aglowav::Est02< F > Class Template Reference

Error estimator for the constant space. More...

#include <estimator.hh>

Public Member Functions

 Est02 (bem::AdaptiveSpace< F > &spc, uint maxdim, concepts::Real trshld, concepts::Real s=1.0)
 Constructor. More...
 
void operator() (const Haar3d< F > &wavspc, const concepts::Function< F > &f)
 Refines the adaptive constant space. More...
 
void operator() (const Haar3d< F > &wavspc, const concepts::Vector< F > &f)
 
bool refine () const
 Return 1 if there was some refinement Return 0 else. More...
 

Private Attributes

uint maxdim_
 
bool ref_
 Refinement. More...
 
concepts::Real s_
 Smoothness of the solution. More...
 
bem::AdaptiveSpace< F > & spc_
 Space to refine. More...
 
concepts::Real trshld2_
 Threshold squared. More...
 

Detailed Description

template<class F = concepts::Real>
class aglowav::Est02< F >

Error estimator for the constant space.

The refinement decision is made accordingly to the wavelet coefficients of the agglomerated wavelet space based on the constant space. Refinement: refinement if the weighted $l_2$ norm of the wavelet coefficients on the way from the root to a leaf is larger than the weighted $l_2$ norm of all wavelet coefficients times the trshld. The weights are $(\frac{a_0}{a_i})^s$ for $a_0$ the size of the support of the wavelet on level 0 (root), $a_0$ the size of the support of the wavelet $\psi_i$ and $s$ the regularity. This formula is a generalization of formula (3.2.10) of Fully Discrete Multiscale Galerkin BEM (T. von Petersdorff and C. Schwab) where the supports are always divided by 4.

A spezialization of this (supports are always divided by 2) is implemented in ErrEstimator04.

Parameters
FField (Real or Cmplx)

Definition at line 88 of file estimator.hh.

Constructor & Destructor Documentation

◆ Est02()

template<class F >
aglowav::Est02< F >::Est02 ( bem::AdaptiveSpace< F > &  spc,
uint  maxdim,
concepts::Real  trshld,
concepts::Real  s = 1.0 
)
inline

Constructor.

Parameters
spcSpace
maxdimMaximal dimension of the space
sSmoothness of the solution

Definition at line 121 of file estimator.hh.

Member Function Documentation

◆ operator()() [1/2]

template<class F = concepts::Real>
void aglowav::Est02< F >::operator() ( const Haar3d< F > &  wavspc,
const concepts::Function< F > &  f 
)

Refines the adaptive constant space.

Exceptions
MissingFeature

◆ operator()() [2/2]

template<class F = concepts::Real>
void aglowav::Est02< F >::operator() ( const Haar3d< F > &  wavspc,
const concepts::Vector< F > &  f 
)
Exceptions
MissingFeature

◆ refine()

template<class F = concepts::Real>
bool aglowav::Est02< F >::refine ( ) const
inline

Return 1 if there was some refinement Return 0 else.

Definition at line 101 of file estimator.hh.

Member Data Documentation

◆ maxdim_

template<class F = concepts::Real>
uint aglowav::Est02< F >::maxdim_
private

Definition at line 111 of file estimator.hh.

◆ ref_

template<class F = concepts::Real>
bool aglowav::Est02< F >::ref_
private

Refinement.

Definition at line 110 of file estimator.hh.

◆ s_

template<class F = concepts::Real>
concepts::Real aglowav::Est02< F >::s_
private

Smoothness of the solution.

Definition at line 115 of file estimator.hh.

◆ spc_

template<class F = concepts::Real>
bem::AdaptiveSpace<F>& aglowav::Est02< F >::spc_
private

Space to refine.

Definition at line 117 of file estimator.hh.

◆ trshld2_

template<class F = concepts::Real>
concepts::Real aglowav::Est02< F >::trshld2_
private

Threshold squared.

Definition at line 113 of file estimator.hh.


The documentation for this class was generated from the following file:
Page URL: http://wiki.math.ethz.ch/bin/view/Concepts/WebHome
21 August 2020
© 2020 Eidgenössische Technische Hochschule Zürich