a measurable, increasing function
with g > 0, and let X be a random variable. Then for all ε > 0,

P(X ≥ ε) ≤ E(g(X))

g(ε)
.

Theorem 2.4 (Jensen’s inequality). Let g be a convex function and X a random variable.
Then,

E(g(X)) ≥ g(E(X)),

if these expected values exist and are finite.

Proof. Because g is convex, for any x0 ∈ R there exists K ∈ R such that

g(x) ≥ g(x0) +K(x− x0), for all x ∈ R.

We choose x0 = E(X) and x = X and apply the expectation to both sides.
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Theorem 2.5 (Kolmogorov’s inequality). For independent random variables X1, . . . , Xk with
E(Xi) = 0, i = 1, . . . , k, and ε > 0, it holds:

P

(
max
1≤j≤k

∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣ ≥ ε

)
≤ 1

ε2

k∑
i=1

Var(Xi).

Proof. Set Sj =
∑j

i=1Xi, j = 1, . . . , k, and

Aj = {|S1| < ε, . . . , |Sj−1| < ε, |Sj| ≥ ε}.

The events A1, . . . , Ak are disjoint. For all j ∈ {1, . . . , k}, the random variables 1Aj
Sj and

Sk − Sj are independent, since the former one only depends on X1, . . . , Xj and the latter one
only on Xj+1, . . . , Xk. This implies

k∑
j=1

Var(Xj) = E(S2
k) ≥

k∑
j=1

E(1Aj
S2
k) =

k∑
j=1

E(1Aj
(Sj + (Sk − Sj))

2)

≥
k∑

j=1

(
E(1Aj

S2
j ) + 2E(1Aj

Sj)E(Sk − Sj)
)
=

k∑
j=1

E(1Aj
S2
j )

≥
k∑

j=1

ε2P(Aj) = ε2P

(
k⋃

j=1

Aj

)
= ε2P

(
max
1≤j≤k

|Sj| ≥ ε

)
.

Exercise 2.6. Let X1, . . . , Xn be independent standard normal random variables. Prove that

P

(
max
1≤k≤n

∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣ ≥ n

)
≤ 1

n
.

2.2 Notions of convergence

Definition 2.7. Let X and X1, X2, . . . be random variables on a probability space (Ω,F,P).
The sequence (Xn)n∈N converges almost surely to X if

P({ω : lim sup
n→∞

Xn(ω) = lim inf
n→∞

Xn(ω) = X(ω)}) = 1,

and we write Xn
a.s.−→ X. The sequence (Xn)n∈N converges in probability to X if for all ε > 0,

lim
n→∞

P(|Xn −X| > ε) = 0,

and we write Xn
P−→ X.

Convergence almost surely means thatXn(ω) → X(ω), n→ ∞, holds for all ω. Convergence
in probability means that the probability of the event {|Xn−X| > ε} converges to 0 for n→ ∞.

Exercise 2.8. Let Ω = [0, 1], F = B([0, 1]) and P = L1|[0,1]. We define Xn = n1An with
An = [0, 1/n] for all n ∈ N. Examine whether the sequence (Xn)n∈N converges almost surely
and/or in probability, using the definitions above.
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Theorem 2.9. Let X,X1, X2, . . . be random variables. Then the following statements are
equivalent.

1. Xn
a.s.−→ X.

2. For all ε > 0,

lim
n→∞

P
( ⋃
k≥n

{|Xk −X| > ε}
)
= P

( ⋂
n≥1

⋃
k≥n

{|Xk −X| > ε}
)
= 0.

Proof. Xn(ω) does not converge to X(ω) if and only if there exists j such that |Xn(ω)−X(ω)| >
1/j for infinitely many n, that is,

{ω | Xn(ω) ̸→ X(ω)} =
⋃
j≥1

{
|Xn −X| > 1

j
for infinitely many n

}
.

Hence, Xn
a.s.−→ X if any only if

P
({

|Xn −X| > 1

j
for infinitely many n

})
= 0

for all j ∈ N. With{
|Xn −X| > 1

j
for infinitely many n

}
=
⋂
n≥1

⋃
k≥n

{
|Xk −X| > 1

j

}
,

we obtain the equivalence of 1. and 2. (first with ε = 1/j and then for all ε > 0).

Corollary 2.10. Convergence almost surely implies convergence in probability.

Proof. This is a consequence of Theorem 2.9 (2.).

Attention: The reverse statement of Corollary 2.10 is not true!

Example 2.11. Let Ω = [0, 1] be endowed with the Lebesgue-measure. Defining

Xn(ω) =

{
1, ω ∈ [j2−k, (j + 1)2−k],

0, sonst,

where n = 2k + j, with k = 0, 1, . . . and j = 0, . . . , 2k − 1 and X(ω) = 0, it holds

P(|Xn −X| > 0) = 2−k → 0 (n→ ∞),

so (Xn)n∈N converges in probability to X. However, the sequence Xn(ω) contains infinitely
many 0 for any ω and therefore it does not converge.

Definition 2.12. Let X and X1, X2, . . . be random variables and p > 0. Then Xn converges
in Lp to X, if

lim
n→∞

E|Xn −X|p = 0

and we write Xn
Lp

−→ X.
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Theorem 2.13. Convergence in Lp implies convergence in probability.

Proof. Markov’s inequality (Theorem 2.1) implies

P(|Xn −X| > ε) = P(|Xn −X|p > εp) ≤ ε−pE|Xn −X|p.

Convergence in Lp is neither sufficient nor necessary for convergence almost surely.

Theorem 2.14 (Convergence of series). Let (Xn)n∈N be a sequence of independent square
integrable random variables. If the sequences

∑∞
n=1E(Xn) and

∑∞
n=1 Var(Xn) both converge

absolutely, then the sequence
∑∞

n=1Xn converges almost surely.

Proof. We can assume without loss of generality that E(Xn) = 0 for all n. Let Sn =
∑n

i=1Xi

and m ∈ N. Kolmogorov’s inequality (Theorem 2.5) implies that for all ε > 0,

P
(
sup
n>m

|Sn − Sm| > ε

)
= P

(⋃
k≥1

{
max

m<n≤m+k
|Sn − Sm| > ε

})

= lim
k→∞

P
(

max
m<n≤m+k

|Sn − Sm| > ε

)
≤ lim sup

k→∞

1

ε2

m+k∑
n=m+1

Var(Xn)

=
1

ε2

∑
n>m

Var(Xn).

By assumption,

lim
m→∞

P
(
sup
n>m

|Sn − Sm| > ε

)
= 0.

The following Lemma 2.16 shows that then Sn converges almost surely.

Exercise 2.15. Let (Zn)n∈N be a sequence of independent random variables with Zn ∈ {−1, 1}.
Let P(Zn = 1) = p ∈ [0, 1] and P(Zn = −1) = 1− p. Is there a p ∈ [0, 1] such that

∞∑
n=1

Zn

n

converges almost surely?

Lemma 2.16. A sequence (Xn)n∈N of random variables converges almost surely if any only if
for all ε > 0,

lim
n→∞

P
(
sup
k,l≥n

|Xk −Xl| ≥ ε

)
= 0. (2.1)

This condition is equivalent to

lim
n→∞

P
(
sup
k≥0

|Xn+k −Xn| ≥ ε

)
= 0.

Proof. A sequence of real numbers converges if and only if it is a Cauchy sequence. Now we
can use similar arguments as in Theorem 2.9
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2.3 Zero-one-laws

Let (Ω,F,P) be a probability space.

2.3.1 Borel-Cantelli Lemma

Theorem 2.17 (Borel-Cantelli Lemma). Let (Ak)k∈N be a sequence of events and

A := {ω | ω ∈ Ak for infinitely many k} =
⋂
n≥1

⋃
m≥n

Am =: lim sup
k→∞

Ak

1. If
∑∞

k=1 P(Ak) <∞, then P(A) = 0.

2. If the sequence (Ak)k∈N is independent and
∑∞

k=1 P(Ak) = ∞, then P(A) = 1.

Proof. 1. The definition of A implies that

A ⊆
∞⋃
k=n

Ak, for n = 1, 2, . . . ,

so

P(A) ≤
∞∑
k=n

P(Ak), for n = 1, 2, . . . .

Because the sequence
∑∞

k=1 P(Ak) converges, its remainder rm =
∑∞

k=m P(Ak) converges
to zero, which proves the claim.

2. We first prove the following claim (see Analysis). For any sequence (αn)n∈N of numbers
αn ∈ [0, 1],

∞∑
n=1

αn = ∞ ⇒
∞∏
n=1

(1− αn) = 0.

Now note that the sequence of complements (Ac
k)k∈N is also independent. Therefore,

1− P(A) = P(Ac) = P
( ⋃

n≥1

⋂
k≥n

Ac
k

)
= lim

n→∞
P
( ⋂

k≥n

Ac
k

)
= lim

n→∞
lim

N→∞
P
( N⋂

k=n

Ac
k

)
= lim

n→∞
lim

N→∞

N∏
k=n

P
(
Ac

k

)
= lim

n→∞
lim

N→∞

N∏
k=n

(1− P
(
Ak

)
)

With the claim above, it follows that

lim
N→∞

N∏
k=n

(1− P
(
Ak

)
) = 0

for all n = 1, 2, . . . , which gives statement (2.).

Exercise 2.18. Let p ∈ (0, 1]. Show that there exist a probability space and a sequence of
events (An)n∈N with

∑∞
n=1 P(An) = ∞ and P(lim supn→∞An) = p.
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Corollary 2.19. Let (Xn)n∈N be a sequence of random variables and X a random variable. If
for all ε > 0,

∞∑
n=1

P
(
|Xn −X| > ε

)
<∞,

then Xn
a.s.−→ X for n→ ∞.

Proof. Exercise.

Corollary 2.20. Let (Xn)n∈N be a sequence of random variables which converges to X in

probability, i.e. Xn
P−→ X. Then there exists a subsequence (Xnk

)k∈N with Xnk

a.s.−→ X for
k → ∞.

Proof. We define the index sequence nk inductively. Let n1 := 0, and define nk to be the
smallest integer n > nk−1 such that

P(|Xm −X| > 2−k) ≤ 2−k f”ur alle m ≥ n.

(Such a n exists because for all ε (= 2−k), the sequence P(|Xm −X| > ε) converges to zero.)
Then,

∞∑
k=1

P(|Xnk
−X| > 2−k) ≤

∞∑
k=1

2−k <∞.

Corollary 2.19 yields the desired result.

Exercise 2.21. Let (Xn)n∈N be a sequence of random variables and X a random variable.
Assume that any subsequence (Xn)n∈N contains a subsequence which converge almost surely to

X. Show that then Xn
P−→ X.

2.3.2 Kolmogorov’s zero-one law

Definition 2.22. Let (An)n∈N be a sequence of σ-fields An ⊆ F. Let

An := σ
( ⋃
m≥n

Am

)
the σ-field generated by An,An+1, . . . . Then

A∞ :=
⋂
n≥1

An

is called the σ-field of terminal events of the sequence (An)n∈N.

Theorem 2.23 (Kolmogorov’s zero-one law). Let (An)n∈N be an independent sequence of σ-
fields An ⊆ F. Then for any terminal event A ∈ A∞, either P(A) = 0 or P(A) = 1.

Before proving this Theorem, we consider an important application.
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Definition 2.24. Let (Xn)n∈N be a sequence of random variables. A terminal event of the
sequence (Xn)n∈N is a terminal event of the sequence (σ(Xn))n∈N, i.e. an element of the σ-field

A∞ =
∞⋂
n=1

An,

where
An = σ

( ⋃
m≥n

σ(Xm)
)
.

Example 2.25. Let (Xn)n∈N be a sequence of random variables. Then,

1. {lim supn→∞Xn <∞} is a terminal event.

2. Let Sn = X1+· · ·+Xn. Then {lim supn→∞ Sn/n = lim infn→∞ Sn/n = 0} and {(Sn)n∈N converges}
are terminal events.
Hence, Kolmogorov’s zero-one law shows that for a sequence (Xn)n∈N of independent
random variables, the series

∞∑
n=1

Xn

converges with probability 0 or 1. Theorem 2.14 gives one possible condition under which
this happens with probability 1.

3. In general, {Xn = 0 ∀n ≥ 1} and {lim supn→∞ Sn ≤ c} = {lim supn→∞
∑N

n=1Xn ≤ c} are
not terminal events.

To prove the zero-one law, we need the following theorem.

Theorem 2.26. Let {Ai | i ∈ I} be an independent family of ∩-stable sets of events Ai ⊆ F.
Then the family {σ(Ai) | i ∈ I} is independent.

Proof. A family of events is independent if and only if all its finite sub-families are independent,
so we can assume that I is finite. For an arbitrary i0 ∈ I, define

Bi0 = {B ∈ F | {Ai | i ∈ I\{i0}} ∪ {{B}} is independent}.

One can show that Bi0 is a Dynkin system.
Clearly, Ai0 ⊆ Bi0 . By assumption, Ai0 is ∩-stable, so Theorem 1.15 in the lecture notes on

measure theory implies that
σ(Ai0) = D(Ai0) ⊂ Bi0 .

By construction of Bi0 , the family {Ai | i ∈ I} remains independent of we replace Ai0 by a
subset of Bi0 , for example by σ(Ai0). Therefore, {Ai | i ∈ I\{i0}} ∪ {σ(Ai0)} is independent.
Since I is finite, we can repeat this procedure infinitely often and obtain that {σ(Ai) | i ∈ I}
is independent.

Proof of Theorem 2.23. Let A ∈ A∞. We define M to be the family of all events which are
independent of A, that is,

M :=
{
M ∈ F | P(A ∩M) = P(A)P(M)

}
.

We will show that A ∈ M, which implies P(A) = P(A ∩ A) = P(A)P(A) and therefore P(A) ∈
{0, 1}.
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Step 1: Show that M is a Dynkin system.

Step 2: We show that for any n ∈ N: An+1 is independent of Bn := σ(A1 ∪ · · · ∪ An). For
arbitrary k ∈ N, l ∈ {1, . . . , n} let J = {j1, . . . , jk} ⊆ {n+1, n+2, . . . }, I = {i1, . . . , il} ⊆
{1, . . . , n} be finite non-empty subsets. For

Bs ∈ Ajs , s = 1, . . . , k, Ct ∈ Ait , t = 1, . . . , l

the events
B1 ∩ · · · ∩Bk, and C1 ∩ · · · ∩ Cl

are independent. So the following two families F ,G of sets are independent:

F :=
{
B1 ∩ · · · ∩Bk | k ≥ 1, {j1, . . . , jk} ⊆ {n+ 1, n+ 2, . . . }, Bs ∈ Ajs , s = 1, . . . , k

}
G :=

{
C1 ∩ · · · ∩ Cl | 1 ≤ l ≤ n, {i1, . . . , il} ⊆ {1, . . . , n}, Ct ∈ Ait , t = 1, . . . , l

}
.

It holds An+1 = σ(F) and Bn = σ(G). The families F ,G are ∩-stable, so we can apply
Theorem 2.26.

Step 3: We know that A ∈ An+1, so Step 2 shows Bn ⊆ M for all n ∈ N. Thus

B0 :=
∞⋃
n=1

Bn ⊆ M.

The family of sets B0 is ∩-stable, so Theorem 1.15 in the lecture notes on measure theory
implies that

σ(B0) ⊆ M.

For all n ≥ 1, An ⊆ B0 due to the definition of Bn, so also An ⊆ σ(B0), and in particular
A∞ ⊆ σ(B0). Therefore,

A∞ ⊆ σ(B0) ⊆ M,

and A ∈ M, which is what we had to show.

2.4 Law of large numbers

Let (Xn)n∈N be a sequence of random variables. The laws of large numbers are statemebts
about the convergence of

1

n
Sn :=

1

n
(X1 + · · ·+Xn)

for n → ∞. The weak law describes the convergence of Sn/n in probability, the strong law
convergence almost surely.

Theorem 2.27 (Weak law of large numbers). Let (Xn)n∈N be a sequence of independent and
identically distributed random variables. Then,

lim
n→∞

E
(
|Sn/n− E(X1)|

)
= 0

and
Sn/n

P−→ E(X1).

27



Proof. See course on combinatorics and probability.

Exercise 2.28. Prove Theorem 2.27 for square integrable random variables. (Hint: Cheby-
chev’s inequality.)

Theorem 2.29 (Cantelli’s Theorem). Let (Xn)n∈N be a sequence of independent random vari-
ables. Let Sn = X1 + · · · + Xn. If E(Xn − E(Xn))

4 ≤ Cfor some constant C and all n ≥ 1,
then (Sn − E(Sn))/n

a.s.−→ 0.

Proof. Without loss of generality, assume that EXn = 0 for n. (Otherwise consider X̃n =
Xn − E(Xn).) Due to the Borel-Cantelli Lemma (Corollary 2.19), we have to show that

∞∑
n=1

P
(∣∣∣Sn

n

∣∣∣ ≥ ε
)
<∞.

Markov’s inequality (Theorem 2.1) implies that this series is bounded by

ε−4

∞∑
n=1

E

(∣∣∣∣Sn

n

∣∣∣∣4
)
. (2.2)

Because E(Xn) = 0, we have

E(S4
n) =

n∑
i=1

E(X4
i ) + 6

∑
1≤i<j≤n

E(X2
i )E(X

2
j )

≤ nC + 6
∑

1≤i<j≤n

√
E(X4

i )E(X
4
j )

≤ nC + 6
n(n− 1)

2
C.

So the series (2.2) converges.

Theorem 2.30 (Kolmogorov’s Theorem). Let (Xn)n∈N be a sequence of independent integrable
random variables. Let Sn = X1 + · · ·+Xn. If

∞∑
n=1

Var(Xn)

n2
<∞,

then (Sn − E(Sn))/n
a.s.−→ 0.

Proof. We can assume that E(Xn) = 0 for all n. Set

Yn := max
k∈{1,...,2n}

|Sk|.

For 2n−1 ≤ m ≤ 2n, it follows that

|m−1Sm| ≤ 2−n+1 max
k∈{1,...,2n}

|Sk| = 2−n+1Yn.

So it is sufficient to show that
P( lim

n→∞
2−nYn = 0) = 1.
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Due to the Borel-Cantelli Lemma (Corollary 2.19), it is sufficient to show

∞∑
n=1

P(2−nYn ≥ ε) <∞

for allε > 0. Kolmogorov’s inequality (Theorem 2.5) implies that

P(2−nYn ≥ ε) = P(Yn ≥ 2nε) ≤ 1

ε222n

2n∑
k=1

Var(Xk).

This shows

∞∑
n=1

P(2−nYn ≥ ε) ≤ ε−2

∞∑
n=1

2−2n

2n∑
k=1

Var(Xk)

≤ ε−2

∞∑
k=1

Var(Xk)
∑

n : 2n≥k

4−n

≤ ε−2

∞∑
k=1

Var(Xk)
4k−2

1− 1/4
<∞,

where we used∑
n : 2n≥k

4−n ≤
∞∑

n=[log2(k)]

4−n = 4−[log2(k)]

∞∑
n=0

4−n ≤ 4−(log2(k)−1) 1

1− 1/4
= k−2 4

1− 1/4

in the last inequality.

Theorem 2.31 (Strong law of large numbers). Let (Xn)n∈N be a sequence of independent and
identically distributed random variables with E(|X1|) < ∞. Let Sn = X1 + · · · + Xn. Then
Sn/n converges almost surely to E(X1), i.e. Sn/n

a.s.−→ E(X1).

The prove uses the following Lemma, which is an exercise.

Lemma 2.32. For any random variable X ≥ 0,

∞∑
n=1

P(X ≥ n) ≤ E(X) ≤ 1 +
∞∑
n=1

P(X ≥ n).

Proof of Theorem 2.31. We can again assume that E(Xn) = E(X1) = 0. Lemma 2.32 implies
that

E(|X1|) <∞ ⇐⇒
∞∑
n=1

P(|X1| ≥ n) <∞ ⇐⇒
∞∑
n=1

P(|Xn| ≥ n) <∞,

where the second equivalence is true because the Xn are identically distributed. Together with
the Borel-Cantelli Lemma (Theorem (Satz 2.17), we deduce that

P
( ∞⋂
n=1

∞⋃
k=n

{|Xk| ≥ k}
)
= P(|Xn| ≥ n for infinitely many n) = 0,
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so for any ω ∈ Ω there exists n0 = n0(ω) ∈ N such that

|Xn(ω)| < n for all n ≥ n0(ω).

Let
Yn := Xn1{|Xn| ≤ n}.

The above inequality implies that

Sn

n
=
X1 + · · ·+Xn

n

a.s.−→ 0 ⇐⇒ Y1 + · · ·+ Yn
n

a.s.−→ 0.

It holds
E(Yn) = E(Xn1{|Xn| ≤ n}) = E(X11{|X1| ≤ n}) → E(X1) = 0,

This implies
1

n

n∑
k=1

E(Yk) → 0, (2.3)

(Exercise). We set Zn = Yn − E(Yn). Then,

Y1 + · · ·+ Yn
n

a.s.−→ 0 ⇐⇒ Z1 + · · ·+ Zn

n

a.s.−→ 0

because (2.3).
The sequence (Zn)n∈N consists of independent square integrable random variables. For the

variances, we obtain that

∞∑
n=1

Var(Zn)

n2
≤

∞∑
n=1

E(Y 2
n )

n2

=
∞∑
n=1

E(X2
n1{|Xn| ≤ n})

n2

=
∞∑
n=1

E(X2
11{|X1| ≤ n})

n2

=
∞∑
n=1

1

n2

n∑
k=1

E(X2
11{k − 1 < |X1| ≤ k})

=
∞∑
k=1

E(X2
11{k − 1 < |X1| ≤ k})

∞∑
n=k

1

n2

≤ 2
∞∑
k=1

1

k
E(X2

11{k − 1 < |X1| ≤ k})

≤ 2
∞∑
k=1

E(|X1|1{k − 1 < |X1| ≤ k}) = 2E(|X1|) <∞,

where we have used
∞∑
n=k

1

n2
≤ 2

k
, k ≥ 1.
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This inequality follows from
∑∞

n=1 n
−2 = 1 +

∑∞
n=2 n

−2 and

∞∑
n=k

1

n2
≤
∫ ∞

k−1

1

x2
dx =

1

k − 1
≤ 2

k
, k ≥ 2.

The claim follows by Kolmogorov’s Theorem (Theorem 2.30).
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Chapter 3

Central limit theorem

3.1 Motivation

Classical probability theory considers sequences (Xn)n∈N of independent and identically dis-
tributed (i.i.d.) random variables, and investigates the behaviour of sums

Sn = X1 +X2 + · · ·+Xn

for n → ∞. The strong law of large numbers implies that Sn/n converges almost surely to
E(X1).

However, it is important to determine how large the deviation between Sn/n (average value)
and E(X1) (theoretical expected value) is. The following theorem is one of the most important
results in probability theory.

Theorem (Central limit heorem). Let (Xn)n∈N be a sequence of independent and identically
distributed random variables. If Var(X1) = σ2 <∞, then

P
(√

n

σ

(Sn

n
− µ

)
≤ t

)
n→∞−−−→ 1√

2π

∫ t

−∞
e−x2/2dx = Φ(t), f”ur alle t ∈ R.

In other words

a) The random variable Sn/n has a degenerate asymptotic distribution, that is, F (t) = 0 if
t < µ and F (t) = 1 otherwise.

b) The random variable √
n

σ

(
Sn

n
− µ

)
=
Sn − nµ√

nσ

has an asymptotic N (0, 1) distribution.

3.2 Convergence in distribution

Definition 3.1. A sequence (Xn)n∈N of random variables converges in distribution to a random
variable X, if

FXn(t) → FX(t), n→ ∞,

for all t with FX(t−) := limh↓0 FX(t − h) = FX(t); that is, for all t, where FX is continuous.

We write Xn
d→ X.
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Remark. Convergence of FXn(t)
n→∞−−−→ FX(t) for ALL t is a too strong condition. Here is

an example: We define Xn := n−1 for n ≥ 1 and X = 0 as deterministic random variables.

Intuitively, we would expect Xn
d−→ X. Indeed, FXn(t) = 1[n−1,∞)(t) converges to FX(t) =

1[0,∞)(t) for all t ̸= 0. But there is no convergence at t = 0, (FXn(0) = 0 ̸→ FX(0) = 1), where
FX has a jump (discontinuity).

Exercise 3.2. Let X be a random variable and Xn := X + 1/n, n ∈ N. Show that (Xn)n∈N
converges in distribution to X.

We need (especially for multi-dimensional distributions) an equivalent characterization of
convergence in distribution.

We use the following notation:

C0
b continuous, bounded functions on R;

C2
c twice continuously differentiable functions on R with compact support.

Lemma 3.3. If (Xn)n∈N converges in distribution to X, then

lim
n→∞

E(f(Xn)) = E(f(X))

for all f ∈ C0
b .

Proof. Let f ∈ C0
b . Then there exists a > 0 with |f(x)| ≤ a for all x. Let ε > 0. We choose

t ∈ R such that FX is continuous at t and −t and FX(−t) < ε
16a

and 1−FX(t) <
ε

16a
. Then there

exists n0(ε) such that FXn(−t) < ε
16a

and 1 − FXn(t) <
ε

16a
for all n ≥ n0(ε), by assumption.

The function f is uniformly continuous on the compact interval [−t, t], so the interval [−t, t]
can be partitioned by points t0 = −t < t1 < t2 < · · · < tk = t in such a way that FX is
continuous at all ti and

max
ti≤x≤ti+1

f(x)− min
ti≤x≤ti+1

f(x) ≤ ε

8
,

for i = 0, 1, . . . , k − 1. Then,

∣∣∣E(f(X))−
k−1∑
i=0

f(ti)P(ti < X ≤ ti+1)
∣∣∣ ≤ E(|f(X)|1{|X|≥t}) +

ε

8
P(|X| ≤ t) ≤ a

ε

8a
+
ε

8
=
ε

4
.

(3.1)
An analogous inequality holds for Xn instead of X for n ≥ n0(ε). Now choose n1(ε) ≥ n0(ε)
large enough such that for all n ≥ n1(ε),

|FX(ti)− FXn(ti)| <
ε

4ka
, für i = 0, 1, . . . , k,

so

|P(ti < X ≤ ti+1)− P(ti < Xn ≤ ti+1)| ≤ |FX(ti+1)− FXn(ti+1)|+ |FX(ti)− FXn(ti)| ≤
ε

2ka
.

(3.2)
This gives ∣∣∣∣∣

k−1∑
i=0

f(ti)P(ti < X ≤ ti+1)−
k−1∑
i=0

f(ti)P(ti < Xn ≤ ti+1)

∣∣∣∣∣ ≤ ka
ε

2ka
=
ε

2
. (3.3)
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The combination of (3.1), (3.2) and (3.3) now implies

|E(f(X))− E(f(Xn))| ≤

∣∣∣∣∣E(f(X))−
k−1∑
i=0

f(ti)P(ti < X ≤ ti+1)

∣∣∣∣∣+
+

∣∣∣∣∣E(f(Xn))−
k−1∑
i=0

f(ti)P(ti < Xn ≤ ti+1)

∣∣∣∣∣+
+

∣∣∣∣∣
k−1∑
i=0

f(ti)[P(ti < X ≤ ti+1)− P(ti < Xn ≤ ti+1)]

∣∣∣∣∣ ≤ ε.

Lemma 3.4. If limn→∞ E(f(Xn)) = E(f(X)) for all f ∈ C2
c , then (Xn)n∈N converges in

distribution to X.

Proof. For the proof, we construct two special functions in C2
c .

Let s < t, ε > 0 and g : R → R, x 7→ g(x) with g(x) = 1 for x ∈ [s− ε/3, t+ ε/3], g(x) = 0
for x ∈ (−∞, s− 2ε/3) or x ∈ (t+2ε/3,∞). We expand g linearly to a continuous function on
R, as illustrated in the following figure.

Define

h(x) =
3

ε

∫ x+ε/6

x−ε/6

g(y)dy, f(x) =
3

ε

∫ x+ε/6

x−ε/6

h(y)dy.

The function h is represented by the dashed line in the figure. This construction yields f ∈ Cc
2

as a smoothed version of g with f(x) ∈ [0, 1], f(x) = 1 on [s, t], f(x) = 0 for x ≤ s − ε and
x ≥ t+ ε. This implies

P(s < Xn ≤ t) ≤ E(f(Xn))
n→∞−−−→ E(f(X)) ≤ P(s− ε < X ≤ t+ ε).

If s and t are points where FX is continuous, then one can let ε converge to 0, and obtains

lim sup
n→∞

P(s < Xn ≤ t) ≤ P(s < X ≤ t).

In a similar way, but with a function f̃ that goes to zero on the outside of [s, t] and is equal to
one on [s+ ε, t− ε], one can show that

lim inf
n→∞

P(s < Xn ≤ t) ≥ P(s < X ≤ t).

Together, if P(X = s) = P(X = t) = 0:

FXn(t)− FXn(s)
n→∞−−−→ FX(t)− FX(s). (3.4)

Let now ε > 0 and s̄, t̄ such that s̄, t̄ are points of continuity of FX and

FX(t̄)− FX(s̄) > 1− ε

4
.

Then due to (3.4), there exists n0 such that for n ≥ n0,

1− FXn(s̄) ≥ FXn(t̄)− FXn(s̄) > 1− ε

4
,
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so FXn(s̄) < ε/4 for all n ≥ n0. For a particular t which is a point of continuity of FX , choose
n1 ≥ n0 such that for all n ≥ n1,

|FXn(t)− FXn(s̄)− (FX(t)− FX(s̄))| <
ε

2
.

Then for n ≥ n1,

|FXn(t)− FX(t)| ≤ |FXn(t)− FXn(s̄)− (FX(t)− FX(s̄))|+ |FXn(s̄)− FX(s̄)| <
ε

2
+ 2

ε

4
= ε.

Exercise 3.5. Assume that the sequence of random variables (Xn)n∈N converges in distribution
to X. Show that then limr→∞ lim supn→∞ P(|Xn| > r) = 0.
Hint: Consider the function f(x) = (1− (r − |x|)+)+.

The statements of Lemma 3.3 and Lemma 3.4 can be further generalized to the Porteman-
teau Theorem.

Theorem 3.6 (Portemanteau Theorem). Let X be a random variable and (Xn)n∈N a sequence
of random variables. Then the following statements are equivalent.

1. Xn
d−→ X, n→ ∞.

2. For all f ∈ C0
b ,

lim
n→∞

E(f(Xn)) = E(f(X)).

3. For all f ∈ C2
c ,

lim
n→∞

E(f(Xn)) = E(f(X)).

4. For all open sets G ⊆ R,

lim inf
n→∞

P(Xn ∈ G) ≥ P(X ∈ G).

5. For all closed sets A ⊆ R,

lim sup
n→∞

P(Xn ∈ A) ≤ P(X ∈ A).

6. For all Borel sets C ⊆ R with P(X ∈ ∂C) = 0,

lim
n→∞

P(Xn ∈ C) = P(X ∈ C).

Proof. 1. =⇒ 2. Lemma 3.3.

2. =⇒ 3. Trivial.

3. =⇒ 1. Lemma 3.4.

4. ⇐⇒ 5. Exercise.

4. und 5. =⇒ 6. For C ∈ B(R),

P(Xn ∈ C◦) ≤ P(Xn ∈ C) ≤ P(Xn ∈ C),
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so 4. and 5. imply that

P(X ∈ C◦) ≤ lim inf
n→∞

P(Xn ∈ C◦) ≤ lim inf
n→∞

P(Xn ∈ C)

≤ lim sup
n→∞

P(Xn ∈ C) ≤ lim sup
n→∞

P(Xn ∈ C) ≤ P(X ∈ C).

Since ∂C = C\C◦ and P(X ∈ ∂C) = 0, it holds P(X ∈ C◦) = P(X ∈ C) = P(X ∈ C), which
gives the desired result.
6. =⇒ 1. Let FX be continuous at t. Then, P(X ∈ {t}) = 0, and 6. implies that

lim
n→∞

FXn(t) = lim
n→∞

P(Xn ∈ (−∞, t]) = P(X ∈ (−∞, t]) = FX(t).

2. =⇒ 5. Let A ⊆ R be closed. For all x ∈ R define

d(x,A) := inf{|x− y| | y ∈ A}.

For m ∈ N, we set

Gm :=
{
x ∈ R

∣∣∣ d(x,A) < 1

m

}
.

Then Gm ↓ A, m→ ∞. Let now ε > 0. Then there exists m such that

P(X ∈ Gm) = PX(Gm) ≤ PX(A) + ε = P(X ∈ A) + ε

We set f : R → R, x 7→ ψ(md(x,A)) with ψ(t) = 1(−∞,0](t) + (1 − t)1(0,1](t). For x ∈ A it
holds d(x,A) = 0, so f(x) = 1. If x ∈ Gc

m, i.e. x ∈ Ac with d(x,A) ≥ 1/m, then f(x) = 0. So,

P(Xn ∈ A) = E(1{Xn∈A}f(Xn)) ≤ E(f(Xn)),

and
E(f(X)) = E(1{X∈Gm}f(X)) ≤ P(X ∈ Gm) ≤ P(X ∈ A) + ε.

The function f is continuous and bounded. Due to 2. we obtain limn→∞ E(f(Xn)) = E(f(X)),
which proves the claim.

Corollary 3.7. Two random variables X, Y are equal in distribution if and only if for all
f ∈ C2

c ,
E(f(X)) = E(f(Y )).

Exercise 3.8. Let g : R → R be a continuous function and (Xn)n∈N sequence of random
variables converging in distribution to X. Show that then (g(Xn))n∈N converges in distribution
to g(X).

Theorem 3.9. Let (Xn)n∈N be a sequence of random variables converging in probability to a
random variable X. Then (Xn)n∈N converges in distribution to X, that is,

Xn
P−→ X =⇒ Xn

d−→ X.

Proof. Let f ∈ C2
c . Since f is continuous with compact support, f is uniformly continuous.

Let ε > 0. Then there exists δ > 0, such that for all x, y ∈ R with |x − y| ≤ δ, it holds
|f(x)− f(y)| < ε. We define An = {|Xn −X| > δ}. Then,

|E(f(Xn))− E(f(X))| ≤ E(1An|f(Xn)− f(X)|) + E(1Ac
n
|f(Xn)− f(X)|)

≤ 2MP(An) + εP(Ac
n) ≤ 2MP(An) + ε,

where M = supx∈R |f(x)|. Convergence in probability of (Xn)n∈N implies that P(An) → 0 as
n→ ∞. With ε ↓ 0, the claim follows by Lemma 3.4.
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Remark. In the exercises you will show the following partial converse statement of Theorem
3.9: If (Xn)n∈N converges in distribution to a constant c ∈ R, then (Xn)n∈N also converges
in probability to c. In general, convergence in distribution is weaker than convergence in
probability, as the following example shows.

Example 3.10. Let Ω = [0, 1) be equipped with the Borel σ-field and the Lebesgue measure.
For n ∈ N let

An =
[
0,

1

2n

)
∪
[ 2
2n
,
3

2n

)
∪ · · · ∪

[2n − 2

2n
,
2n − 1

2n

)
.

and Xn = 1An . Then P(Xn = 1) = P(Xn = 0) = 1/2 for all n ∈ N and (Xn)n∈N converges in
distribution to X1. However, for m ̸= n and all ε > 0,

P(|Xm −Xn| > ε) = P(Xm = 0, Xn = 1) + P(Xm = 1, Xn = 0) =
1

2
· 1
2
+

1

2
· 1
2
=

1

2
,

that is, (Xn)n∈N does not converge in probability.

3.3 Characteristic functions

Characteristic functions of random variables (or random vectors) ”‘characterise”’ their distri-
bution. They are closely related to the Fourier transform, which is studied in Analysis.

3.3.1 Fourier transform

To define the Fourier transform, we need to define integrals of complex-valued functions. These
should be understoof componentwise, that is, for a measure µ on Ω and a measurable function
f : Ω → C, we define ∫

f dµ :=

∫
Ref dµ+ i

∫
Imf dµ,

where we require that Ref and Imf are integrable.

Definition 3.11. For a Lebesgue integrable function f : R → R, define

f̂ : R → C, t 7→ f̂(t) =

∫
f(x)e−itx dx =

∫ ∞

−∞
f(x) cos(tx) dx− i

∫ ∞

−∞
f(x) sin(tx) dx.

The function f̂ is called Fourier transform of f .

It holds

|f̂(t)| ≤
∫

|f(x)e−itx| dx =

∫
|f | dx <∞, (3.5)

since f is integrable, so the Fourier transform of a Lebesgue integrable function is bounded.
It is not necessarily integrable. If this is the case, then the Fourier transform can be inverted.
The following theorem is proved in Analysis (see for example Königsberger, Analysis II ).

Theorem 3.12. Let f : R → R be a Lebesgue integrable function such that its Fourier transform
f̂ is also Lebesgue integrable. Then for all y ∈ R,

f(y) =
1

2π

∫
R
eityf̂(t) dt.
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For our purposes, the following proposition will be useful

Proposition 3.13. For any f ∈ C2
c , the Fourier transform f̂ is Lebesgue integrable.

Proof. Let K ∈ R such that f(x) = 0 for |x| ≥ K. Since f is differentiable, we know

f̂ ′(t) =

∫ ∞

−∞
f ′(x)e−itx dx = f(x)e−itx

]∞
−∞

+ it

∫ ∞

−∞
f(x)e−itx dx

= itf̂(t) ,

because f(x) = 0 for |x| ≥ K. Iterating this shows that f̂ ′′(t) = −t2f̂(t). Since f ′′ is integrable,

|f̂ ′′(t)| ≤ c

for a constant c > 0 due to (3.5). It follows that

|f̂(t)| ≤ min
{∫

|f | dx, c
t2

}
so f̂ is integrable on R.

Corollary 3.14. For any f ∈ C2
c ,

f(y) =
1

2π

∫
R
eityf̂(t) dt, y ∈ R.

Exercise 3.15. Compute the Fourier transform of the following functions.

1. f = 1
b−a

1[a,b] for a < b.

2. x 7→ f(x) = e−λ|x| for λ > 0.

3. x 7→ f(x) = λp

Γ(p)
xp−1e−λx

1(0,∞)(x) for p > 0, λ > 0.

Recall: Γ(p) =
∫∞
0
yp−1e−y dy.

3.3.2 Definition and properties of characteristic functions

To define characteristic functions, we need expected values (i.e. integrals) of complex-valued
random variables. As in Section 3.3.1, they are defined componentwise, that is, for X : Ω → C,
we set

E(X) :=

∫
ReX dP+ i

∫
ImX dP = E(ReX) + iE(ImX),

where we assume that ReX and ImX are integrable.
For independent C–valued random variables X and Y with E(|X|) < ∞ and E(|Y |) < ∞,

it holds
E(XY ) = E(X)E(Y ), (3.6)

which follows from the corresponding result for real-valued random variables.
We now define the characteristic function of real-valued random variables X : Ω → R.
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Definition 3.16. The characteristic function of a real-valued random variable X : Ω → R is
defined as the function φX : R → C with

φX(t) := E(eitX) = E(cos(tX)) + iE(sin(tX)), t ∈ R.

Exercise 3.17. Show: If φ is the characteristic function of a random variable, then φ, |φ|2 and
Reφ are also characteristic functions.
Hint: Construct random variables with the corresponding characteristic functions.

The following theorem summarizes the most important properties of characteristic functions.

Theorem 3.18. (C1) Let X and Y be independent random variables. Then,

φX+Y (t) = φX(t)φY (t), t ∈ R.

(C2) Let X be a random variable. Then its characteristic function satisfies

|φX(t)| ≤ 1 = φX(0), t ∈ R.

It is uniformly continuous on R, more precisely,

|φX(t+ h)− φX(t)| ≤ E(min{2, |hX|}) ≤ |h|E(|X|)

for all t, h ∈ R.

(C3) If E(|X|m) <∞ for a m ∈ N, then φX is m times continuously differentiable with

φ
(m)
X (t) =

dm

dtm
φX(t) = imE(XmeitX),

so in particular
E(Xm) = i−mφ

(m)
X (0).

(C4) The characteristic function is positive definite, that is, for all n ∈ N, t1, . . . , tn ∈ R,
a1, . . . , an ∈ C,

n∑
k,l=1

akālφX(tk − tl) ≥ 0.

Remark 3.19. Bochner’s Theorem shows that the converse of (C2) are (C4) true. More pre-
cisely, it states that any continuous positive definite function φ : R → C with φ(0) = 1 is the
characteristic function of a random variable.

To show properties (C2) and (C3), we use the following lemma.

Lemma 3.20. For m ∈ N0 and x ∈ R,∣∣∣eix − m∑
k=0

(ix)k

k!

∣∣∣ ≤ min
{2|x|m

m!
,
|x|m+1

(m+ 1)!

}
.
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Proof. We set rm(x) = eix −
∑m

k=0(ix)
k/(k!) and show the claim by induction over m.

Induction start: It holds

r0(x) = eix − 1 = i

∫ x

0

eiydy,

so |r0(x)| ≤ min{2, |x|}.
Observation: In general,

rm+1(x) = i

∫ x

0

rm(y)dy und rm+1(x) = rm(x)−
(ix)m+1

(m+ 1)!
.

Induction assumption: For a m ∈ N0 let |rm(x)| ≤ |x|m+1/(m+ 1)! for all x ∈ R.
Induction step: For x ≥ 0,

|rm+1(x)| ≤
∫ x

0

|rm(y)|dy ≤
∫ x

0

ym+1

(m+ 1)!
dy =

|x|m+2

(m+ 2)!

and similarly for x < 0. On the other hand,

|rm+1(x)| ≤ |rm(x)|+
|x|m+1

(m+ 1)!
≤ 2|x|m+1

(m+ 1)!
.

Proof of Theorem 3.18. (C1) follows by the definition of the characteristic function and (3.6).
For (C2), we can use that

|φX(t)| = |E(eitX)| ≤ E(|eitx|) = 1 = φX(0).

With Lemma 3.20 for m = 0 we obtain

|φX(t+ h)− φX(t)| = |E(ei(t+h)X − eitX)| = |E(eitX(eihX − 1))|
≤ E(|eitX ||eihX − 1|) ≤ E(min{2, |hX|}).

The proof of (C3) is an exercise.
For (C4):

n∑
k,l=1

akālφX(tk−tl) = E
( n∑

k,l=1

akāle
i(tk−tl)X

)
= E

( n∑
k,l=1

ake
itkXaleitlX

)
= E

(∣∣∣ n∑
k=1

ake
itkX
∣∣∣2) ≥ 0.

Exercise 3.21. Let the random variable X have characteristic function φX .

1. What is the characteristic function of Y := aX + b for a, b ∈ R.

2. Prove: If the distribution of X is symmetric, i.e. FX = F−X , then φX is real-valued and
even.
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Example 3.22 (Normal distribution). We compute the characteristic function of the Gaussian
distribution. Let X ∼ N (µ, σ2). Then,

φX(t) =
1

σ
√
2π

∫ ∞

−∞
e−

(x−µ)2

2σ2 eitxdx =
1√
2π
eiµt

∫ ∞

−∞
e−y2/2eitσydy

=
1√
2π
eiµt

∫ ∞

−∞
e−y2/2 cos(tσy)dy,

where we have used the substitution y = (x−µ)/σ and the fact that e−y2/2 is an even function.
We set

f(t) =

∫ ∞

−∞
e−y2/2 cos(tσy)dy.

Then f(0) =
√
2π, and by the monotone convergence theorem

d

dt
f(t) = −σ

∫ ∞

−∞
e−y2/2y sin(tσy)dy

= σ
[
e−y2/2 sin(tσy)

]∞
−∞

− σ2t

∫ ∞

−∞
e−y2/2 cos(tσy)dy

= −σ2tf(t).

The funciton f(t) =
√
2πe−(σt)2/2 is the solution of this differential equation. So we obtain

φX(t) = eiµte−(σt)2/2 = exp
(
iµt− σ2

2
t2
)
.

With property (C3) of Theorem 3.18 we can compute all moments of the standard normal
distribution N (0, σ2). Let X ∼ N (0, σ2), then

φX(t) = e−(σt)2/2 =
∞∑
n=0

(−1)n

n!

(σ2t2

2

)n
,

so

φ
(2n)
X (0) =

(2n)!(−1)nσ2n

n!2n

and therefore

E(X2n) =
(2n)!

n!2n
σ2n.

The (2n− 1)-th moments are all zero due to symmetry.

3.3.3 Uniqueness and weak convergence

Characteristic functions are very helpful to make statements about weak convergence. There
is the following theorem.

Theorem 3.23. Let X and Xn, n ≥ 1 be random variables. The sequence (Xn)n∈N converges
in distribution to X if and only if

lim
n→∞

φXn(t) = φX(t) for all t ∈ R.
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Proof. =⇒ Assume that Xn
d→ X. Lemma 3.3 implies that for all t ∈ R,

lim
n→∞

E(cos(tXn)) = E(cos(tX)), lim
n→∞

E(sin(tXn)) = E(sin(tX)),

so limn→∞ φXn(t) = φX(t) for all t ∈ R.
⇐= Let now limn→∞ φXn(t) = φX(t), t ∈ R. Let f ∈ C2

c . Corollary 3.14 and Fubini’s Theorem
yield∫
f dPX =

1

2π

∫ ∫
eixyf̂(x) dx dPX(y) =

1

2π

∫ ∫
eixy dPX(y)f̂(x) dx =

1

2π

∫
φX(x)f̂(x) dx,

so ∫
f dPXn =

1

2π

∫
φXn f̂ dx, n ∈ N, und

∫
f dPX =

1

2π

∫
φX f̂ dx.

It holds |φXn f̂ | ≤ |f̂ |, and f̂ is Lebesgue integrable due to Proposition 3.13, so we can apply
the Lebesgue convergence theorem and obtain

lim
n→∞

∫
φXn f̂ dx =

∫
φX f̂ dx,

so

lim
n→∞

∫
f dPXn =

∫
f dPX

and the claim follows by Lemma 3.4.

The essential property of characteristic functions is that the distribution PX of a random
variable X is defined uniquely by φX .

Corollary 3.24. Random variables X and Y are equal in distribution, that is PX = PY , if
and only if

φX(t) = φY (t) for all t ∈ R.

Proof. Follows from Theorem 3.23.

3.3.4 Examples of characteristic functions

If X admits a discrete distribution with values {xj}j∈N, then

φX(t) =
∑
j

eitxjP(X = xj).

If X is absolutely continuous with density f , then

φX(t) =

∫
R
f(x)eitxdx.

The following table gives a summary of important characteristic functions.
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Distribution Notation characteristic function φX(t)
Binomial BIN(n, p) (peit + 1− p)n

Poisson POIS(λ) exp(λ(eit − 1))
Geometric GEOM(p) p/(1− (1− p)eit)
Uniform UNIF(a, b) (eitb − eita)/(it(b− a))
Normal N (µ, σ2) exp(iµt− (tσ)2/2)
Gamma Gamma(p, λ) (1− (it)/λ)−p

Cauchy exp(−|t|)

Exercise 3.25. Let λ ∈ (0, 1) and let (Xn)n∈N be a sequence of random variables with Xn ∼
BIN(n, pn), where pn = λ/n. Use characteristic functions and Theorem 3.23 to show that

Xn
d→ X, where X ∼ POIS(λ).

We have seen in example 3.22 that the characteristic function is useful for computing mo-
ments. On the other hands, one may try to compute the characteristic function (and thereby
the distribution function) by using moments. This is only possible if the Taylor series

∞∑
k=0

tk

k!
φ
(k)
X (0)

converges in a neighborhood of 0. As the following example shows, this is not always the case.

Example 3.26. The random variable X > 0 admits a Lognormal distribution if logX is
normally distributed. If logX ∼ N (0, 1), one can easily show that the density of X is given by

f(x) =
1√
2π
x−1e−(log x)2/2, x > 0.

We show that the lognormal distribution is not uniquely defined by its moments. Define

fa(x) = f(x)(1 + a sin(2π log x))

for a ∈ [−1, 1]. Then fa(x) ≥ 0. We now show that fa is a density function with moments
equal to the ones of f . For this, it is sufficient to show that∫ ∞

0

xkf(x) sin(2π log x)dx = 0, k = 0, 1, . . . .

It is easy to verify that∫ ∞

0

xkf(x) sin(2π log x)dx
log x=t
=

1√
2π

∫ ∞

−∞
e−

1
2
t2+kt sin(2πt)dt

t=k−y
=

1√
2π
e

1
2
k2
∫ ∞

−∞
e−

1
2
y2 sin(2πy)dy.

The last integrand is an uneven function, so the integral equals zero.
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3.4 The central limit theorem

3.4.1 Identically distributed random variables

Theorem 3.27 (Central limit theorem). Let (Xn)n∈N be a sequence of independent, identically
distributed and square integrable random variables with µ = E(X1) and σ2 = Var(X1) < ∞.
Then,

P
(√

n

σ

(Sn

n
− µ

)
≤ t

)
n→∞−−−→ 1√

2π

∫ t

−∞
e−x2/2dx = Φ(t) for all t ∈ R,

where Sn =
∑n

k=1Xk, or in other words,

Sn − nµ√
nσ

d−→ N (0, 1).

Proof. We set Yn = (Xn − µ)/σ. Then

φ′
Y1
(0) = iE(Y1) = 0,

φ′′
Y1
(0) = −E(Y 2

1 ) = −Var(Y1) = −1.

Due to Lemma 3.20 with m = 2,

|eitY1 − 1− itY1 +
1

2
t2Y 2

1 | ≤ min{|tY1|2, |tY1|3/6},

so

t−2(eitY1 − 1− itY1 +
1

2
t2Y 2

1 ) → 0, t→ 0.

Furthermore,

t−2|eitY1 − 1− itY1 +
1

2
t2Y 2

1 | ≤ |Y1|2

so the Lebesgue convergence theorem with dominating function |Y1|2 implies that

t−2E
(
eitY1 − 1− itY1 +

1

2
t2Y 2

1

)
→ 0, t→ 0,

and therefore

φY1(t) = 1− 1

2
t2(1 + α(t)),

with a function α such that α(t) → 0 as t→ 0.
Let S̃n =

∑n
k=1 Yn. Then (

√
n/σ)(Sn/n−µ) = S̃n/

√
n and we obtain by Theorem 3.18 (C1)

that

φS̃n/
√
n(t) = φS̃n

(t/
√
n) =

(
φY1(t/

√
n)
)n

=

(
1− 1

2

t2

n

(
1 + α(t/

√
n)
))n

→ e−
1
2
t2 , n→ ∞.

The last convergence is due to the following Lemma 3.28, which is an exercise. The limit is
exactly the characteristic function of the N (0, 1) distribution, see Example 3.22.

Lemma 3.28. Let (an)n∈N be a sequence of complex numbers with an → 0, n → ∞, x ∈ R.
Then, (

1 +
x+ an
n

)n

→ ex.
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Exercise 3.29. Let (Xn)n∈N be a sequence of independent and uniformly distributed random
variables on [0, 2]. Find an approximation for the probability P(X1 + · · ·+X200 > 110).

Corollary 3.30 (Theorem of de Moivre-Laplace). Assume that Sn is BIN(n, p)-distributed with
p ∈ (0, 1). Then for −∞ ≤ t1 ≤ t2 ≤ ∞

P

(
t1 ≤

Sn − np√
np(1− p)

≤ t2

)
→ 1√

2π

∫ t2

t1

e−x2/2dx = Φ(t2)− Φ(t1).

The Theorem of de Moivre-Laplace is useful to approximate the Binomial distribution with
large n by the Gaussian distribution.

3.4.2 Lindeberg Theorem

The central limit theorem can be proved under weaker conditions. The random variables
(Xn)n∈N are still independent, but not necessarily identically distributed. It is only important
that there is no Xn0 that outweighs the others, that is, Var(Xn0) should be small compared to
Var(Sn) =

∑n
k=1 Var(Xk).

We use the following notation:

Sn :=
n∑

k=1

Xn,

σ2
n := Var(Xn),

s2n := Var(Sn) =
n∑

k=1

σ2
k.

Theorem 3.31 (Lindeberg Theorem). Let (Xn)n∈N be a sequence of independent square inte-
grable random variables with σ2

n = Var(Xn) > 0, which satisfies the Lindeberg condition

lim
n→∞

Ln(c) = 0, für alle c > 0,

where

Ln(c) :=
1

s2n

n∑
k=1

E
(
(Xk − E(Xk))

2
1{|Xk−E(Xk)|>c sn}

)
with Sn =

∑n
k=1Xk, s

2
n = Var(Sn) =

∑n
k=1 σ

2
k. Then

Sn − E(Sn)

sn

d−→ N (0, 1), n→ ∞.

For the proof, we need the following auxiliary results.

Lemma 3.32. The Lindeberg condition implies

lim
n→∞

max
k∈{1,...,n}

σ2
k

s2n
= 0.
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Proof. Let c > 0. Then with X̃k := Xk − E(Xk)

σ2
k = E(X̃2

k) = E(1{|X̃k|≤c sn}X̃
2
k) + E(1{|X̃k|>c sn}X̃

2
k) ≤ c2 s2n + Ln(c) s

2
n,

so

max
1≤k≤n

σ2
k

s2n
≤ c2 + Ln(c).

By letting first n→ ∞ and then c ↓ 0, the desired result follows.

Lemma 3.33. For complex numbers a1, . . . , an, b1, . . . , bn ∈ C with |ak| ≤ 1, |bk| ≤ 1, k =
1, . . . , n, ∣∣∣ n∏

k=1

ak −
n∏

k=1

bk

∣∣∣ ≤ n∑
k=1

|ak − bk|.

Proof. Exercise.

We set

Xnk :=
1

sn
(Xk − E(Xk)), σ2

nk := Var(Xnk) =
σ2
k

s2n

Let φnk be the characteristic function of Xnk and φn the characteristic function of (Sn −
E(Sn))/sn. It holds

Sn − E(Sn)

sn
=

n∑
k=1

Xnk,

so by Theorem 3.18 (C1),

φn(t) =
n∏

k=1

φnk(t).

Proof of Theorem 3.31. We show that for all t ∈ R,

|φn(t)− e−t2/2| → 0, n→ ∞. (3.7)

The theorem then follows by Theorem 3.23.
Due to

∑n
k=1 σ

2
nk = 1, one can use Lemma 3.33 to obtain

|φn(t)− e−t2/2| =
∣∣∣ n∏
k=1

φnk(t)−
n∏

k=1

e−σ2
nkt

2/2
∣∣∣

≤
n∑

k=1

∣∣φnk(t)− e−σ2
nkt

2/2
∣∣

≤
n∑

k=1

∣∣∣φnk(t)− 1 +
σ2
nkt

2

2

∣∣∣︸ ︷︷ ︸
=:A

+
n∑

k=1

∣∣∣e−σ2
nkt

2/2 − 1 +
σ2
nkt

2

2

∣∣∣︸ ︷︷ ︸
=:B
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We first consider A. Let c > 0. Lemma 3.20 with m = 2 shows that

n∑
k=1

∣∣∣φnk(t)− 1 +
σ2
nkt

2

2

∣∣∣ ≤ n∑
k=1

t2E
(
min{X2

nk, t|Xnk|3/6}
)

=
n∑

k=1

t2
(
E
(
1{|Xnk|≤c}min{X2

nk, t|Xnk|3/6}
)
+ E

(
1{|Xnk|>c}min{X2

nk, t|Xnk|3/6}
))

≤ t3

6

n∑
k=1

E(1{|Xnk|≤c}|Xnk|3) + t2
n∑

k=1

E(1{|Xnk|>c}X
2
nk)

≤ t3

6
c

n∑
k=1

E(X2
nk)︸ ︷︷ ︸

=1

+t2Ln(c).

By letting first n→ ∞ and then c ↓ 0, it follows that A→ 0.
For B, we have

n∑
k=1

∣∣∣e−σ2
nkt

2/2 − 1 +
σ2
nkt

2

2

∣∣∣ ≤ n∑
k=1

σ4
nkt

4

4
eσ

2
nkt

2/2 ≤ t4

4
e(t

2/2)max1≤k≤n σ2
nk max

1≤k≤n
σ2
nk → 0, n→ ∞,

because of Lemma 3.32. In the first inequality in the formula above, we have used that for
x ∈ R, ∣∣∣ex − 1− x

∣∣∣ = ∣∣∣ ∞∑
k=2

xk

k!

∣∣∣ ≤ |x|2
∞∑
k=2

|x|k−2

k!
= |x|2

∞∑
k=0

|x|k

(k + 2)!
≤ |x|2e|x|.

Exercise 3.34. Let (Xn)n∈N be a sequence of independent random variables with |Xn| ≤ n1/3

and Var(Xn) = 1 for all n ∈ N. Is the Lindeberg condition satisfied?

The following theorem is weaker than the Lindeberg Theorem, but it uses a simpler as-
sumption (Lyapunov condition).

Theorem 3.35 (Lyapunov Theorem). Let (Xn)n∈N be a sequence of independent square inte-
grable random variables with Var(Xn) > 0 and Sn =

∑n
k=1Xk. If for some δ > 0 the Lyapunov

condition is satisfied, that is,

Ln(δ) =
1

Var(Sn)(2+δ)/2

n∑
k=1

E(|Xk − EXk|2+δ) → 0, n→ ∞,

then
Sn − E(Sn)√

Var(Sn)

d−→ N (0, 1), n→ ∞.

Proof. Exercise.

Exercise 3.36. Let (Xn)n∈N be a uniformly bounded sequence of random variables, that is,
there exists c > 0 such that |Xn| ≤ c for all n ∈ N, and we assume that limn→∞ sn = ∞. Show
that the Lyapunov condition is satisfied for all δ > 0
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3.4.3 Multidimensional generalizations

There are central limit theorems also for random vectors.

Definition 3.37. A sequence (Xn)n∈N of d-dimensional random vectors converges in distribu-
tion to the d-dimensional random vector X if

E(f(Xn)) → E(f(X)), n→ ∞

for all continuous bounded functions f : Rd → R.

Remark 3.38. According to Lemma 3.3 and 3.4, the above definition is equivalent to Definition
3.1 in the case d = 1.

One defines the characteristic function o the random vector X = (X1, . . . , Xd)
⊤ by

φX : Rd → C, t = (t1, . . . , td)
⊤ 7→ φX(t) := E[ei⟨t,X⟩] = E

[
exp

(
i

d∑
k=1

tkXk

)]
.

All properties of Theorem 3.18 can be given in a multivariate setting, and Theorems 3.24 und
3.23 continue to hold. Also the arguments of chapter 3.4 are applicable.
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Chapter 4

Conditional expectations

Let (Ω,F,P) be a probability space.

4.1 Definition

Let A ⊆ F be a (sub)-σ-field. A random variable X : Ω → R is called A-measurable (or
measurable with respect to A), if

X−1(B) ∈ A, for all B ∈ B(R).

For example, the constant function Y : Ω → R, ω 7→ c for a c ∈ R is measurable with respect
to the trivial σ-field {∅,Ω} ⊆ F, because

Y −1(B) =

{
Ω, if c ∈ B

∅, if c ̸∈ B.

Let now X be an arbitrary integrable random variable. We can interpret its expectation E(X)
as a constant mapping Y : Ω → R, ω 7→ E(X), which is {∅,Ω}-measurable.

For a set A ∈ F with P(A) ∈ (0, 1), the conditional probability on A is the probability
measure

P(·|A) : F → [0, 1], B 7→ P(B|A) := P(B ∩ A)
P(A)

.

Now, the conditional expectation of X with respect to A can be defined as

E(X|A) :=
∫
X(ω)P( dω|A).

One can show that

E(X|A) = E(X1A)

P(A)
.

It holds

E(X|Ac) =
E(X)− E(X1A)

1− P(A)
=

E(X)− P(A)E(X|A)
1− P(A)

.

We set
Y : Ω → R, ω 7→ 1A(ω)E(X|A) + 1Ac(ω)E(X|Ac).
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Let A = σ({A}) = {A,Ac, ∅,Ω} ⊆ F. The random variable Y is A-measurable. It holds
E(Y ) = E(X) and Y is denoted by E(X|A). Note that here, the element in the condition is
the σ-field A, which must not be confused with the event A.

We can interpret σ-fields as ”information sets”. The smaller the σ-field with respect to
which a random variable X is measurable, the less information it encodes.

We will now generalize the concept described above to arbitrary σ-fields A ⊆ F. For that
purpose, we need the following theorem.

Theorem 4.1. Let X be a non-negative (integrable) random variable on (Ω,F,P), and let A ⊆ F
be a σ-field. Then there exists a non-negative (integrable) A-measurable random variable Y such
that

E(1CY ) = E(1CX), for all C ∈ A. (4.1)

The random variable Y is unique almost surely.

Proof. Let first X be non-negative, i.e. X ≥ 0.
Let P0 be the restriction of the probability measure P to A. We define the measure Q as

Q : A → [0,∞], C 7→ E(1CX) =

∫
C

X dP.

It follows from this definition that P0(C) = P(C) = 0 for a C ∈ A implies that Q(C) = 0,
i.e. Q is absolutely continuous with respect to P0. The Radon-Nikodym Theorem then shows
that Q admits a density with respect to P0, that is, a A-measurable function Y ≥ 0 such that∫

C

Y dP0 =

∫
C

X dP, for all C ∈ A.

Since Y is A-measurable, it follows by definition of the integral with respect to a measure that∫
C
Y dP0 =

∫
C
Y dP for all C ∈ A. Theorem 3.1 in the lecture notes on measure theory implies

that Y is P0 almost surely unique. Let Y ′ be another density of Q with respect to P0. Because
Y, Y ′ are A-measurable, it follows that {Y = Y ′} ∈ A, so 1 = P0(Y = Y ′) = P(Y = Y ′) and Y
is P almost surely unique.

Let now X be an integrable random variable. We decompose it into positive and negative
part, X = X+−X−. The first part of the theorem shows that there exist A-measurable random
variables Y1 ≥ 0 and Y2 ≥ 0 with

E(1CY1) = E(1CX+), E(1CY2) = E(1CX−) for all C ∈ A.

Choosing C = Ω yields that Y1, Y2 are integrable. So Y = Y1 − Y2 is integrable and satisfies
(4.1). Let Y ′ be another A-measurable integrable solution of (4.1). Then

E(1CX) = E(1CY1)− E(1CY2) = E(1CY
′
+)− E(1CY

′
−),

so
E(1C(Y1 + Y ′

−)) = E(1C(Y2 + Y ′
+)).

The A-measurability of Y1 + Y ′
−, Y2 + Y ′

+ implies that both are densities of the measure

A → [0,∞), C 7→ E(1C(Y1 + Y ′
−)) = E(1C(Y2 + Y ′

+)).

But then Theorem 3.1 in the lecture notes on measure theory implies that Y1 + Y ′
− = Y2 + Y ′

+

P0 almost surely, so P almost surely with the same argument as above.
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Definition 4.2. Let X be a non-negative or integrable random variable and A ⊆ F be a σ-field.
Then the random variable Y from Theorem 4.1 is called the conditional expectation of X with
respect to A, in symbols:

E(X|A) := Y.

Hence the conditional expectation E(X|A) ofX with respect toA is aAmeasurable random
variable with

E(E(X|A)1C) = E(X1C), for all C ∈ A. (4.2)

The conditional expectation E(X|A) is only P almost surely unique. One says that there are
different, but P almost surely equal versions of the conditional expectation.

Proposition 4.3. If X is integrable and almost surely non-negative, then E(X|A) ≥ 0 almost
surely.

Proof. For all C ∈ A,
0 ≤ E(X1C) = E(E(X|A)1C).

Since E(X|A) is A measurable, it holds that C0 := {E(X|A) < 0} ∈ A, so

0 ≤ E(E(X|A)1C0) ≤ 0,

and hence P(C0) = 0, because is negative E(X|A) on C0.

Exercise 4.4. Let (Ω,F,P) be a probability space with Ω = {0, 1}2, F = 2Ω and P({ω}) = 1/4
for all ω ∈ Ω. We define random variables X and Y on Ω by X(ω) = ω1 + ω2 and Y (ω) = ω1.
Show that for A = σ(X),

E(Y |A) = 1{(1,1)} +
1

2
1{(0,1),(1,0)}.

4.2 Properties

We now derive properties of conditional expectations. Let X, Y be integrable random variables
and A ⊆ F a σ-field.

The following statements are direct consequences of Theorem 4.1.

(A) E(E(X|A)) = E(X)

(B) X A-measurable =⇒ E(X|A) = X almost surely

(C) X = Y almost surely =⇒ E(X|A) = E(Y |A) almost surely

(D) E(αX + βY |A) = αE(X|A) + βE(Y |A) for all α, β ∈ R

As with the usual expected value, monotonicity is also preserved under conditional expec-
tations.

(E) X ≤ Y almost surely =⇒ E(X|A) ≤ E(Y |A) almost surely

(F) |E(X|A)| ≤ E(|X| |A) almost surely
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Proof. (E) Because Z = Y − X ≥ 0 almost surely, Theorem 4.3 implies that E(Z|A) ≥ 0
almost surely. Now we can apply (D).
(F) Clearly, X ≤ |X| and −X ≤ |X|, so due to (E) (and (D)),

max{E(X|A),E(−X|A)} = |E(X|A)| ≤ E(|X| |A) almost surely.

Also the monotone convergence theorem and Lebesgue’s theorem of dominated convergence
hold for conditional expectations.

(G) Let (Xn)n∈N be a sequence of random variables Xn ≥ 0 with Xn ↑ X. Then

lim
n→∞

E(Xn|A) = E( lim
n→∞

Xn|A) = E(X|A) fast sicher.

(H) Let (Xn)n∈N be a sequence of random variables with Xn
a.s.−→ X, and assume that there

exists Y such that |Xn| ≤ Y for all n ∈ N. Then,

lim
n→∞

E(Xn|A) = E(X|A) almost surely

and
E(|Xn −X| |A) → 0, almost surely.

Proof. (G) Due to (C) and (E) we can assume that E(Xn|A) ≤ E(Xn+1|A) for all n on Ω.
(Note: Countable unions of null sets are again null sets!) Let now C ∈ A. Then the monotone
convergence theorem implies that

E(1CE(X|A)) = lim
n→∞

E(1CE(Xn|A)) = lim
n→∞

E(1CXn) = E(1CX),

which yields the claim, because limn→∞E(Xn|A) is A-measurable.
(H) We define Zn := supm≥n |Xm − X|. Since Xn

a.s.−→ X, we obtain Zn ↓ 0 almost surely.
Because Xn and X are integrable, (D), (F) and (E) imply that

|E(Xn|A)− E(X|A)| = |E(Xn −X|A)| ≤ E(|Xn −X||A) ≤ E(Zn|A), almost surely.

Because 0 ≤ E(Zn+1|A) ≤ E(Zn|A) almost surely for all n, the limit ζ = limn→∞E(Zn|A)
exists almost surely. Due to (A),

0 ≤ E(ζ) ≤ E(E(Zn|A)) = E(Zn) → 0, n→ ∞.

The last convergence statement follows by the dominated convergence theorem, because 0 ≤
Zn ≤ 2Y . So E(ζ) = 0 and hence ζ = 0 almost surely

(I) Let Y be a A-measurable random variable, X an integrable random variable and Y X
integrable. Then,

E(Y X|A) = YE(X|A) almost surely. (4.3)
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Proof. If Y = 1B for B ∈ A, then for arbitrary C ∈ A,

E(1CY X) = E(1C∩BX) = E(1C∩BE(X|A)) = E(1CYE(X|A))

Because YE(X|A) is A-measurable, this implies (4.3) for indicator variables Y . The same
argument gives (4.3) also for simple random variables Y .
Let now Y ≥ 0 be a A-measurable random variable such that XY is integrable. There exist
simple A-measurable random variables with Yn ↑ Y almost surely. For all Yn, the result proved
above implies that

E(YnX|A) = YnE(X|A) almost surely.

It holds |YnX| ≤ |Y X|. Since Y X is integrable, it follows by (H) that E(YnX|A) → E(Y X|A)
almost surely. Moreover, YnE(X|A) → YE(X|A), which yields the claim. General random
variables Y are decomposed into positive and negative part.

(J) For σ-fields A1 ⊆ A2 ⊆ F, it holds

E(E(X|A1)|A2) = E(E(X|A2)|A1) = E(X|A1) almost surely.

Proof. The random variable E(X|A1) is A1-measurable, so also A2-measurable, and therefore
E(E(X|A1)|A2) = E(X|A1) almost surely. For all C ∈ A1 ⊆ A2,

E(1CE(X|A1)) = E(1CX) = E(1CE(X|A2)),

so
E(E(X|A2)|A1) = E(X|A1) fast sicher.

(K) Assume that the σ-field A is independent of the integrable random variable X. Then,

E(X|A) = E(X) almost surely.

Proof. The constant random variable E(X) is A-measurable. Let C ∈ A. Due to independence,

E(1CX) = E(1C)E(X) = E(E(X)1C),

which proves the statement.

Exercise 4.5. Let X1 and X2 be independent random variables with E(Xi) = E(X2
i ) = 1,

i = 1, 2 and define A = σ(X1). Show that then,

E((X1 +X2)
2|A) = (X1 + 1)2.

4.3 Factorization of the conditional expectation

Let X, Y be random variables on (Ω,F,P). If X is integrable (or non-negative), we define

E(X|Y ) := E(X|σ(Y )).
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If Y only takes values 0 and 1, i.e. P(Y = 0) = p ∈ (0, 1) and P(Y = 1) = 1 − p, then
σ(Y ) = {A,Ac, ∅,Ω}, where A = Y −1({0}). If X is integrable, we obtain

E(X|Y ) = E(X|σ(Y )) = 1AE(X|A) + 1AcE(X|Ac), almost surely.

Knowing the value of Y , we would like to determine the conditional expectation of X given
Y = 0 (or Y = 1). In the above case, it is clear that for y ∈ {0, 1}, we should choose

E(X|Y = y) := f(y) :=
1

1− p

(
yE(X) + (1− y − p)E(X|A)

)
because then,

E(X|Y ) = f(Y ) almost surely.

We now want to generalize the above arguments for an arbitrary random variable Y . For this,
we need the following theorem.

Theorem 4.6. Let Y, Z be random variables. Then Z is σ(Y )-measurable if and only if there
exists a measurable function f : R → R with Z = f(Y ).

Proof. Exercise

Corollary 4.7. Let X, Y be random variables and X integrable. Then there exists a measurable
function f : R → R such that

E(X|Y ) = f(Y )

almost surely, and f is PY almost surely unique.

Proof. The existence of f is proved in an exercise. We show that f PY is almost surely unique.
For all B ∈ B(R),∫

1Bf dPY =

∫
(1B ◦ Y )(f ◦ Y ) dP = E(1Y −1(B)f(Y )) = E(1Y −1(B)E(X|Y )) = E(1Y −1(B)X).

Let now g : R → R be another measurable function such that E(X|Y ) = g(Y ) almost surely.
The above computation shows that the P-integrability implies the PY -integrability of f and g
(choose B = R). So for all B ∈ B(R),∫

1Bf dPY =

∫
1Bg dPY .

With B = {f ≥ g} we obtain that 1B(f − g) = 1{f≥g}(f − g) = 0 PY almost surely, and
analogously 1{g≥f}(g − f) = 0 PY almost surely, which proves the claim.

With the function f from Corollary 4.7, we can therefore define

E(X|Y = y) := f(y).
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4.4 Martingales

In this chapter we introduce martingales and shortly illustrate two important theorems of
martingale theory. Martingales are one of the main tools in the theory of stochastic processes,
and they are treated extensively in the lectures Stochastic Processes I and II. This chapter only
gives a non-comprehensive preview on this interesting and central topic of probability theory.

Let (Ω,F,P) be a probability space.

Definition 4.8. Let A = (An)n∈N be a family of σ-fields An ⊆ F, n ∈ N. The family A is
called filtration if

An ⊆ An+1, for all n ∈ N.

A sequence (Xn)n∈N of random variables is called (A-)adapted, if Xn is An-measurable for all
n ∈ N.

Example 4.9. Any sequence (Xn)n∈N of random variables is adapted to the filtration (σ(X1, . . . , Xn))n∈N.

Definition 4.10. Let A = (An)n∈N be a filtration and (Xn)n∈N a sequence of integrable random
variables. (Xn)n∈N is called martingale, if for all n ∈ N,

E(Xn+1|An) = Xn almost surely.

Example 4.11 (Sums of independent centred random variables). Let (Xn)n∈N be a sequence of
independent integrable random variables with E(Xn) = 0 for all n ∈ N. We set Sn =

∑n
k=1Xk

for n ∈ N. Then (Sn)n∈N is a martingale with respect to (σ(X1, . . . , Xn))n∈N, because

E(Sn+1|σ(X1, . . . , Xn)) = E(Xn+1 + Sn|σ(X1, . . . , Xn))

= E(Xn+1|σ(X1, . . . , Xn)) + E(Sn|σ(X1, . . . , Xn))

= E(Xn+1) + Sn = Sn

where we have used properties (K) and (B) of conditional expectations in the second-last step.

Example 4.12 (Products of independent random variables). Let (Xn)n∈N be a sequence of
independent, integrable random variables with E(Xn) = 1 for all n ∈ N. We setMn =

∏n
k=1Xk

for n ∈ N. Then (Mn)n∈N is a martingale with respect to (σ(X1, . . . , Xn))n∈N, because

E(Mn+1|σ(X1, . . . , Xn)) = E(Xn+1Mn|σ(X1, . . . , Xn))

=MnE(Xn+1|σ(X1, . . . , Xn))

=MnE(Xn+1) =Mn

where we first use property (I) and then (K) of conditional expectations.

Example 4.13 (Successive predictions). Let Y be an integrable random variable and A =
(An)n∈N an arbitrary filtration. Then (Xn)n∈N with

Xn = E(Y |An)

is a martingale. From the definition it is obvious that (Xn)n∈N is A-adapted. Property (A)
shows that all Xn are integrable, and because of property (J),

E(Xn+1|An) = E(E(Y |An+1)|An) = E(Y |An) = Xn.
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Definition 4.14. Let A = (An)n∈N be a filtration. A mapping T : Ω → N ∪ {∞} is called
stopping time, if

{T ≤ n} ∈ An for all n ∈ N.

Theorem 4.15 (Stopping time). Let T be a stopping time and (Xn)n∈N a martingale with
respect to a filtration A. Then the stopped process (Xmin{n,T})n∈N is a martingale too. If T <∞
almost surely and if (Xmin{n,T})n∈N is dominated by an integrable function, then

E(XT ) = E(X1).

Example 4.16 (Ruin problem). Let (Yn)n∈N be a sequence of independent and identically
distributed random variables with P(Yn = 1) = P(Yn = −1) = 1/2. We define Sn =

∑n
k=1 Yk.

Then (Sn)n∈N is a martingale due to example 4.11, with the filtration (σ(X1, . . . , Xn))n∈N. The
martingale (Sn)n∈N is also called simple symmetric random walk. We can interpret Sn as the
gain/loss of a player in a sequence of independent games against a bank, and each game has a
probability of winning of 1/2 and a constant investment of 1.

For a, b ∈ N we define
T := inf{n ≥ 1 | Sn ̸∈ (−a, b)}.

The random variable T is a stopping time. If a is interpreted as the starting capital of the
player and b as the starting capital of the bank, then T describes the point of time when the
game ends because either the player is ruined (ST = −a) or the bank (ST = b). The probability
of ruin of the player is

p := P(ST = −a).
We can compute p by applying the stopping theorem (Theorem 4.15). The Borel-Cantelli
Lemma implies that P(T <∞) = 1, and |Smin{n,T}| ≤ max{a, b}. Therefore

0 = E(S1) = E(ST ) = p(−a) + (1− p)b,

so

p =
b

b+ a
which is the bank’s share of the total capital.

Theorem 4.17 (Convergence theorem). Let (Xn)n∈N be a martingale with

sup
n∈N

E(|Xn|) <∞.

Then (Xn)n∈N converges almost surely to an integrable random variableX∞.

Example 4.18. We again consider a simple symmetric random walk (Sn)n∈N as in example
4.16. The martingale (Sn)n∈N does not converge, because |Sn+1 − Sn| = 1 for all n ∈ N. Still,
the convergence theorem allows us to derive an interesting result on the random walk. We
define for c ∈ Z the stopping time

Tc := inf{n > 1|Sn = c}

Theorem 4.15 shows that (Smin{n,Tc})n∈N is a martingale. If c > 0, then Smin{n,Tc} ≤ c, so
(Smin{n,Tc})+ ≤ c and therefore

sup
n∈N

E(|Smin{n,Tc}|) = sup
n∈N

((E(Smin{n,Tc}))+ + (E(Smin{n,Tc}))−)

= sup
n∈N

(2(E(Smin{n,Tc}))+ − E(Smin{1,Tc})) ≤ 2c− E(Smin{1,Tc}) <∞.
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If c < 0, one can apply an analogous argument. Hence the convergence theorem (Theorem 4.17)
implies that limn→∞ Smin{n,Tc} exists almost surely, which shows (because (Sn)n∈N almost surely
does not converge) that P(Tc <∞) = 1 for all c ∈ Z, so also P(Tc <∞ for all c ∈ Z) = 1. This
shows that

P(lim inf
n→∞

Sn = −∞, lim sup
n→∞

Sn = +∞) = 1.

We conclude that the simple symmetric random walk almost surely oscillates almost surely in
an arbitrarily wide range.

The convergence theorem for martingales can also be used, for example, to derive the law
of large numbers not only for sequences (Xn)n∈N of independent random variables, but also for
sequences with certain forms of dependency.
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