2D element map for an ellipsoidal arc (not skewed) More...

#include <elementMaps.hh>

Inheritance diagram for concepts::EllipseMappingEdge2d:
concepts::MappingEdge2d concepts::Cloneable concepts::Map1d concepts::OutputOperator

Public Member Functions

virtual EllipseMappingEdge2dclone () const
 Virtual copy constructor. More...
 
virtual Real curvature (const Real t, uint n=0) const
 Returns the n-th derivative of the curvature. More...
 
virtual Real2d derivative (const Real t, const uint n=1) const
 Returns the n-th derivative. More...
 
 EllipseMappingEdge2d (const EllipseMappingEdge2d &edgemap)
 Copy Constructor. More...
 
 EllipseMappingEdge2d (const Real2d center, const Real a, const Real b, const Real2d vtx0, const Real2d vtx1)
 Constructor. More...
 
virtual EllipseMappingEdge2dinverse () const
 Returns the mapping of the edge in inverse direction. More...
 
Real2d n0 (const Real t) const
 Returns the normalised right normal vector. More...
 
virtual Real2d normal (const Real t) const
 Returns the right normal vector, length is that of the derivative. More...
 
virtual Real2d operator() (const Real t) const
 Application operator. More...
 
EllipseMappingEdge2dpart (const Real t0, const Real t1) const
 Returns a new object of an element map for a rectangular part of the reference cell defined by the two points. More...
 
const Real2dvtx (uint i) const
 Spit out one vertex of the edge. More...
 

Protected Member Functions

virtual std::ostream & info (std::ostream &os) const
 Returns information in an output stream. More...
 

Protected Attributes

Real2d vtx_ [2]
 Coordinates of the vertices at either end of the edge. More...
 

Private Member Functions

 EllipseMappingEdge2d (const Real2d center, const Real a, const Real b, const Real angle0, const Real angle1)
 

Private Attributes

Real a_
 Half axes. More...
 
Real angle0_
 Angles between one vertex and the ellipse center. More...
 
Real angle1_
 
Real b_
 
Real2d m_
 Mid point of the ellipse. More...
 

Detailed Description

2D element map for an ellipsoidal arc (not skewed)

The edge is given by two vertices, the center and the two half axes.

This class may be used in connection with BlendingQuad2d.

See also
BlendingQuad2d
Author
, Kersten Schmidt, 2006

Definition at line 338 of file elementMaps.hh.

Constructor & Destructor Documentation

◆ EllipseMappingEdge2d() [1/3]

concepts::EllipseMappingEdge2d::EllipseMappingEdge2d ( const Real2d  center,
const Real  a,
const Real  b,
const Real2d  vtx0,
const Real2d  vtx1 
)

Constructor.

Parameters
centercenter of the ellipse
a,blength of the half axes
vtx0,vtx1coordinates of the vertices

◆ EllipseMappingEdge2d() [2/3]

concepts::EllipseMappingEdge2d::EllipseMappingEdge2d ( const EllipseMappingEdge2d edgemap)

Copy Constructor.

◆ EllipseMappingEdge2d() [3/3]

concepts::EllipseMappingEdge2d::EllipseMappingEdge2d ( const Real2d  center,
const Real  a,
const Real  b,
const Real  angle0,
const Real  angle1 
)
private

Member Function Documentation

◆ clone()

virtual EllipseMappingEdge2d* concepts::EllipseMappingEdge2d::clone ( ) const
virtual

Virtual copy constructor.

Implements concepts::MappingEdge2d.

◆ curvature()

virtual Real concepts::MappingEdge2d::curvature ( const Real  t,
uint  n = 0 
) const
virtualinherited

Returns the n-th derivative of the curvature.

It's implemented in general for n = 0,1 and works with curved edges. Can be overwritten in derived classes for performance reasons.

Reimplemented in concepts::MappingStraightEdge2d, concepts::InverseMappingEdge2d, concepts::MappingParallelEdge2d, and concepts::CircleMappingEdge2d.

◆ derivative()

virtual Real2d concepts::EllipseMappingEdge2d::derivative ( const Real  t,
const uint  n = 1 
) const
virtual

Returns the n-th derivative.

Implements concepts::MappingEdge2d.

◆ info()

virtual std::ostream& concepts::EllipseMappingEdge2d::info ( std::ostream &  os) const
protectedvirtual

Returns information in an output stream.

Reimplemented from concepts::MappingEdge2d.

◆ inverse()

virtual EllipseMappingEdge2d* concepts::EllipseMappingEdge2d::inverse ( ) const
virtual

Returns the mapping of the edge in inverse direction.

Reimplemented from concepts::MappingEdge2d.

◆ n0()

Real2d concepts::MappingEdge2d::n0 ( const Real  t) const
inlineinherited

Returns the normalised right normal vector.

Definition at line 107 of file elementMaps.hh.

◆ normal()

virtual Real2d concepts::MappingEdge2d::normal ( const Real  t) const
virtualinherited

Returns the right normal vector, length is that of the derivative.

◆ operator()()

virtual Real2d concepts::EllipseMappingEdge2d::operator() ( const Real  t) const
virtual

Application operator.

Maps the point from the parameter domain onto the physical space.

Implements concepts::MappingEdge2d.

◆ part()

EllipseMappingEdge2d* concepts::EllipseMappingEdge2d::part ( const Real  t0,
const Real  t1 
) const
virtual

Returns a new object of an element map for a rectangular part of the reference cell defined by the two points.

Reimplemented from concepts::MappingEdge2d.

◆ vtx()

const Real2d& concepts::MappingEdge2d::vtx ( uint  i) const
inlineinherited

Spit out one vertex of the edge.

Definition at line 124 of file elementMaps.hh.

Member Data Documentation

◆ a_

Real concepts::EllipseMappingEdge2d::a_
private

Half axes.

Definition at line 363 of file elementMaps.hh.

◆ angle0_

Real concepts::EllipseMappingEdge2d::angle0_
private

Angles between one vertex and the ellipse center.

Definition at line 365 of file elementMaps.hh.

◆ angle1_

Real concepts::EllipseMappingEdge2d::angle1_
private

Definition at line 365 of file elementMaps.hh.

◆ b_

Real concepts::EllipseMappingEdge2d::b_
private

Definition at line 363 of file elementMaps.hh.

◆ m_

Real2d concepts::EllipseMappingEdge2d::m_
private

Mid point of the ellipse.

Definition at line 361 of file elementMaps.hh.

◆ vtx_

Real2d concepts::MappingEdge2d::vtx_[2]
protectedinherited

Coordinates of the vertices at either end of the edge.

Definition at line 128 of file elementMaps.hh.


The documentation for this class was generated from the following file:
Page URL: http://wiki.math.ethz.ch/bin/view/Concepts/WebHome
21 August 2020
© 2020 Eidgenössische Technische Hochschule Zürich