concepts::FrmE_ScalarProductNormalEdge2d< F > Class Template Referenceabstract

Computes the scalar product <n, vf> of the normal n with a vector valued formula vf, the result is a scalar formula in F. More...

#include <formula.hh>

Inheritance diagram for concepts::FrmE_ScalarProductNormalEdge2d< F >:
concepts::ElementFormula< Real > concepts::Cloneable concepts::OutputOperator

Public Types

typedef Real value_type
 

Public Member Functions

virtual FrmE_ScalarProductNormalEdge2dclone () const
 Virtual constructor. More...
 
virtual ElementFormula< Real, typename Realtype< Real >::type > * clone () const=0
 Virtual copy constructor. More...
 
RCP< const ElementFormula< Point< F, 2 > > > & frm ()
 Access to the vectorial formula. More...
 
RCP< const ElementFormula< Point< F, 2 > > > frm () const
 Returns the vectorial formula. More...
 
 FrmE_ScalarProductNormalEdge2d (RCP< const ElementFormula< Point< F, 2 > > > vf)
 
virtual F operator() (const ElementWithCell< Real > &elm, const Real p, const Real t=0.0) const
 
virtual F operator() (const ElementWithCell< Real > &elm, const Real2d &p, const Real t=0.0) const
 
virtual F operator() (const ElementWithCell< Real > &elm, const Real3d &p, const Real t=0.0) const
 
virtual Real operator() (const ElementWithCell< typename Realtype< Real >::type > &elm, const Real p, const Real t=0.0) const=0
 Evaluates the formula. More...
 
virtual Real operator() (const ElementWithCell< typename Realtype< Real >::type > &elm, const Real2d &p, const Real t=0.0) const=0
 Evaluates the formula. More...
 
virtual Real operator() (const ElementWithCell< typename Realtype< Real >::type > &elm, const Real3d &p, const Real t=0.0) const=0
 Evaluates the formula. More...
 

Public Attributes

RCP< const ElementFormula< Point< F, 2 > > > vf_
 

Protected Member Functions

virtual std::ostream & info (std::ostream &os) const
 Returns information in an output stream. More...
 

Detailed Description

template<class F = Real>
class concepts::FrmE_ScalarProductNormalEdge2d< F >

Computes the scalar product <n, vf> of the normal n with a vector valued formula vf, the result is a scalar formula in F.

The intended use for elements based on cells of type Edge2d.

The normal vector is usually set when building the trace space.

Author
Holger Brandsmeier, 2010

Definition at line 244 of file formula.hh.

Member Typedef Documentation

◆ value_type

typedef Real concepts::ElementFormula< Real , typename Realtype<Real >::type >::value_type
inherited

Definition at line 37 of file elementFormula.hh.

Constructor & Destructor Documentation

◆ FrmE_ScalarProductNormalEdge2d()

template<class F = Real>
concepts::FrmE_ScalarProductNormalEdge2d< F >::FrmE_ScalarProductNormalEdge2d ( RCP< const ElementFormula< Point< F, 2 > > >  vf)
inline

Definition at line 247 of file formula.hh.

Member Function Documentation

◆ clone() [1/2]

template<class F = Real>
virtual FrmE_ScalarProductNormalEdge2d* concepts::FrmE_ScalarProductNormalEdge2d< F >::clone ( ) const
inlinevirtual

Virtual constructor.

Returns a pointer to a copy of itself. The caller is responsible to destroy this copy.

Implements concepts::Cloneable.

Definition at line 252 of file formula.hh.

◆ clone() [2/2]

virtual ElementFormula<Real ,typename Realtype<Real >::type >* concepts::ElementFormula< Real , typename Realtype<Real >::type >::clone ( ) const
pure virtualinherited

Virtual copy constructor.

◆ frm() [1/2]

template<class F = Real>
RCP<const ElementFormula< Point<F, 2> > >& concepts::FrmE_ScalarProductNormalEdge2d< F >::frm ( )
inline

Access to the vectorial formula.

Definition at line 263 of file formula.hh.

◆ frm() [2/2]

template<class F = Real>
RCP<const ElementFormula< Point<F, 2> > > concepts::FrmE_ScalarProductNormalEdge2d< F >::frm ( ) const
inline

Returns the vectorial formula.

Definition at line 257 of file formula.hh.

◆ info()

template<class F = Real>
virtual std::ostream& concepts::FrmE_ScalarProductNormalEdge2d< F >::info ( std::ostream &  os) const
protectedvirtual

Returns information in an output stream.

Reimplemented from concepts::OutputOperator.

◆ operator()() [1/6]

template<class F = Real>
virtual F concepts::FrmE_ScalarProductNormalEdge2d< F >::operator() ( const ElementWithCell< Real > &  elm,
const Real  p,
const Real  t = 0.0 
) const
virtual

◆ operator()() [2/6]

template<class F = Real>
virtual F concepts::FrmE_ScalarProductNormalEdge2d< F >::operator() ( const ElementWithCell< Real > &  elm,
const Real2d p,
const Real  t = 0.0 
) const
inlinevirtual

Definition at line 270 of file formula.hh.

◆ operator()() [3/6]

template<class F = Real>
virtual F concepts::FrmE_ScalarProductNormalEdge2d< F >::operator() ( const ElementWithCell< Real > &  elm,
const Real3d p,
const Real  t = 0.0 
) const
inlinevirtual

Definition at line 277 of file formula.hh.

◆ operator()() [4/6]

virtual Real concepts::ElementFormula< Real , typename Realtype<Real >::type >::operator() ( const ElementWithCell< G > &  elm,
const Real  p,
const Real  t = 0.0 
) const
pure virtualinherited

Evaluates the formula.

Parameters
elmElement
pPoint in space in local element coordinates
tPoint in time

◆ operator()() [5/6]

virtual Real concepts::ElementFormula< Real , typename Realtype<Real >::type >::operator() ( const ElementWithCell< G > &  elm,
const Real2d p,
const Real  t = 0.0 
) const
pure virtualinherited

Evaluates the formula.

Parameters
elmElement
pPoint in space in local element coordinates
tPoint in time

◆ operator()() [6/6]

virtual Real concepts::ElementFormula< Real , typename Realtype<Real >::type >::operator() ( const ElementWithCell< G > &  elm,
const Real3d p,
const Real  t = 0.0 
) const
pure virtualinherited

Evaluates the formula.

Parameters
elmElement
pPoint in space in local element coordinates
tPoint in time

Member Data Documentation

◆ vf_

template<class F = Real>
RCP<const ElementFormula< Point<F, 2> > > concepts::FrmE_ScalarProductNormalEdge2d< F >::vf_

Definition at line 286 of file formula.hh.


The documentation for this class was generated from the following file:
Page URL: http://wiki.math.ethz.ch/bin/view/Concepts/WebHome
21 August 2020
© 2020 Eidgenössische Technische Hochschule Zürich