This class creates a linearform corresponding to the integral: More...

#include <levelRiesz.hh>

Inheritance diagram for hp1D::LevelRiesz:
concepts::LinearForm< concepts::Real >

Public Member Functions

 LevelRiesz (const concepts::Space< Real > &space2D, const concepts::ElementFormulaContainer< Real > &levelFunction, const concepts::ElementFormulaContainer< Real2d > &levelFunctionGrad, const concepts::ElementFormulaContainer< Real > &observable)
 Constructor The level function $\psi$ and it's gradient are defined on a 2D space. More...
 
virtual void operator() (const concepts::Element< Real > &elm, concepts::ElementMatrix< Real > &em) const
 This method loops over all elements of the 2D space and cells levelRieszElement on each one of them. More...
 
virtual void operator() (const Element< typename Realtype< concepts::Real >::type > &elm, ElementMatrix< concepts::Real > &em) const=0
 Computes the element contribution to the function. More...
 
 ~LevelRiesz ()
 

Protected Member Functions

virtual std::ostream & info (std::ostream &os) const
 

Private Attributes

const concepts::ElementFormulaContainer< Real > levelFunction_
 
const concepts::ElementFormulaContainer< Real2d > levelFunctionGrad_
 
const concepts::ElementFormulaContainer< Real > observable_
 
const concepts::Space< Real > & space2D_
 

Detailed Description

This class creates a linearform corresponding to the integral:

$ \int\limits_{\psi = y} f(x) \mathrm{d}x for 0<y<1 $ ,

where $\psi$ is a given 2D-function (must take values between 0 and 1 !) and f the function to be integrated.

These integrals, called geometric coefficients, are computed for all y in [0,1] via a Galerkin-projection on a polynomial space.

As polynomials spaces one can choose the space of orthonormal Legendre-polynomials (hp1D::hpAdaptiveSpaceL2) or the space of Karniadakis-polynomials (hp1D::Space).

Author
Lukas Drescher, 2015, Felix Baumann 2017

Definition at line 34 of file levelRiesz.hh.

Constructor & Destructor Documentation

◆ LevelRiesz()

hp1D::LevelRiesz::LevelRiesz ( const concepts::Space< Real > &  space2D,
const concepts::ElementFormulaContainer< Real > &  levelFunction,
const concepts::ElementFormulaContainer< Real2d > &  levelFunctionGrad,
const concepts::ElementFormulaContainer< Real > &  observable 
)

Constructor The level function $\psi$ and it's gradient are defined on a 2D space.

$\psi$ must take values in [0,1]. The observable corresponds to the integrand.

Parameters
space2D2D domain, on which level function is given
levelFunctionlevelset function. must take values in [0,1]
levelFunctionGradgradient of levelset function
observableintegrand over level sets of levelFunction

◆ ~LevelRiesz()

hp1D::LevelRiesz::~LevelRiesz ( )
inline

Definition at line 52 of file levelRiesz.hh.

Member Function Documentation

◆ info()

virtual std::ostream& hp1D::LevelRiesz::info ( std::ostream &  os) const
protectedvirtual

◆ operator()() [1/2]

virtual void hp1D::LevelRiesz::operator() ( const concepts::Element< Real > &  elm,
concepts::ElementMatrix< Real > &  em 
) const
virtual

This method loops over all elements of the 2D space and cells levelRieszElement on each one of them.

These local contributions are added together to get the overall value.

◆ operator()() [2/2]

virtual void concepts::LinearForm< concepts::Real , typename Realtype<concepts::Real >::type >::operator() ( const Element< G > &  elm,
ElementMatrix< F > &  em 
) const
pure virtualinherited

Computes the element contribution to the function.

Parameters
elmElement on which the computations should be performed
emThe local matrix

Member Data Documentation

◆ levelFunction_

const concepts::ElementFormulaContainer<Real> hp1D::LevelRiesz::levelFunction_
private

Definition at line 69 of file levelRiesz.hh.

◆ levelFunctionGrad_

const concepts::ElementFormulaContainer<Real2d> hp1D::LevelRiesz::levelFunctionGrad_
private

Definition at line 70 of file levelRiesz.hh.

◆ observable_

const concepts::ElementFormulaContainer<Real> hp1D::LevelRiesz::observable_
private

Definition at line 71 of file levelRiesz.hh.

◆ space2D_

const concepts::Space<Real>& hp1D::LevelRiesz::space2D_
private

Definition at line 68 of file levelRiesz.hh.


The documentation for this class was generated from the following file:
Page URL: http://wiki.math.ethz.ch/bin/view/Concepts/WebHome
21 August 2020
© 2020 Eidgenössische Technische Hochschule Zürich