hp1D::LevelRieszElement Class Referenceabstract
This class creates a linearform corresponding to the local contribution of one cell to the integral: More...
#include <levelRieszElement.hh>
Public Member Functions | |
LevelRieszElement (const hp2D::Element< Real > &elm, const concepts::ElementFormulaContainer< Real > &levelFunction, const concepts::ElementFormulaContainer< Real2d > &levelFunctionGrad, const concepts::ElementFormulaContainer< Real > &observable) | |
Constructor. More... | |
void | operator() (const concepts::Element< Real > &elm, concepts::ElementMatrix< Real > &em) const |
virtual void | operator() (const Element< typename Realtype< concepts::Real >::type > &elm, ElementMatrix< concepts::Real > &em) const=0 |
Computes the element contribution to the function. More... | |
~LevelRieszElement () | |
Destructor. More... | |
Protected Member Functions | |
virtual std::ostream & | info (std::ostream &os) const |
Private Attributes | |
const hp2D::Element< Real > & | elm2D_ |
const concepts::ElementFormulaContainer< Real > | levelFunction_ |
const concepts::ElementFormulaContainer< Real2d > | levelFunctionGrad_ |
const concepts::ElementFormulaContainer< Real > | observable_ |
Detailed Description
This class creates a linearform corresponding to the local contribution of one cell to the integral:
,
where \psi is a given 2D-function (must take values between 0 and 1 !) and f the function to be integrated.
These integrals, called geometric coefficients, are computed for all y in [0,1] via a Galerkin-projection on a polynomial space. As polynomials spaces one can choose the space of orthonormal Legendre-polynomials (hp1D::hpAdaptiveSpaceL2) or the space of Karniadakis-polynomials (hp1D::Space).
Definition at line 34 of file levelRieszElement.hh.
Constructor & Destructor Documentation
◆ LevelRieszElement()
hp1D::LevelRieszElement::LevelRieszElement | ( | const hp2D::Element< Real > & | elm, |
const concepts::ElementFormulaContainer< Real > & | levelFunction, | ||
const concepts::ElementFormulaContainer< Real2d > & | levelFunctionGrad, | ||
const concepts::ElementFormulaContainer< Real > & | observable | ||
) |
Constructor.
- Parameters
-
elm a 2D-element levelFunction levelset function. must take values in [0,1] levelFunctionGrad gradient of levelset function observable integrand over level sets of levelFunction
◆ ~LevelRieszElement()
hp1D::LevelRieszElement::~LevelRieszElement | ( | ) |
Destructor.
Member Function Documentation
◆ info()
|
protectedvirtual |
Reimplemented from concepts::LinearForm< concepts::Real >.
◆ operator()() [1/2]
void hp1D::LevelRieszElement::operator() | ( | const concepts::Element< Real > & | elm, |
concepts::ElementMatrix< Real > & | em | ||
) | const |
◆ operator()() [2/2]
|
pure virtualinherited |
Computes the element contribution to the function.
- Parameters
-
elm Element on which the computations should be performed em The local matrix
Member Data Documentation
◆ elm2D_
|
private |
Definition at line 62 of file levelRieszElement.hh.
◆ levelFunction_
|
private |
Definition at line 63 of file levelRieszElement.hh.
◆ levelFunctionGrad_
|
private |
Definition at line 64 of file levelRieszElement.hh.
◆ observable_
|
private |
Definition at line 65 of file levelRieszElement.hh.
The documentation for this class was generated from the following file:
- levelSets/levelRieszElement.hh