dataanalysis.h
Go to the documentation of this file.
89 {
93 {
137 {
142 {
172 {
179 {
199 {
207 {
224 {
232 {
254 {
265 {
276 {
302 {
313 {
321 {
334 {
349 }
357 {
549 };
581 };
583 {
632 };
754 };
756 {
785 };
787 {
1111 void pcabuildbasis(const real_2d_array &x, const ae_int_t npoints, const ae_int_t nvars, ae_int_t &info, real_1d_array &s2, real_2d_array &v);
1112 void smp_pcabuildbasis(const real_2d_array &x, const ae_int_t npoints, const ae_int_t nvars, ae_int_t &info, real_1d_array &s2, real_2d_array &v);
1182 void pcatruncatedsubspace(const real_2d_array &x, const ae_int_t npoints, const ae_int_t nvars, const ae_int_t nneeded, const double eps, const ae_int_t maxits, real_1d_array &s2, real_2d_array &v);
1183 void smp_pcatruncatedsubspace(const real_2d_array &x, const ae_int_t npoints, const ae_int_t nvars, const ae_int_t nneeded, const double eps, const ae_int_t maxits, real_1d_array &s2, real_2d_array &v);
1212 void dsoptimalsplit2(const real_1d_array &a, const integer_1d_array &c, const ae_int_t n, ae_int_t &info, double &threshold, double &pal, double &pbl, double &par, double &pbr, double &cve);
1239 void dsoptimalsplit2fast(real_1d_array &a, integer_1d_array &c, integer_1d_array &tiesbuf, integer_1d_array &cntbuf, real_1d_array &bufr, integer_1d_array &bufi, const ae_int_t n, const ae_int_t nc, const double alpha, ae_int_t &info, double &threshold, double &rms, double &cvrms);
1310 void mlpcreate1(const ae_int_t nin, const ae_int_t nhid, const ae_int_t nout, multilayerperceptron &network);
1321 void mlpcreate2(const ae_int_t nin, const ae_int_t nhid1, const ae_int_t nhid2, const ae_int_t nout, multilayerperceptron &network);
1341 void mlpcreateb0(const ae_int_t nin, const ae_int_t nout, const double b, const double d, multilayerperceptron &network);
1350 void mlpcreateb1(const ae_int_t nin, const ae_int_t nhid, const ae_int_t nout, const double b, const double d, multilayerperceptron &network);
1359 void mlpcreateb2(const ae_int_t nin, const ae_int_t nhid1, const ae_int_t nhid2, const ae_int_t nout, const double b, const double d, multilayerperceptron &network);
1370 void mlpcreater0(const ae_int_t nin, const ae_int_t nout, const double a, const double b, multilayerperceptron &network);
1379 void mlpcreater1(const ae_int_t nin, const ae_int_t nhid, const ae_int_t nout, const double a, const double b, multilayerperceptron &network);
1388 void mlpcreater2(const ae_int_t nin, const ae_int_t nhid1, const ae_int_t nhid2, const ae_int_t nout, const double a, const double b, multilayerperceptron &network);
1409 void mlpcreatec1(const ae_int_t nin, const ae_int_t nhid, const ae_int_t nout, multilayerperceptron &network);
1418 void mlpcreatec2(const ae_int_t nin, const ae_int_t nhid1, const ae_int_t nhid2, const ae_int_t nout, multilayerperceptron &network);
1454 void mlpcopytunableparameters(const multilayerperceptron &network1, const multilayerperceptron &network2);
1481 void mlpinitpreprocessor(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t ssize);
1491 void mlpproperties(const multilayerperceptron &network, ae_int_t &nin, ae_int_t &nout, ae_int_t &wcount);
1574 void mlpgetinputscaling(const multilayerperceptron &network, const ae_int_t i, double &mean, double &sigma);
1597 void mlpgetoutputscaling(const multilayerperceptron &network, const ae_int_t i, double &mean, double &sigma);
1620 void mlpgetneuroninfo(const multilayerperceptron &network, const ae_int_t k, const ae_int_t i, ae_int_t &fkind, double &threshold);
1644 double mlpgetweight(const multilayerperceptron &network, const ae_int_t k0, const ae_int_t i0, const ae_int_t k1, const ae_int_t i1);
1664 void mlpsetinputscaling(const multilayerperceptron &network, const ae_int_t i, const double mean, const double sigma);
1688 void mlpsetoutputscaling(const multilayerperceptron &network, const ae_int_t i, const double mean, const double sigma);
1717 void mlpsetneuroninfo(const multilayerperceptron &network, const ae_int_t k, const ae_int_t i, const ae_int_t fkind, const double threshold);
1741 void mlpsetweight(const multilayerperceptron &network, const ae_int_t k0, const ae_int_t i0, const ae_int_t k1, const ae_int_t i1, const double w);
1759 void mlpactivationfunction(const double net, const ae_int_t k, double &f, double &df, double &d2f);
1778 void mlpprocess(const multilayerperceptron &network, const real_1d_array &x, real_1d_array &y);
1793 void mlpprocessi(const multilayerperceptron &network, const real_1d_array &x, real_1d_array &y);
1857 double mlperror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints);
1858 double smp_mlperror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints);
1926 double mlperrorsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints);
1927 double smp_mlperrorsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints);
1939 double mlperrorn(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t ssize);
2003 ae_int_t mlpclserror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints);
2004 ae_int_t smp_mlpclserror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints);
2069 double mlprelclserror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints);
2070 double smp_mlprelclserror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints);
2136 double mlprelclserrorsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints);
2137 double smp_mlprelclserrorsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints);
2202 double mlpavgce(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints);
2203 double smp_mlpavgce(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints);
2273 double mlpavgcesparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints);
2274 double smp_mlpavgcesparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints);
2340 double mlprmserror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints);
2341 double smp_mlprmserror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints);
2411 double mlprmserrorsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints);
2412 double smp_mlprmserrorsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints);
2477 double mlpavgerror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints);
2478 double smp_mlpavgerror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints);
2547 double mlpavgerrorsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints);
2548 double smp_mlpavgerrorsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints);
2614 double mlpavgrelerror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints);
2615 double smp_mlpavgrelerror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints);
2685 double mlpavgrelerrorsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints);
2686 double smp_mlpavgrelerrorsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints);
2708 void mlpgrad(const multilayerperceptron &network, const real_1d_array &x, const real_1d_array &desiredy, double &e, real_1d_array &grad);
2731 void mlpgradn(const multilayerperceptron &network, const real_1d_array &x, const real_1d_array &desiredy, double &e, real_1d_array &grad);
2786 void mlpgradbatch(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t ssize, double &e, real_1d_array &grad);
2787 void smp_mlpgradbatch(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t ssize, double &e, real_1d_array &grad);
2844 void mlpgradbatchsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t ssize, double &e, real_1d_array &grad);
2845 void smp_mlpgradbatchsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t ssize, double &e, real_1d_array &grad);
2914 void mlpgradbatchsubset(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t setsize, const integer_1d_array &idx, const ae_int_t subsetsize, double &e, real_1d_array &grad);
2915 void smp_mlpgradbatchsubset(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t setsize, const integer_1d_array &idx, const ae_int_t subsetsize, double &e, real_1d_array &grad);
2989 void mlpgradbatchsparsesubset(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t setsize, const integer_1d_array &idx, const ae_int_t subsetsize, double &e, real_1d_array &grad);
2990 void smp_mlpgradbatchsparsesubset(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t setsize, const integer_1d_array &idx, const ae_int_t subsetsize, double &e, real_1d_array &grad);
3016 void mlpgradnbatch(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t ssize, double &e, real_1d_array &grad);
3031 void mlphessiannbatch(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t ssize, double &e, real_1d_array &grad, real_2d_array &h);
3046 void mlphessianbatch(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t ssize, double &e, real_1d_array &grad, real_2d_array &h);
3099 void mlpallerrorssubset(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t setsize, const integer_1d_array &subset, const ae_int_t subsetsize, modelerrors &rep);
3100 void smp_mlpallerrorssubset(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t setsize, const integer_1d_array &subset, const ae_int_t subsetsize, modelerrors &rep);
3155 void mlpallerrorssparsesubset(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t setsize, const integer_1d_array &subset, const ae_int_t subsetsize, modelerrors &rep);
3156 void smp_mlpallerrorssparsesubset(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t setsize, const integer_1d_array &subset, const ae_int_t subsetsize, modelerrors &rep);
3227 double mlperrorsubset(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t setsize, const integer_1d_array &subset, const ae_int_t subsetsize);
3228 double smp_mlperrorsubset(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t setsize, const integer_1d_array &subset, const ae_int_t subsetsize);
3304 double mlperrorsparsesubset(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t setsize, const integer_1d_array &subset, const ae_int_t subsetsize);
3305 double smp_mlperrorsparsesubset(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t setsize, const integer_1d_array &subset, const ae_int_t subsetsize);
3363 void fisherlda(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nvars, const ae_int_t nclasses, ae_int_t &info, real_1d_array &w);
3425 void fisherldan(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nvars, const ae_int_t nclasses, ae_int_t &info, real_2d_array &w);
3426 void smp_fisherldan(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nvars, const ae_int_t nclasses, ae_int_t &info, real_2d_array &w);
3464 void lrbuild(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nvars, ae_int_t &info, linearmodel &lm, lrreport &ar);
3497 void lrbuilds(const real_2d_array &xy, const real_1d_array &s, const ae_int_t npoints, const ae_int_t nvars, ae_int_t &info, linearmodel &lm, lrreport &ar);
3510 void lrbuildzs(const real_2d_array &xy, const real_1d_array &s, const ae_int_t npoints, const ae_int_t nvars, ae_int_t &info, linearmodel &lm, lrreport &ar);
3523 void lrbuildz(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nvars, ae_int_t &info, linearmodel &lm, lrreport &ar);
3770 void mnltrainh(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nvars, const ae_int_t nclasses, ae_int_t &info, logitmodel &lm, mnlreport &rep);
3846 void mnlpack(const real_2d_array &a, const ae_int_t nvars, const ae_int_t nclasses, logitmodel &lm);
4156 void mcpdcreateentryexit(const ae_int_t n, const ae_int_t entrystate, const ae_int_t exitstate, mcpdstate &s);
4408 void mcpdaddbc(const mcpdstate &s, const ae_int_t i, const ae_int_t j, const double bndl, const double bndu);
4452 void mcpdsetlc(const mcpdstate &s, const real_2d_array &c, const integer_1d_array &ct, const ae_int_t k);
4622 void mlpecreate0(const ae_int_t nin, const ae_int_t nout, const ae_int_t ensemblesize, mlpensemble &ensemble);
4631 void mlpecreate1(const ae_int_t nin, const ae_int_t nhid, const ae_int_t nout, const ae_int_t ensemblesize, mlpensemble &ensemble);
4640 void mlpecreate2(const ae_int_t nin, const ae_int_t nhid1, const ae_int_t nhid2, const ae_int_t nout, const ae_int_t ensemblesize, mlpensemble &ensemble);
4649 void mlpecreateb0(const ae_int_t nin, const ae_int_t nout, const double b, const double d, const ae_int_t ensemblesize, mlpensemble &ensemble);
4658 void mlpecreateb1(const ae_int_t nin, const ae_int_t nhid, const ae_int_t nout, const double b, const double d, const ae_int_t ensemblesize, mlpensemble &ensemble);
4667 void mlpecreateb2(const ae_int_t nin, const ae_int_t nhid1, const ae_int_t nhid2, const ae_int_t nout, const double b, const double d, const ae_int_t ensemblesize, mlpensemble &ensemble);
4676 void mlpecreater0(const ae_int_t nin, const ae_int_t nout, const double a, const double b, const ae_int_t ensemblesize, mlpensemble &ensemble);
4685 void mlpecreater1(const ae_int_t nin, const ae_int_t nhid, const ae_int_t nout, const double a, const double b, const ae_int_t ensemblesize, mlpensemble &ensemble);
4694 void mlpecreater2(const ae_int_t nin, const ae_int_t nhid1, const ae_int_t nhid2, const ae_int_t nout, const double a, const double b, const ae_int_t ensemblesize, mlpensemble &ensemble);
4703 void mlpecreatec0(const ae_int_t nin, const ae_int_t nout, const ae_int_t ensemblesize, mlpensemble &ensemble);
4712 void mlpecreatec1(const ae_int_t nin, const ae_int_t nhid, const ae_int_t nout, const ae_int_t ensemblesize, mlpensemble &ensemble);
4721 void mlpecreatec2(const ae_int_t nin, const ae_int_t nhid1, const ae_int_t nhid2, const ae_int_t nout, const ae_int_t ensemblesize, mlpensemble &ensemble);
4730 void mlpecreatefromnetwork(const multilayerperceptron &network, const ae_int_t ensemblesize, mlpensemble &ensemble);
4812 double mlperelclserror(const mlpensemble &ensemble, const real_2d_array &xy, const ae_int_t npoints);
4830 double mlpeavgce(const mlpensemble &ensemble, const real_2d_array &xy, const ae_int_t npoints);
4849 double mlpermserror(const mlpensemble &ensemble, const real_2d_array &xy, const ae_int_t npoints);
4867 double mlpeavgerror(const mlpensemble &ensemble, const real_2d_array &xy, const ae_int_t npoints);
4885 double mlpeavgrelerror(const mlpensemble &ensemble, const real_2d_array &xy, const ae_int_t npoints);
4918 void mlptrainlm(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints, const double decay, const ae_int_t restarts, ae_int_t &info, mlpreport &rep);
4958 void mlptrainlbfgs(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints, const double decay, const ae_int_t restarts, const double wstep, const ae_int_t maxits, ae_int_t &info, mlpreport &rep);
5011 void mlptraines(const multilayerperceptron &network, const real_2d_array &trnxy, const ae_int_t trnsize, const real_2d_array &valxy, const ae_int_t valsize, const double decay, const ae_int_t restarts, ae_int_t &info, mlpreport &rep);
5043 void mlpkfoldcvlbfgs(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints, const double decay, const ae_int_t restarts, const double wstep, const ae_int_t maxits, const ae_int_t foldscount, ae_int_t &info, mlpreport &rep, mlpcvreport &cvrep);
5073 void mlpkfoldcvlm(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints, const double decay, const ae_int_t restarts, const ae_int_t foldscount, ae_int_t &info, mlpreport &rep, mlpcvreport &cvrep);
5156 void mlpkfoldcv(const mlptrainer &s, const multilayerperceptron &network, const ae_int_t nrestarts, const ae_int_t foldscount, mlpreport &rep);
5157 void smp_mlpkfoldcv(const mlptrainer &s, const multilayerperceptron &network, const ae_int_t nrestarts, const ae_int_t foldscount, mlpreport &rep);
5401 void mlptrainnetwork(const mlptrainer &s, const multilayerperceptron &network, const ae_int_t nrestarts, mlpreport &rep);
5402 void smp_mlptrainnetwork(const mlptrainer &s, const multilayerperceptron &network, const ae_int_t nrestarts, mlpreport &rep);
5457 void mlpstarttraining(const mlptrainer &s, const multilayerperceptron &network, const bool randomstart);
5580 void mlpebagginglm(const mlpensemble &ensemble, const real_2d_array &xy, const ae_int_t npoints, const double decay, const ae_int_t restarts, ae_int_t &info, mlpreport &rep, mlpcvreport &ooberrors);
5611 void mlpebagginglbfgs(const mlpensemble &ensemble, const real_2d_array &xy, const ae_int_t npoints, const double decay, const ae_int_t restarts, const double wstep, const ae_int_t maxits, ae_int_t &info, mlpreport &rep, mlpcvreport &ooberrors);
5638 void mlpetraines(const mlpensemble &ensemble, const real_2d_array &xy, const ae_int_t npoints, const double decay, const ae_int_t restarts, ae_int_t &info, mlpreport &rep);
5706 void mlptrainensemblees(const mlptrainer &s, const mlpensemble &ensemble, const ae_int_t nrestarts, mlpreport &rep);
5707 void smp_mlptrainensemblees(const mlptrainer &s, const mlpensemble &ensemble, const ae_int_t nrestarts, mlpreport &rep);
5772 void clusterizersetpoints(const clusterizerstate &s, const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nfeatures, const ae_int_t disttype);
5773 void clusterizersetpoints(const clusterizerstate &s, const real_2d_array &xy, const ae_int_t disttype);
5805 void clusterizersetdistances(const clusterizerstate &s, const real_2d_array &d, const ae_int_t npoints, const bool isupper);
5806 void clusterizersetdistances(const clusterizerstate &s, const real_2d_array &d, const bool isupper);
5851 void clusterizersetkmeanslimits(const clusterizerstate &s, const ae_int_t restarts, const ae_int_t maxits);
6042 void clusterizergetdistances(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nfeatures, const ae_int_t disttype, real_2d_array &d);
6043 void smp_clusterizergetdistances(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nfeatures, const ae_int_t disttype, real_2d_array &d);
6089 void clusterizergetkclusters(const ahcreport &rep, const ae_int_t k, integer_1d_array &cidx, integer_1d_array &cz);
6141 void clusterizerseparatedbydist(const ahcreport &rep, const double r, ae_int_t &k, integer_1d_array &cidx, integer_1d_array &cz);
6193 void clusterizerseparatedbycorr(const ahcreport &rep, const double r, ae_int_t &k, integer_1d_array &cidx, integer_1d_array &cz);
6279 void dfbuildrandomdecisionforest(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nvars, const ae_int_t nclasses, const ae_int_t ntrees, const double r, ae_int_t &info, decisionforest &df, dfreport &rep);
6318 void dfbuildrandomdecisionforestx1(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nvars, const ae_int_t nclasses, const ae_int_t ntrees, const ae_int_t nrndvars, const double r, ae_int_t &info, decisionforest &df, dfreport &rep);
6369 double dfrelclserror(const decisionforest &df, const real_2d_array &xy, const ae_int_t npoints);
6445 double dfavgrelerror(const decisionforest &df, const real_2d_array &xy, const ae_int_t npoints);
6455 void kmeansgenerate(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nvars, const ae_int_t k, const ae_int_t restarts, ae_int_t &info, real_2d_array &c, integer_1d_array &xyc);
Definition: dataanalysis.h:111
void _smlptrnsession_destroy(void *_p)
double _pexec_mlperrorsubset(multilayerperceptron *network, ae_matrix *xy, ae_int_t setsize, ae_vector *subset, ae_int_t subsetsize, ae_state *_state)
_dfreport_owner()
void dfcopy(decisionforest *df1, decisionforest *df2, ae_state *_state)
ae_int_t mlpgetoutputscount(const multilayerperceptron &network)
virtual ~_linearmodel_owner()
double mlperrorsparse(multilayerperceptron *network, sparsematrix *xy, ae_int_t npoints, ae_state *_state)
void _cvreport_destroy(void *_p)
void _logitmodel_init(void *_p, ae_state *_state)
double mlpavgcesparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints)
void mlptrainlbfgs(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints, const double decay, const ae_int_t restarts, const double wstep, const ae_int_t maxits, ae_int_t &info, mlpreport &rep)
void dfprocessi(decisionforest *df, ae_vector *x, ae_vector *y, ae_state *_state)
void dsnormalize(ae_matrix *xy, ae_int_t npoints, ae_int_t nvars, ae_int_t *info, ae_vector *means, ae_vector *sigmas, ae_state *_state)
void mlpeunserialize(const std::string &s_in, mlpensemble &obj)
mcpdreport(const mcpdreport &rhs)
void filtersma(ae_vector *x, ae_int_t n, ae_int_t k, ae_state *_state)
virtual ~_decisionforest_owner()
void fisherldan(ae_matrix *xy, ae_int_t npoints, ae_int_t nvars, ae_int_t nclasses, ae_int_t *info, ae_matrix *w, ae_state *_state)
void _decisionforest_init(void *_p, ae_state *_state)
void _mlpensemble_init_copy(void *_dst, void *_src, ae_state *_state)
void _lrreport_destroy(void *_p)
void dfserialize(ae_serializer *s, decisionforest *forest, ae_state *_state)
void mcpdaddtrack(const mcpdstate &s, const real_2d_array &xy, const ae_int_t k)
void smp_mlpgradbatch(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t ssize, double &e, real_1d_array &grad)
alglib_impl::ahcreport * c_ptr()
multilayerperceptron()
void clusterizergetdistancesbuf(apbuffers *buf, ae_matrix *xy, ae_int_t npoints, ae_int_t nfeatures, ae_int_t disttype, ae_matrix *d, ae_state *_state)
_modelerrors_owner & operator=(const _modelerrors_owner &rhs)
void mlpsetneuroninfo(const multilayerperceptron &network, const ae_int_t k, const ae_int_t i, const ae_int_t fkind, const double threshold)
void mlpsetoutputscaling(multilayerperceptron *network, ae_int_t i, double mean, double sigma, ae_state *_state)
void pcabuildbasis(ae_matrix *x, ae_int_t npoints, ae_int_t nvars, ae_int_t *info, ae_vector *s2, ae_matrix *v, ae_state *_state)
void smp_pcatruncatedsubspace(const real_2d_array &x, const ae_int_t npoints, const ae_int_t nvars, const ae_int_t nneeded, const double eps, const ae_int_t maxits, real_1d_array &s2, real_2d_array &v)
void _mlpparallelizationcv_clear(void *_p)
void dfbuildinternal(ae_matrix *xy, ae_int_t npoints, ae_int_t nvars, ae_int_t nclasses, ae_int_t ntrees, ae_int_t samplesize, ae_int_t nfeatures, ae_int_t flags, ae_int_t *info, decisionforest *df, dfreport *rep, ae_state *_state)
void _dfinternalbuffers_clear(void *_p)
void _kmeansbuffers_init_copy(void *_dst, void *_src, ae_state *_state)
Definition: optimization.h:550
void mlpprocessi(const multilayerperceptron &network, const real_1d_array &x, real_1d_array &y)
void mlpecreatec2(const ae_int_t nin, const ae_int_t nhid1, const ae_int_t nhid2, const ae_int_t nout, const ae_int_t ensemblesize, mlpensemble &ensemble)
void kmeansgenerateinternal(ae_matrix *xy, ae_int_t npoints, ae_int_t nvars, ae_int_t k, ae_int_t initalgo, ae_int_t maxits, ae_int_t restarts, ae_bool kmeansdbgnoits, ae_int_t *info, ae_int_t *iterationscount, ae_matrix *ccol, ae_bool needccol, ae_matrix *crow, ae_bool needcrow, ae_vector *xyc, double *energy, kmeansbuffers *buf, ae_state *_state)
multilayerperceptron(const multilayerperceptron &rhs)
void mlpcreate2(ae_int_t nin, ae_int_t nhid1, ae_int_t nhid2, ae_int_t nout, multilayerperceptron *network, ae_state *_state)
double _pexec_mlpavgerrorsparse(multilayerperceptron *network, sparsematrix *xy, ae_int_t npoints, ae_state *_state)
void _kmeansbuffers_clear(void *_p)
Definition: alglibinternal.h:51
void mlpecreate1(ae_int_t nin, ae_int_t nhid, ae_int_t nout, ae_int_t ensemblesize, mlpensemble *ensemble, ae_state *_state)
void filterema(ae_vector *x, ae_int_t n, double alpha, ae_state *_state)
void mlpecreatec1(ae_int_t nin, ae_int_t nhid, ae_int_t nout, ae_int_t ensemblesize, mlpensemble *ensemble, ae_state *_state)
void mlpinternalprocessvector(ae_vector *structinfo, ae_vector *weights, ae_vector *columnmeans, ae_vector *columnsigmas, ae_vector *neurons, ae_vector *dfdnet, ae_vector *x, ae_vector *y, ae_state *_state)
void mlpecreateb0(ae_int_t nin, ae_int_t nout, double b, double d, ae_int_t ensemblesize, mlpensemble *ensemble, ae_state *_state)
_ahcreport_owner & operator=(const _ahcreport_owner &rhs)
Definition: dataanalysis.h:160
double lrrmserror(linearmodel *lm, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
double dfavgce(const decisionforest &df, const real_2d_array &xy, const ae_int_t npoints)
void mlpallerrorssubset(multilayerperceptron *network, ae_matrix *xy, ae_int_t setsize, ae_vector *subset, ae_int_t subsetsize, modelerrors *rep, ae_state *_state)
void _pexec_mlpgradbatch(multilayerperceptron *network, ae_matrix *xy, ae_int_t ssize, double *e, ae_vector *grad, ae_state *_state)
void mlptrainensemblees(mlptrainer *s, mlpensemble *ensemble, ae_int_t nrestarts, mlpreport *rep, ae_state *_state)
double lravgerror(linearmodel *lm, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
void mlpsetdecay(mlptrainer *s, double decay, ae_state *_state)
void mlpcreateb1(const ae_int_t nin, const ae_int_t nhid, const ae_int_t nout, const double b, const double d, multilayerperceptron &network)
double dsgetmeanmindistance(ae_matrix *xy, ae_int_t npoints, ae_int_t nvars, ae_state *_state)
_logitmodel_owner & operator=(const _logitmodel_owner &rhs)
void pcabuildbasis(const real_2d_array &x, const ae_int_t npoints, const ae_int_t nvars, ae_int_t &info, real_1d_array &s2, real_2d_array &v)
ae_int_t _pexec_mlpclserror(multilayerperceptron *network, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
_logitmodel_owner()
double mlpavgerror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints)
void mcpdcreateentry(const ae_int_t n, const ae_int_t entrystate, mcpdstate &s)
alglib_impl::mcpdreport * c_ptr()
void mlpgradn(multilayerperceptron *network, ae_vector *x, ae_vector *desiredy, double *e, ae_vector *grad, ae_state *_state)
void mlpcreatec2(ae_int_t nin, ae_int_t nhid1, ae_int_t nhid2, ae_int_t nout, multilayerperceptron *network, ae_state *_state)
_mlptrainer_owner & operator=(const _mlptrainer_owner &rhs)
void lrbuildzs(ae_matrix *xy, ae_vector *s, ae_int_t npoints, ae_int_t nvars, ae_int_t *info, linearmodel *lm, lrreport *ar, ae_state *_state)
_mcpdreport_owner()
void _pexec_fisherldan(ae_matrix *xy, ae_int_t npoints, ae_int_t nvars, ae_int_t nclasses, ae_int_t *info, ae_matrix *w, ae_state *_state)
void _mlpreport_init_copy(void *_dst, void *_src, ae_state *_state)
Definition: dataanalysis.h:420
void _mlpetrnsession_clear(void *_p)
double _pexec_mlprmserror(multilayerperceptron *network, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
void mlpcreate1(const ae_int_t nin, const ae_int_t nhid, const ae_int_t nout, multilayerperceptron &network)
void mlpgradbatchsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t ssize, double &e, real_1d_array &grad)
void mcpdsetpredictionweights(mcpdstate *s, ae_vector *pw, ae_state *_state)
void mlpallerrorssubset(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t setsize, const integer_1d_array &subset, const ae_int_t subsetsize, modelerrors &rep)
void mlpprocess(multilayerperceptron *network, ae_vector *x, ae_vector *y, ae_state *_state)
void _mlptrainer_destroy(void *_p)
void mlpecreateb2(ae_int_t nin, ae_int_t nhid1, ae_int_t nhid2, ae_int_t nout, double b, double d, ae_int_t ensemblesize, mlpensemble *ensemble, ae_state *_state)
alglib_impl::lrreport * c_ptr()
void _logitmodel_init_copy(void *_dst, void *_src, ae_state *_state)
void _clusterizerstate_destroy(void *_p)
void mlpecopy(mlpensemble *ensemble1, mlpensemble *ensemble2, ae_state *_state)
double mlperrorsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints)
void mlpgradbatchx(multilayerperceptron *network, ae_matrix *densexy, sparsematrix *sparsexy, ae_int_t datasetsize, ae_int_t datasettype, ae_vector *idx, ae_int_t subset0, ae_int_t subset1, ae_int_t subsettype, ae_shared_pool *buf, ae_shared_pool *gradbuf, ae_state *_state)
void mlpeproperties(mlpensemble *ensemble, ae_int_t *nin, ae_int_t *nout, ae_state *_state)
mlpcvreport()
void _mlptrainer_init(void *_p, ae_state *_state)
clusterizerstate(const clusterizerstate &rhs)
virtual ~_ahcreport_owner()
alglib_impl::decisionforest * p_struct
Definition: dataanalysis.h:1010
void _dfreport_init(void *_p, ae_state *_state)
void clusterizercreate(clusterizerstate *s, ae_state *_state)
linearmodel(const linearmodel &rhs)
double mlperelclserror(mlpensemble *ensemble, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
void mlpproperties(multilayerperceptron *network, ae_int_t *nin, ae_int_t *nout, ae_int_t *wcount, ae_state *_state)
decisionforest(const decisionforest &rhs)
mcpdstate()
void mlpebagginglm(mlpensemble *ensemble, ae_matrix *xy, ae_int_t npoints, double decay, ae_int_t restarts, ae_int_t *info, mlpreport *rep, mlpcvreport *ooberrors, ae_state *_state)
alglib_impl::decisionforest * c_ptr()
Definition: dataanalysis.h:123
virtual ~_mlpreport_owner()
void _linearmodel_clear(void *_p)
Definition: dataanalysis.h:352
void dserraccumulate(ae_vector *buf, ae_vector *y, ae_vector *desiredy, ae_state *_state)
void mlpecreater1(const ae_int_t nin, const ae_int_t nhid, const ae_int_t nout, const double a, const double b, const ae_int_t ensemblesize, mlpensemble &ensemble)
double _pexec_mlperrorsparsesubset(multilayerperceptron *network, sparsematrix *xy, ae_int_t setsize, ae_vector *subset, ae_int_t subsetsize, ae_state *_state)
void mlperandomize(mlpensemble *ensemble, ae_state *_state)
void lrline(ae_matrix *xy, ae_int_t n, ae_int_t *info, double *a, double *b, ae_state *_state)
mlptrainer & operator=(const mlptrainer &rhs)
void mlpcreateb2(const ae_int_t nin, const ae_int_t nhid1, const ae_int_t nhid2, const ae_int_t nout, const double b, const double d, multilayerperceptron &network)
modelerrors(const modelerrors &rhs)
void mlpebagginglbfgs(mlpensemble *ensemble, ae_matrix *xy, ae_int_t npoints, double decay, ae_int_t restarts, double wstep, ae_int_t maxits, ae_int_t *info, mlpreport *rep, mlpcvreport *ooberrors, ae_state *_state)
void dfprocessi(const decisionforest &df, const real_1d_array &x, real_1d_array &y)
void _mlpparallelizationcv_init(void *_p, ae_state *_state)
alglib_impl::mlpcvreport * p_struct
Definition: dataanalysis.h:721
void mcpdsetprior(const mcpdstate &s, const real_2d_array &pp)
void _pexec_clusterizerrunahc(clusterizerstate *s, ahcreport *rep, ae_state *_state)
void mlpcopyshared(multilayerperceptron *network1, multilayerperceptron *network2, ae_state *_state)
void mlpunserialize(const std::string &s_in, multilayerperceptron &obj)
_mlpensemble_owner()
_clusterizerstate_owner()
void dfunserialize(const std::string &s_in, decisionforest &obj)
void kmeansinitbuf(kmeansbuffers *buf, ae_state *_state)
ae_int_t mlpclserror(multilayerperceptron *network, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
void mlpcreatetrainer(const ae_int_t nin, const ae_int_t nout, mlptrainer &s)
mlptrainer(const mlptrainer &rhs)
void _linearmodel_init(void *_p, ae_state *_state)
void smp_mlpallerrorssubset(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t setsize, const integer_1d_array &subset, const ae_int_t subsetsize, modelerrors &rep)
void _linearmodel_init_copy(void *_dst, void *_src, ae_state *_state)
void _mnlreport_clear(void *_p)
_kmeansreport_owner & operator=(const _kmeansreport_owner &rhs)
void mlpecreate0(ae_int_t nin, ae_int_t nout, ae_int_t ensemblesize, mlpensemble *ensemble, ae_state *_state)
void _kmeansreport_clear(void *_p)
virtual ~_clusterizerstate_owner()
_modelerrors_owner()
virtual ~_lrreport_owner()
void mlpeunserialize(ae_serializer *s, mlpensemble *ensemble, ae_state *_state)
double smp_mlprmserrorsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints)
void _mlpensemble_init(void *_p, ae_state *_state)
void filterlrma(real_1d_array &x, const ae_int_t n, const ae_int_t k)
void _ahcreport_clear(void *_p)
double mlpavgce(multilayerperceptron *network, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
ae_int_t mnlclserror(logitmodel *lm, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
void mlpcreatetrainercls(const ae_int_t nin, const ae_int_t nclasses, mlptrainer &s)
void smp_clusterizerrunkmeans(const clusterizerstate &s, const ae_int_t k, kmeansreport &rep)
void lrbuildz(ae_matrix *xy, ae_int_t npoints, ae_int_t nvars, ae_int_t *info, linearmodel *lm, lrreport *ar, ae_state *_state)
void _logitmodel_clear(void *_p)
mlpensemble & operator=(const mlpensemble &rhs)
void mlpecreate1(const ae_int_t nin, const ae_int_t nhid, const ae_int_t nout, const ae_int_t ensemblesize, mlpensemble &ensemble)
void mlptrainlm(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints, const double decay, const ae_int_t restarts, ae_int_t &info, mlpreport &rep)
mnlreport(const mnlreport &rhs)
void _cvreport_init(void *_p, ae_state *_state)
void mlpsetoutputscaling(const multilayerperceptron &network, const ae_int_t i, const double mean, const double sigma)
bool smp_mlpcontinuetraining(const mlptrainer &s, const multilayerperceptron &network)
void _pexec_mlpallerrorssubset(multilayerperceptron *network, ae_matrix *xy, ae_int_t setsize, ae_vector *subset, ae_int_t subsetsize, modelerrors *rep, ae_state *_state)
dfreport()
void mlpactivationfunction(double net, ae_int_t k, double *f, double *df, double *d2f, ae_state *_state)
void mlpcreateb0(const ae_int_t nin, const ae_int_t nout, const double b, const double d, multilayerperceptron &network)
void smp_clusterizerrunahc(const clusterizerstate &s, ahcreport &rep)
void mlpecreater0(const ae_int_t nin, const ae_int_t nout, const double a, const double b, const ae_int_t ensemblesize, mlpensemble &ensemble)
void _multilayerperceptron_clear(void *_p)
void mcpdcreateentryexit(ae_int_t n, ae_int_t entrystate, ae_int_t exitstate, mcpdstate *s, ae_state *_state)
double lravgerror(const linearmodel &lm, const real_2d_array &xy, const ae_int_t npoints)
void mlpecreateb0(const ae_int_t nin, const ae_int_t nout, const double b, const double d, const ae_int_t ensemblesize, mlpensemble &ensemble)
_lrreport_owner & operator=(const _lrreport_owner &rhs)
void fisherldan(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nvars, const ae_int_t nclasses, ae_int_t &info, real_2d_array &w)
void mlpcreater0(const ae_int_t nin, const ae_int_t nout, const double a, const double b, multilayerperceptron &network)
void mlpcopytunableparameters(multilayerperceptron *network1, multilayerperceptron *network2, ae_state *_state)
void _mcpdreport_clear(void *_p)
_mcpdstate_owner()
void clusterizerseparatedbycorr(ahcreport *rep, double r, ae_int_t *k, ae_vector *cidx, ae_vector *cz, ae_state *_state)
void _mlpreport_clear(void *_p)
Definition: dataanalysis.h:756
virtual ~_mcpdreport_owner()
double dfrelclserror(const decisionforest &df, const real_2d_array &xy, const ae_int_t npoints)
void mnlprocess(logitmodel *lm, ae_vector *x, ae_vector *y, ae_state *_state)
void mlpeallerrorssparse(mlpensemble *ensemble, sparsematrix *xy, ae_int_t npoints, double *relcls, double *avgce, double *rms, double *avg, double *avgrel, ae_state *_state)
Definition: dataanalysis.h:900
Definition: dataanalysis.h:320
double mlprelclserror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints)
void dssplitk(ae_vector *a, ae_vector *c, ae_int_t n, ae_int_t nc, ae_int_t kmax, ae_int_t *info, ae_vector *thresholds, ae_int_t *ni, double *cve, ae_state *_state)
void mlpecreatefromnetwork(multilayerperceptron *network, ae_int_t ensemblesize, mlpensemble *ensemble, ae_state *_state)
void _decisionforest_init_copy(void *_dst, void *_src, ae_state *_state)
ae_int_t mlpgradsplitsize(ae_state *_state)
_decisionforest_owner & operator=(const _decisionforest_owner &rhs)
alglib_impl::clusterizerstate * c_ptr()
void mcpdaddec(mcpdstate *s, ae_int_t i, ae_int_t j, double c, ae_state *_state)
void dsoptimalsplit2(ae_vector *a, ae_vector *c, ae_int_t n, ae_int_t *info, double *threshold, double *pal, double *pbl, double *par, double *pbr, double *cve, ae_state *_state)
void mlpgradnbatch(multilayerperceptron *network, ae_matrix *xy, ae_int_t ssize, double *e, ae_vector *grad, ae_state *_state)
Definition: dataanalysis.h:551
double dfavgerror(const decisionforest &df, const real_2d_array &xy, const ae_int_t npoints)
Definition: dataanalysis.h:621
void clusterizerrunkmeans(const clusterizerstate &s, const ae_int_t k, kmeansreport &rep)
void _mlpetrnsession_destroy(void *_p)
double smp_mlpavgce(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints)
void _mcpdreport_init(void *_p, ae_state *_state)
void _pexec_mlptrainensemblees(mlptrainer *s, mlpensemble *ensemble, ae_int_t nrestarts, mlpreport *rep, ae_state *_state)
void _mcpdstate_init(void *_p, ae_state *_state)
double lravgrelerror(const linearmodel &lm, const real_2d_array &xy, const ae_int_t npoints)
alglib_impl::kmeansreport * c_ptr()
void mlpactivationfunction(const double net, const ae_int_t k, double &f, double &df, double &d2f)
void mlpetraines(const mlpensemble &ensemble, const real_2d_array &xy, const ae_int_t npoints, const double decay, const ae_int_t restarts, ae_int_t &info, mlpreport &rep)
void _pexec_mlpkfoldcv(mlptrainer *s, multilayerperceptron *network, ae_int_t nrestarts, ae_int_t foldscount, mlpreport *rep, ae_state *_state)
void mcpdcreateentry(ae_int_t n, ae_int_t entrystate, mcpdstate *s, ae_state *_state)
Definition: dataanalysis.h:435
void mcpdsolve(mcpdstate *s, ae_state *_state)
virtual ~_multilayerperceptron_owner()
double mlpeavgce(mlpensemble *ensemble, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
void dsnormalizec(ae_matrix *xy, ae_int_t npoints, ae_int_t nvars, ae_int_t *info, ae_vector *means, ae_vector *sigmas, ae_state *_state)
virtual ~logitmodel()
void _modelerrors_init_copy(void *_dst, void *_src, ae_state *_state)
void mlpgradn(const multilayerperceptron &network, const real_1d_array &x, const real_1d_array &desiredy, double &e, real_1d_array &grad)
ahcreport & operator=(const ahcreport &rhs)
dfreport(const dfreport &rhs)
virtual ~mlpensemble()
virtual ~mnlreport()
void clusterizersetahcalgo(clusterizerstate *s, ae_int_t algo, ae_state *_state)
void lrbuildz(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nvars, ae_int_t &info, linearmodel &lm, lrreport &ar)
double mlpermserror(mlpensemble *ensemble, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
void mlpcreater2(const ae_int_t nin, const ae_int_t nhid1, const ae_int_t nhid2, const ae_int_t nout, const double a, const double b, multilayerperceptron &network)
Definition: ap.h:450
alglib_impl::multilayerperceptron * p_struct
Definition: dataanalysis.h:419
mlpensemble()
void mlpinitpreprocessorsparse(multilayerperceptron *network, sparsematrix *xy, ae_int_t ssize, ae_state *_state)
clusterizerstate & operator=(const clusterizerstate &rhs)
void _modelerrors_clear(void *_p)
void mlpcreatec0(ae_int_t nin, ae_int_t nout, multilayerperceptron *network, ae_state *_state)
double mlprelclserrorsparse(multilayerperceptron *network, sparsematrix *xy, ae_int_t npoints, ae_state *_state)
void _mlpreport_destroy(void *_p)
void mlpunserializeold(ae_vector *ra, multilayerperceptron *network, ae_state *_state)
void mlpeproperties(const mlpensemble &ensemble, ae_int_t &nin, ae_int_t &nout)
Definition: dataanalysis.h:339
void mlpcreater0(ae_int_t nin, ae_int_t nout, double a, double b, multilayerperceptron *network, ae_state *_state)
Definition: dataanalysis.h:787
double mlpeavgerror(mlpensemble *ensemble, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
double mnlrelclserror(logitmodel *lm, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
double mlpavgerror(multilayerperceptron *network, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
double mnlavgerror(logitmodel *lm, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
logitmodel & operator=(const logitmodel &rhs)
void dfalloc(ae_serializer *s, decisionforest *forest, ae_state *_state)
double mlpavgrelerror(multilayerperceptron *network, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
Definition: optimization.h:251
void pcatruncatedsubspace(ae_matrix *x, ae_int_t npoints, ae_int_t nvars, ae_int_t nneeded, double eps, ae_int_t maxits, ae_vector *s2, ae_matrix *v, ae_state *_state)
void mcpdsetprior(mcpdstate *s, ae_matrix *pp, ae_state *_state)
double mlperror(multilayerperceptron *network, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
void mlpcreatec0(const ae_int_t nin, const ae_int_t nout, multilayerperceptron &network)
void _smlpgrad_init_copy(void *_dst, void *_src, ae_state *_state)
void _clusterizerstate_init_copy(void *_dst, void *_src, ae_state *_state)
void _multilayerperceptron_init_copy(void *_dst, void *_src, ae_state *_state)
double mlpavgerrorsparse(multilayerperceptron *network, sparsematrix *xy, ae_int_t npoints, ae_state *_state)
void mcpdcreate(ae_int_t n, mcpdstate *s, ae_state *_state)
void dstiefasti(ae_vector *a, ae_vector *b, ae_int_t n, ae_vector *ties, ae_int_t *tiecount, ae_vector *bufr, ae_vector *bufi, ae_state *_state)
Definition: optimization.h:309
void _dfinternalbuffers_destroy(void *_p)
double mlprmserrorsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints)
ae_int_t smp_mlpclserror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints)
void dfbuildrandomdecisionforestx1(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nvars, const ae_int_t nclasses, const ae_int_t ntrees, const ae_int_t nrndvars, const double r, ae_int_t &info, decisionforest &df, dfreport &rep)
void mlpecreatec0(ae_int_t nin, ae_int_t nout, ae_int_t ensemblesize, mlpensemble *ensemble, ae_state *_state)
decisionforest()
ae_bool _pexec_mlpcontinuetraining(mlptrainer *s, multilayerperceptron *network, ae_state *_state)
double mlpermserror(const mlpensemble &ensemble, const real_2d_array &xy, const ae_int_t npoints)
virtual ~_mlpcvreport_owner()
void pcatruncatedsubspace(const real_2d_array &x, const ae_int_t npoints, const ae_int_t nvars, const ae_int_t nneeded, const double eps, const ae_int_t maxits, real_1d_array &s2, real_2d_array &v)
Definition: dataanalysis.h:283
void mlpstarttraining(mlptrainer *s, multilayerperceptron *network, ae_bool randomstart, ae_state *_state)
void _kmeansbuffers_init(void *_p, ae_state *_state)
void mlpgetinputscaling(multilayerperceptron *network, ae_int_t i, double *mean, double *sigma, ae_state *_state)
Definition: alglibmisc.h:83
void mlpcreater1(ae_int_t nin, ae_int_t nhid, ae_int_t nout, double a, double b, multilayerperceptron *network, ae_state *_state)
void mlpsetcond(mlptrainer *s, double wstep, ae_int_t maxits, ae_state *_state)
Definition: dataanalysis.h:1011
void mlpgradnbatch(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t ssize, double &e, real_1d_array &grad)
void mlpgetoutputscaling(multilayerperceptron *network, ae_int_t i, double *mean, double *sigma, ae_state *_state)
void mlprandomize(multilayerperceptron *network, ae_state *_state)
void mnlunpack(const logitmodel &lm, real_2d_array &a, ae_int_t &nvars, ae_int_t &nclasses)
alglib_impl::kmeansreport * p_struct
Definition: dataanalysis.h:1010
void mlphessianbatch(multilayerperceptron *network, ae_matrix *xy, ae_int_t ssize, double *e, ae_vector *grad, ae_matrix *h, ae_state *_state)
virtual ~decisionforest()
void _pexec_mlpgradbatchsparse(multilayerperceptron *network, sparsematrix *xy, ae_int_t ssize, double *e, ae_vector *grad, ae_state *_state)
void _pexec_mlptrainnetwork(mlptrainer *s, multilayerperceptron *network, ae_int_t nrestarts, mlpreport *rep, ae_state *_state)
alglib_impl::mcpdstate * c_ptr()
double lrrmserror(const linearmodel &lm, const real_2d_array &xy, const ae_int_t npoints)
kmeansreport(const kmeansreport &rhs)
void mlpsetdataset(const mlptrainer &s, const real_2d_array &xy, const ae_int_t npoints)
void mlpkfoldcvlbfgs(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints, const double decay, const ae_int_t restarts, const double wstep, const ae_int_t maxits, const ae_int_t foldscount, ae_int_t &info, mlpreport &rep, mlpcvreport &cvrep)
multilayerperceptron & operator=(const multilayerperceptron &rhs)
void mlpgradbatch(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t ssize, double &e, real_1d_array &grad)
void _mlpparallelizationcv_init_copy(void *_dst, void *_src, ae_state *_state)
double mlperrorn(multilayerperceptron *network, ae_matrix *xy, ae_int_t ssize, ae_state *_state)
void filtersma(real_1d_array &x, const ae_int_t n, const ae_int_t k)
alglib_impl::mlptrainer * c_ptr()
double mnlavgrelerror(logitmodel *lm, ae_matrix *xy, ae_int_t ssize, ae_state *_state)
void lrbuilds(const real_2d_array &xy, const real_1d_array &s, const ae_int_t npoints, const ae_int_t nvars, ae_int_t &info, linearmodel &lm, lrreport &ar)
Definition: dataanalysis.h:609
double smp_mlprelclserrorsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints)
void _smlpgrad_destroy(void *_p)
void _dfreport_init_copy(void *_dst, void *_src, ae_state *_state)
alglib_impl::mlpensemble * p_struct
Definition: dataanalysis.h:649
void _cvreport_clear(void *_p)
void dsoptimalsplit2fast(ae_vector *a, ae_vector *c, ae_vector *tiesbuf, ae_vector *cntbuf, ae_vector *bufr, ae_vector *bufi, ae_int_t n, ae_int_t nc, double alpha, ae_int_t *info, double *threshold, double *rms, double *cvrms, ae_state *_state)
Definition: dataanalysis.h:447
void mlpebagginglm(const mlpensemble &ensemble, const real_2d_array &xy, const ae_int_t npoints, const double decay, const ae_int_t restarts, ae_int_t &info, mlpreport &rep, mlpcvreport &ooberrors)
double mlpavgerrorsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints)
virtual ~_logitmodel_owner()
void mlpgrad(multilayerperceptron *network, ae_vector *x, ae_vector *desiredy, double *e, ae_vector *grad, ae_state *_state)
void dstie(ae_vector *a, ae_int_t n, ae_vector *ties, ae_int_t *tiecount, ae_vector *p1, ae_vector *p2, ae_state *_state)
virtual ~kmeansreport()
void mcpdcreateexit(ae_int_t n, ae_int_t exitstate, mcpdstate *s, ae_state *_state)
void mnlunpack(logitmodel *lm, ae_matrix *a, ae_int_t *nvars, ae_int_t *nclasses, ae_state *_state)
void mlpcreatec1(const ae_int_t nin, const ae_int_t nhid, const ae_int_t nout, multilayerperceptron &network)
_linearmodel_owner()
void fisherlda(ae_matrix *xy, ae_int_t npoints, ae_int_t nvars, ae_int_t nclasses, ae_int_t *info, ae_vector *w, ae_state *_state)
double _pexec_mlprmserrorsparse(multilayerperceptron *network, sparsematrix *xy, ae_int_t npoints, ae_state *_state)
void _mnlreport_init_copy(void *_dst, void *_src, ae_state *_state)
void clusterizercreate(clusterizerstate &s)
void mlpserializeold(multilayerperceptron *network, ae_vector *ra, ae_int_t *rlen, ae_state *_state)
void smp_mlptrainnetwork(const mlptrainer &s, const multilayerperceptron &network, const ae_int_t nrestarts, mlpreport &rep)
void _smlptrnsession_clear(void *_p)
void mlpecreate2(ae_int_t nin, ae_int_t nhid1, ae_int_t nhid2, ae_int_t nout, ae_int_t ensemblesize, mlpensemble *ensemble, ae_state *_state)
void _clusterizerstate_clear(void *_p)
void clusterizergetdistances(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nfeatures, const ae_int_t disttype, real_2d_array &d)
mlpreport & operator=(const mlpreport &rhs)
void mlpecreateb1(ae_int_t nin, ae_int_t nhid, ae_int_t nout, double b, double d, ae_int_t ensemblesize, mlpensemble *ensemble, ae_state *_state)
void mlptrainensemblees(const mlptrainer &s, const mlpensemble &ensemble, const ae_int_t nrestarts, mlpreport &rep)
void clusterizersetpoints(clusterizerstate *s, ae_matrix *xy, ae_int_t npoints, ae_int_t nfeatures, ae_int_t disttype, ae_state *_state)
void _mlpparallelizationcv_destroy(void *_p)
void smp_mlpallerrorssparsesubset(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t setsize, const integer_1d_array &subset, const ae_int_t subsetsize, modelerrors &rep)
void _mcpdstate_destroy(void *_p)
Definition: dataanalysis.h:638
Definition: dataanalysis.h:225
void mlpcreatec1(ae_int_t nin, ae_int_t nhid, ae_int_t nout, multilayerperceptron *network, ae_state *_state)
void mcpdsettikhonovregularizer(mcpdstate *s, double v, ae_state *_state)
alglib_impl::mlpensemble * c_ptr()
double mlperrorsubset(multilayerperceptron *network, ae_matrix *xy, ae_int_t setsize, ae_vector *subset, ae_int_t subsetsize, ae_state *_state)
mcpdstate(const mcpdstate &rhs)
double mlprmserror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints)
void mlpcreateb2(ae_int_t nin, ae_int_t nhid1, ae_int_t nhid2, ae_int_t nout, double b, double d, multilayerperceptron *network, ae_state *_state)
ae_bool mlpcontinuetraining(mlptrainer *s, multilayerperceptron *network, ae_state *_state)
_mlpreport_owner & operator=(const _mlpreport_owner &rhs)
void mlptrainnetwork(mlptrainer *s, multilayerperceptron *network, ae_int_t nrestarts, mlpreport *rep, ae_state *_state)
kmeansreport & operator=(const kmeansreport &rhs)
ae_int_t mlpgetlayerscount(multilayerperceptron *network, ae_state *_state)
void clusterizersetdistances(const clusterizerstate &s, const real_2d_array &d, const ae_int_t npoints, const bool isupper)
ae_int_t mlpclserror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints)
void _kmeansreport_destroy(void *_p)
void _decisionforest_destroy(void *_p)
virtual ~mlpcvreport()
logitmodel(const logitmodel &rhs)
double _pexec_mlpavgrelerrorsparse(multilayerperceptron *network, sparsematrix *xy, ae_int_t npoints, ae_state *_state)
Definition: dataanalysis.h:310
void mlpeserialize(ae_serializer *s, mlpensemble *ensemble, ae_state *_state)
virtual ~_mlptrainer_owner()
void _kmeansbuffers_destroy(void *_p)
void clusterizerseparatedbydist(const ahcreport &rep, const double r, ae_int_t &k, integer_1d_array &cidx, integer_1d_array &cz)
virtual ~multilayerperceptron()
clusterizerstate()
void mlpcopy(multilayerperceptron *network1, multilayerperceptron *network2, ae_state *_state)
void _ahcreport_init(void *_p, ae_state *_state)
Definition: ap.h:347
ae_bool mlpsamearchitecture(multilayerperceptron *network1, multilayerperceptron *network2, ae_state *_state)
void _smlptrnsession_init_copy(void *_dst, void *_src, ae_state *_state)
Definition: alglibinternal.h:31
void _mlpensemble_destroy(void *_p)
ae_int_t mlpgradsplitcost(ae_state *_state)
void dfbuildrandomdecisionforest(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nvars, const ae_int_t nclasses, const ae_int_t ntrees, const double r, ae_int_t &info, decisionforest &df, dfreport &rep)
alglib_impl::dfreport * c_ptr()
bool mlpcontinuetraining(const mlptrainer &s, const multilayerperceptron &network)
Definition: dataanalysis.h:475
void mlpcopytunableparameters(const multilayerperceptron &network1, const multilayerperceptron &network2)
void mlprandomizefull(const multilayerperceptron &network)
void clusterizergetdistances(ae_matrix *xy, ae_int_t npoints, ae_int_t nfeatures, ae_int_t disttype, ae_matrix *d, ae_state *_state)
double dfrelclserror(decisionforest *df, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
void dfprocess(const decisionforest &df, const real_1d_array &x, real_1d_array &y)
double mlprelclserror(multilayerperceptron *network, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
void mlpcreate0(ae_int_t nin, ae_int_t nout, multilayerperceptron *network, ae_state *_state)
Definition: dataanalysis.h:389
void clusterizersetdistances(clusterizerstate *s, ae_matrix *d, ae_int_t npoints, ae_bool isupper, ae_state *_state)
void _mlpcvreport_init(void *_p, ae_state *_state)
void mlpgradbatchsparsesubset(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t setsize, const integer_1d_array &idx, const ae_int_t subsetsize, double &e, real_1d_array &grad)
Definition: dataanalysis.h:197
void mlpcreatetrainercls(ae_int_t nin, ae_int_t nclasses, mlptrainer *s, ae_state *_state)
void _lrreport_clear(void *_p)
void _pexec_pcabuildbasis(ae_matrix *x, ae_int_t npoints, ae_int_t nvars, ae_int_t *info, ae_vector *s2, ae_matrix *v, ae_state *_state)
double smp_mlprelclserror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints)
void _lrreport_init_copy(void *_dst, void *_src, ae_state *_state)
void clusterizerrunahc(clusterizerstate *s, ahcreport *rep, ae_state *_state)
void _smlpgrad_clear(void *_p)
void mlpsetalgobatch(const mlptrainer &s)
void mlpsetneuroninfo(multilayerperceptron *network, ae_int_t k, ae_int_t i, ae_int_t fkind, double threshold, ae_state *_state)
void clusterizerseparatedbydist(ahcreport *rep, double r, ae_int_t *k, ae_vector *cidx, ae_vector *cz, ae_state *_state)
double mlperrorsubset(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t setsize, const integer_1d_array &subset, const ae_int_t subsetsize)
void mlpecreater0(ae_int_t nin, ae_int_t nout, double a, double b, ae_int_t ensemblesize, mlpensemble *ensemble, ae_state *_state)
void _modelerrors_init(void *_p, ae_state *_state)
void mcpdsettikhonovregularizer(const mcpdstate &s, const double v)
ae_int_t mlpgetinputscount(const multilayerperceptron &network)
void mlpkfoldcvlm(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints, const double decay, const ae_int_t restarts, const ae_int_t foldscount, ae_int_t &info, mlpreport &rep, mlpcvreport &cvrep)
void dfunserialize(ae_serializer *s, decisionforest *forest, ae_state *_state)
void mlpsetdataset(mlptrainer *s, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
double dfavgrelerror(const decisionforest &df, const real_2d_array &xy, const ae_int_t npoints)
void mlpecreateb1(const ae_int_t nin, const ae_int_t nhid, const ae_int_t nout, const double b, const double d, const ae_int_t ensemblesize, mlpensemble &ensemble)
mlptrainer()
void mlpkfoldcvlbfgs(multilayerperceptron *network, ae_matrix *xy, ae_int_t npoints, double decay, ae_int_t restarts, double wstep, ae_int_t maxits, ae_int_t foldscount, ae_int_t *info, mlpreport *rep, mlpcvreport *cvrep, ae_state *_state)
void mlpecreate2(const ae_int_t nin, const ae_int_t nhid1, const ae_int_t nhid2, const ae_int_t nout, const ae_int_t ensemblesize, mlpensemble &ensemble)
_mlptrainer_owner()
double smp_mlpavgerrorsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints)
void _mlpensemble_clear(void *_p)
void _mcpdstate_clear(void *_p)
Definition: optimization.h:461
mlpreport(const mlpreport &rhs)
void clusterizerseparatedbycorr(const ahcreport &rep, const double r, ae_int_t &k, integer_1d_array &cidx, integer_1d_array &cz)
mnlreport()
void mcpdcreate(const ae_int_t n, mcpdstate &s)
void mcpdresults(mcpdstate *s, ae_matrix *p, mcpdreport *rep, ae_state *_state)
Definition: dataanalysis.h:999
double smp_mlpavgcesparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints)
void clusterizersetpoints(const clusterizerstate &s, const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nfeatures, const ae_int_t disttype)
_multilayerperceptron_owner & operator=(const _multilayerperceptron_owner &rhs)
void mlpecreatefromnetwork(const multilayerperceptron &network, const ae_int_t ensemblesize, mlpensemble &ensemble)
double smp_mlperror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints)
void smp_mlpgradbatchsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t ssize, double &e, real_1d_array &grad)
virtual ~_dfreport_owner()
mlpensemble(const mlpensemble &rhs)
mlpcvreport(const mlpcvreport &rhs)
void _kmeansreport_init_copy(void *_dst, void *_src, ae_state *_state)
void mlpcreate1(ae_int_t nin, ae_int_t nhid, ae_int_t nout, multilayerperceptron *network, ae_state *_state)
void _mlpcvreport_init_copy(void *_dst, void *_src, ae_state *_state)
void smp_mlpkfoldcv(const mlptrainer &s, const multilayerperceptron &network, const ae_int_t nrestarts, const ae_int_t foldscount, mlpreport &rep)
void mcpdsetec(const mcpdstate &s, const real_2d_array &ec)
void lrbuildzs(const real_2d_array &xy, const real_1d_array &s, const ae_int_t npoints, const ae_int_t nvars, ae_int_t &info, linearmodel &lm, lrreport &ar)
void mlpunserialize(ae_serializer *s, multilayerperceptron *network, ae_state *_state)
void mlpgetneuroninfo(multilayerperceptron *network, ae_int_t k, ae_int_t i, ae_int_t *fkind, double *threshold, ae_state *_state)
_linearmodel_owner & operator=(const _linearmodel_owner &rhs)
void mlpallerrorssparsesubset(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t setsize, const integer_1d_array &subset, const ae_int_t subsetsize, modelerrors &rep)
double mlprmserror(multilayerperceptron *network, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
mnlreport & operator=(const mnlreport &rhs)
void dfbuildrandomdecisionforest(ae_matrix *xy, ae_int_t npoints, ae_int_t nvars, ae_int_t nclasses, ae_int_t ntrees, double r, ae_int_t *info, decisionforest *df, dfreport *rep, ae_state *_state)
void _linearmodel_destroy(void *_p)
void mlptrainlm(multilayerperceptron *network, ae_matrix *xy, ae_int_t npoints, double decay, ae_int_t restarts, ae_int_t *info, mlpreport *rep, ae_state *_state)
void mlpcreate0(const ae_int_t nin, const ae_int_t nout, multilayerperceptron &network)
void mlptraines(multilayerperceptron *network, ae_matrix *trnxy, ae_int_t trnsize, ae_matrix *valxy, ae_int_t valsize, double decay, ae_int_t restarts, ae_int_t *info, mlpreport *rep, ae_state *_state)
mlpcvreport & operator=(const mlpcvreport &rhs)
void clusterizergetkclusters(const ahcreport &rep, const ae_int_t k, integer_1d_array &cidx, integer_1d_array &cz)
void mlptrainnetwork(const mlptrainer &s, const multilayerperceptron &network, const ae_int_t nrestarts, mlpreport &rep)
void mlpcopy(const multilayerperceptron &network1, multilayerperceptron &network2)
double smp_mlprmserror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints)
Definition: linalg.h:52
void mlpgradbatchsubset(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t setsize, const integer_1d_array &idx, const ae_int_t subsetsize, double &e, real_1d_array &grad)
ae_int_t mlpgetlayerscount(const multilayerperceptron &network)
Definition: ap.h:1207
alglib_impl::logitmodel * c_ptr()
Definition: ap.h:1353
void _pexec_clusterizerrunkmeans(clusterizerstate *s, ae_int_t k, kmeansreport *rep, ae_state *_state)
Definition: dataanalysis.h:377
double mnlrmserror(const logitmodel &lm, const real_2d_array &xy, const ae_int_t npoints)
virtual ~lrreport()
void mlpgradbatchsparsesubset(multilayerperceptron *network, sparsematrix *xy, ae_int_t setsize, ae_vector *idx, ae_int_t subsetsize, double *e, ae_vector *grad, ae_state *_state)
virtual ~mlptrainer()
double mlpavgrelerrorsparse(multilayerperceptron *network, sparsematrix *xy, ae_int_t npoints, ae_state *_state)
ae_int_t mlpgetinputscount(multilayerperceptron *network, ae_state *_state)
double mlperrorsparsesubset(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t setsize, const integer_1d_array &subset, const ae_int_t subsetsize)
virtual ~_kmeansreport_owner()
void mlperandomize(const mlpensemble &ensemble)
double dfrmserror(const decisionforest &df, const real_2d_array &xy, const ae_int_t npoints)
ae_int_t mlpgetweightscount(multilayerperceptron *network, ae_state *_state)
void clusterizerrunahc(const clusterizerstate &s, ahcreport &rep)
void _ahcreport_init_copy(void *_dst, void *_src, ae_state *_state)
void mlpinitpreprocessorsubset(multilayerperceptron *network, ae_matrix *xy, ae_int_t setsize, ae_vector *idx, ae_int_t subsetsize, ae_state *_state)
double mlpeavgrelerror(const mlpensemble &ensemble, const real_2d_array &xy, const ae_int_t npoints)
void _logitmcstate_init_copy(void *_dst, void *_src, ae_state *_state)
double lravgrelerror(linearmodel *lm, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
Definition: dataanalysis.h:242
void smp_mlpgradbatchsparsesubset(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t setsize, const integer_1d_array &idx, const ae_int_t subsetsize, double &e, real_1d_array &grad)
double mlpavgce(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints)
void lrlines(ae_matrix *xy, ae_vector *s, ae_int_t n, ae_int_t *info, double *a, double *b, double *vara, double *varb, double *covab, double *corrab, double *p, ae_state *_state)
Definition: dataanalysis.h:571
Definition: dataanalysis.h:710
ae_int_t mlpgetlayersize(const multilayerperceptron &network, const ae_int_t k)
void dsoptimalsplit2fast(real_1d_array &a, integer_1d_array &c, integer_1d_array &tiesbuf, integer_1d_array &cntbuf, real_1d_array &bufr, integer_1d_array &bufi, const ae_int_t n, const ae_int_t nc, const double alpha, ae_int_t &info, double &threshold, double &rms, double &cvrms)
void mcpdsetpredictionweights(const mcpdstate &s, const real_1d_array &pw)
void mlpgradbatchsubset(multilayerperceptron *network, ae_matrix *xy, ae_int_t setsize, ae_vector *idx, ae_int_t subsetsize, double *e, ae_vector *grad, ae_state *_state)
double mlpeavgrelerror(mlpensemble *ensemble, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
void _multilayerperceptron_destroy(void *_p)
double mlperror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints)
void dfbuildrandomdecisionforestx1(ae_matrix *xy, ae_int_t npoints, ae_int_t nvars, ae_int_t nclasses, ae_int_t ntrees, ae_int_t nrndvars, double r, ae_int_t *info, decisionforest *df, dfreport *rep, ae_state *_state)
void _mlpreport_init(void *_p, ae_state *_state)
double mlpeavgerror(const mlpensemble &ensemble, const real_2d_array &xy, const ae_int_t npoints)
double mlprmserrorsparse(multilayerperceptron *network, sparsematrix *xy, ae_int_t npoints, ae_state *_state)
void _lrreport_init(void *_p, ae_state *_state)
virtual ~_mlpensemble_owner()
double _pexec_mlpavgrelerror(multilayerperceptron *network, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
void mnlprocessi(const logitmodel &lm, const real_1d_array &x, real_1d_array &y)
void _multilayerperceptron_init(void *_p, ae_state *_state)
Definition: ap.h:509
void mcpdsolve(const mcpdstate &s)
void dfserialize(decisionforest &obj, std::string &s_out)
void mlpcreateb0(ae_int_t nin, ae_int_t nout, double b, double d, multilayerperceptron *network, ae_state *_state)
Definition: dataanalysis.h:722
mcpdstate & operator=(const mcpdstate &rhs)
void _clusterizerstate_init(void *_p, ae_state *_state)
void mcpdsetlc(mcpdstate *s, ae_matrix *c, ae_vector *ct, ae_int_t k, ae_state *_state)
_decisionforest_owner()
ae_int_t & inneriterationscount
Definition: dataanalysis.h:627
lrreport & operator=(const lrreport &rhs)
void mlpsetsparsedataset(const mlptrainer &s, const sparsematrix &xy, const ae_int_t npoints)
double mnlavgerror(const logitmodel &lm, const real_2d_array &xy, const ae_int_t npoints)
void mlpinitpreprocessor(multilayerperceptron *network, ae_matrix *xy, ae_int_t ssize, ae_state *_state)
void mcpdsetbc(mcpdstate *s, ae_matrix *bndl, ae_matrix *bndu, ae_state *_state)
void mlpsetdecay(const mlptrainer &s, const double decay)
void mcpdresults(const mcpdstate &s, real_2d_array &p, mcpdreport &rep)
void clusterizersetkmeanslimits(clusterizerstate *s, ae_int_t restarts, ae_int_t maxits, ae_state *_state)
alglib_impl::linearmodel * c_ptr()
Definition: dataanalysis.h:676
_mlpensemble_owner & operator=(const _mlpensemble_owner &rhs)
void mlpsetsparsedataset(mlptrainer *s, sparsematrix *xy, ae_int_t npoints, ae_state *_state)
void clusterizersetkmeansinit(clusterizerstate *s, ae_int_t initalgo, ae_state *_state)
void _mlpcvreport_clear(void *_p)
void mlpserialize(multilayerperceptron &obj, std::string &s_out)
_ahcreport_owner()
Definition: dataanalysis.h:487
alglib_impl::clusterizerstate * p_struct
Definition: dataanalysis.h:792
_kmeansreport_owner()
void mnlprocessi(logitmodel *lm, ae_vector *x, ae_vector *y, ae_state *_state)
void _dfinternalbuffers_init_copy(void *_dst, void *_src, ae_state *_state)
void dserrfinish(ae_vector *buf, ae_state *_state)
_mnlreport_owner()
void mlpimporttunableparameters(multilayerperceptron *network, ae_vector *p, ae_state *_state)
void mlpsetweight(multilayerperceptron *network, ae_int_t k0, ae_int_t i0, ae_int_t k1, ae_int_t i1, double w, ae_state *_state)
void _pexec_mlpgradbatchsubset(multilayerperceptron *network, ae_matrix *xy, ae_int_t setsize, ae_vector *idx, ae_int_t subsetsize, double *e, ae_vector *grad, ae_state *_state)
void mlpgrad(const multilayerperceptron &network, const real_1d_array &x, const real_1d_array &desiredy, double &e, real_1d_array &grad)
linearmodel & operator=(const linearmodel &rhs)
void mlphessianbatch(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t ssize, double &e, real_1d_array &grad, real_2d_array &h)
void mcpdsetec(mcpdstate *s, ae_matrix *ec, ae_state *_state)
void mlprandomizefull(multilayerperceptron *network, ae_state *_state)
void mlpeprocess(mlpensemble *ensemble, ae_vector *x, ae_vector *y, ae_state *_state)
Definition: dataanalysis.h:912
Definition: dataanalysis.h:650
void _dfreport_clear(void *_p)
void mlpsetweight(const multilayerperceptron &network, const ae_int_t k0, const ae_int_t i0, const ae_int_t k1, const ae_int_t i1, const double w)
void _mlpetrnsession_init_copy(void *_dst, void *_src, ae_state *_state)
void mlpecreate0(const ae_int_t nin, const ae_int_t nout, const ae_int_t ensemblesize, mlpensemble &ensemble)
void smp_mlptrainensemblees(const mlptrainer &s, const mlpensemble &ensemble, const ae_int_t nrestarts, mlpreport &rep)
void clusterizersetkmeansinit(const clusterizerstate &s, const ae_int_t initalgo)
void mlpealloc(ae_serializer *s, mlpensemble *ensemble, ae_state *_state)
void mlpprocessi(multilayerperceptron *network, ae_vector *x, ae_vector *y, ae_state *_state)
void _mlpetrnsession_init(void *_p, ae_state *_state)
void mlpcreatetrainer(ae_int_t nin, ae_int_t nout, mlptrainer *s, ae_state *_state)
Definition: dataanalysis.h:966
double smp_mlperrorsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints)
void mlpgetoutputscaling(const multilayerperceptron &network, const ae_int_t i, double &mean, double &sigma)
double mlpgetweight(multilayerperceptron *network, ae_int_t k0, ae_int_t i0, ae_int_t k1, ae_int_t i1, ae_state *_state)
void filterema(real_1d_array &x, const ae_int_t n, const double alpha)
Definition: dataanalysis.h:331
virtual ~_modelerrors_owner()
void mlpgradbatch(multilayerperceptron *network, ae_matrix *xy, ae_int_t ssize, double *e, ae_vector *grad, ae_state *_state)
void _mlptrainer_init_copy(void *_dst, void *_src, ae_state *_state)
kmeansreport()
alglib_impl::modelerrors * c_ptr()
void lrbuild(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nvars, ae_int_t &info, linearmodel &lm, lrreport &ar)
double _pexec_mlpavgce(multilayerperceptron *network, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
Definition: dataanalysis.h:744
void lrcopy(linearmodel *lm1, linearmodel *lm2, ae_state *_state)
void _logitmcstate_init(void *_p, ae_state *_state)
double mnlavgce(const logitmodel &lm, const real_2d_array &xy, const ae_int_t npoints)
_mlpreport_owner()
mcpdreport & operator=(const mcpdreport &rhs)
void clusterizersetkmeanslimits(const clusterizerstate &s, const ae_int_t restarts, const ae_int_t maxits)
void mlpecreater2(const ae_int_t nin, const ae_int_t nhid1, const ae_int_t nhid2, const ae_int_t nout, const double a, const double b, const ae_int_t ensemblesize, mlpensemble &ensemble)
double lrprocess(linearmodel *lm, ae_vector *x, ae_state *_state)
void clusterizersetahcalgo(const clusterizerstate &s, const ae_int_t algo)
_mnlreport_owner & operator=(const _mnlreport_owner &rhs)
void mlpcreater2(ae_int_t nin, ae_int_t nhid1, ae_int_t nhid2, ae_int_t nout, double a, double b, multilayerperceptron *network, ae_state *_state)
void lrbuilds(ae_matrix *xy, ae_vector *s, ae_int_t npoints, ae_int_t nvars, ae_int_t *info, linearmodel *lm, lrreport *ar, ae_state *_state)
void mlpgetneuroninfo(const multilayerperceptron &network, const ae_int_t k, const ae_int_t i, ae_int_t &fkind, double &threshold)
void mlpcreateb1(ae_int_t nin, ae_int_t nhid, ae_int_t nout, double b, double d, multilayerperceptron *network, ae_state *_state)
_mlpcvreport_owner & operator=(const _mlpcvreport_owner &rhs)
double dfrmserror(decisionforest *df, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
void _logitmcstate_clear(void *_p)
void clusterizergetkclusters(ahcreport *rep, ae_int_t k, ae_vector *cidx, ae_vector *cz, ae_state *_state)
bool mlpissoftmax(const multilayerperceptron &network)
void mlphessiannbatch(multilayerperceptron *network, ae_matrix *xy, ae_int_t ssize, double *e, ae_vector *grad, ae_matrix *h, ae_state *_state)
void filterlrma(ae_vector *x, ae_int_t n, ae_int_t k, ae_state *_state)
void mcpdcreateentryexit(const ae_int_t n, const ae_int_t entrystate, const ae_int_t exitstate, mcpdstate &s)
void _modelerrors_destroy(void *_p)
double _pexec_mlprelclserrorsparse(multilayerperceptron *network, sparsematrix *xy, ae_int_t npoints, ae_state *_state)
Definition: ap.h:913
ae_int_t mnlclserror(const logitmodel &lm, const real_2d_array &xy, const ae_int_t npoints)
ahcreport()
alglib_impl::mlpcvreport * c_ptr()
Definition: dataanalysis.h:978
void mlpsetcond(const mlptrainer &s, const double wstep, const ae_int_t maxits)
double mlpavgrelerror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints)
_mcpdstate_owner & operator=(const _mcpdstate_owner &rhs)
_mcpdreport_owner & operator=(const _mcpdreport_owner &rhs)
ahcreport(const ahcreport &rhs)
double mnlavgce(logitmodel *lm, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
double dfavgrelerror(decisionforest *df, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
void _smlptrnsession_init(void *_p, ae_state *_state)
void mlpserialize(ae_serializer *s, multilayerperceptron *network, ae_state *_state)
void mlpgradbatchsparse(multilayerperceptron *network, sparsematrix *xy, ae_int_t ssize, double *e, ae_vector *grad, ae_state *_state)
void mlpebagginglbfgs(const mlpensemble &ensemble, const real_2d_array &xy, const ae_int_t npoints, const double decay, const ae_int_t restarts, const double wstep, const ae_int_t maxits, ae_int_t &info, mlpreport &rep, mlpcvreport &ooberrors)
void mcpdaddbc(const mcpdstate &s, const ae_int_t i, const ae_int_t j, const double bndl, const double bndu)
void _logitmodel_destroy(void *_p)
void mlpinitpreprocessorsparsesubset(multilayerperceptron *network, sparsematrix *xy, ae_int_t setsize, ae_vector *idx, ae_int_t subsetsize, ae_state *_state)
void mlpecreatec0(const ae_int_t nin, const ae_int_t nout, const ae_int_t ensemblesize, mlpensemble &ensemble)
void _cvreport_init_copy(void *_dst, void *_src, ae_state *_state)
void dserrallocate(ae_int_t nclasses, ae_vector *buf, ae_state *_state)
_multilayerperceptron_owner()
void mlpsetinputscaling(const multilayerperceptron &network, const ae_int_t i, const double mean, const double sigma)
void mlpetraines(mlpensemble *ensemble, ae_matrix *xy, ae_int_t npoints, double decay, ae_int_t restarts, ae_int_t *info, mlpreport *rep, ae_state *_state)
void _mnlreport_init(void *_p, ae_state *_state)
void _ahcreport_destroy(void *_p)
_mlpcvreport_owner()
void mcpdcreateexit(const ae_int_t n, const ae_int_t exitstate, mcpdstate &s)
double smp_mlperrorsparsesubset(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t setsize, const integer_1d_array &subset, const ae_int_t subsetsize)
double smp_mlperrorsubset(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t setsize, const integer_1d_array &subset, const ae_int_t subsetsize)
double lrprocess(const linearmodel &lm, const real_1d_array &x)
double mnlrelclserror(const logitmodel &lm, const real_2d_array &xy, const ae_int_t npoints)
void mlpkfoldcvlm(multilayerperceptron *network, ae_matrix *xy, ae_int_t npoints, double decay, ae_int_t restarts, ae_int_t foldscount, ae_int_t *info, mlpreport *rep, mlpcvreport *cvrep, ae_state *_state)
double _pexec_mlpavgcesparse(multilayerperceptron *network, sparsematrix *xy, ae_int_t npoints, ae_state *_state)
void _dfreport_destroy(void *_p)
Definition: ap.h:469
void mlpcreater1(const ae_int_t nin, const ae_int_t nhid, const ae_int_t nout, const double a, const double b, multilayerperceptron &network)
void mcpdaddec(const mcpdstate &s, const ae_int_t i, const ae_int_t j, const double c)
void dsoptimalsplitk(ae_vector *a, ae_vector *c, ae_int_t n, ae_int_t nc, ae_int_t kmax, ae_int_t *info, ae_vector *thresholds, ae_int_t *ni, double *cve, ae_state *_state)
_clusterizerstate_owner & operator=(const _clusterizerstate_owner &rhs)
void smp_clusterizergetdistances(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nfeatures, const ae_int_t disttype, real_2d_array &d)
Definition: dataanalysis.h:294
void _kmeansreport_init(void *_p, ae_state *_state)
virtual ~mlpreport()
void mnltrainh(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nvars, const ae_int_t nclasses, ae_int_t &info, logitmodel &lm, mnlreport &rep)
void mlpeserialize(mlpensemble &obj, std::string &s_out)
void mlpalloc(ae_serializer *s, multilayerperceptron *network, ae_state *_state)
void smp_mlpgradbatchsubset(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t setsize, const integer_1d_array &idx, const ae_int_t subsetsize, double &e, real_1d_array &grad)
Definition: dataanalysis.h:511
double smp_mlpavgerror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints)
void _pexec_pcatruncatedsubspace(ae_matrix *x, ae_int_t npoints, ae_int_t nvars, ae_int_t nneeded, double eps, ae_int_t maxits, ae_vector *s2, ae_matrix *v, ae_state *_state)
void mnlpack(const real_2d_array &a, const ae_int_t nvars, const ae_int_t nclasses, logitmodel &lm)
void mlpstarttraining(const mlptrainer &s, const multilayerperceptron &network, const bool randomstart)
Definition: dataanalysis.h:539
void _mlpcvreport_destroy(void *_p)
Definition: dataanalysis.h:250
void mlpallerrorssparsesubset(multilayerperceptron *network, sparsematrix *xy, ae_int_t setsize, ae_vector *subset, ae_int_t subsetsize, modelerrors *rep, ae_state *_state)
ae_int_t mlpgetlayersize(multilayerperceptron *network, ae_int_t k, ae_state *_state)
dfreport & operator=(const dfreport &rhs)
void mlpsetinputscaling(multilayerperceptron *network, ae_int_t i, double mean, double sigma, ae_state *_state)
bool mlpeissoftmax(const mlpensemble &ensemble)
void mlpprocess(const multilayerperceptron &network, const real_1d_array &x, real_1d_array &y)
ae_int_t & outeriterationscount
Definition: dataanalysis.h:628
Definition: dataanalysis.h:217
Definition: dataanalysis.h:155
double mlprelclserrorsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints)
void lrunpack(const linearmodel &lm, real_1d_array &v, ae_int_t &nvars)
void lrpack(const real_1d_array &v, const ae_int_t nvars, linearmodel &lm)
Definition: dataanalysis.h:1037
_lrreport_owner()
void mlpkfoldcv(const mlptrainer &s, const multilayerperceptron &network, const ae_int_t nrestarts, const ae_int_t foldscount, mlpreport &rep)
double _pexec_mlperrorsparse(multilayerperceptron *network, sparsematrix *xy, ae_int_t npoints, ae_state *_state)
alglib_impl::modelerrors * p_struct
Definition: dataanalysis.h:398
virtual ~mcpdreport()
logitmodel()
modelerrors & operator=(const modelerrors &rhs)
double _pexec_mlprelclserror(multilayerperceptron *network, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
void _decisionforest_clear(void *_p)
ae_bool mlpeissoftmax(mlpensemble *ensemble, ae_state *_state)
void mlpallerrorsx(multilayerperceptron *network, ae_matrix *densexy, sparsematrix *sparsexy, ae_int_t datasetsize, ae_int_t datasettype, ae_vector *idx, ae_int_t subset0, ae_int_t subset1, ae_int_t subsettype, ae_shared_pool *buf, modelerrors *rep, ae_state *_state)
void smp_fisherldan(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nvars, const ae_int_t nclasses, ae_int_t &info, real_2d_array &w)
void mlpecreater2(ae_int_t nin, ae_int_t nhid1, ae_int_t nhid2, ae_int_t nout, double a, double b, ae_int_t ensemblesize, mlpensemble *ensemble, ae_state *_state)
void _mcpdstate_init_copy(void *_dst, void *_src, ae_state *_state)
virtual ~_mnlreport_owner()
Definition: dataanalysis.h:523
void lrbuild(ae_matrix *xy, ae_int_t npoints, ae_int_t nvars, ae_int_t *info, linearmodel *lm, lrreport *ar, ae_state *_state)
Definition: linalg.h:192
_dfreport_owner & operator=(const _dfreport_owner &rhs)
void mlpexporttunableparameters(multilayerperceptron *network, ae_vector *p, ae_int_t *pcount, ae_state *_state)
alglib_impl::linearmodel * p_struct
Definition: dataanalysis.h:446
double dfavgce(decisionforest *df, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
double mlperelclserror(const mlpensemble &ensemble, const real_2d_array &xy, const ae_int_t npoints)
void _dfinternalbuffers_init(void *_p, ae_state *_state)
linearmodel()
double dfavgerror(decisionforest *df, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
void mcpdsetlc(const mcpdstate &s, const real_2d_array &c, const integer_1d_array &ct, const ae_int_t k)
Definition: dataanalysis.h:206
void kmeansgenerate(ae_matrix *xy, ae_int_t npoints, ae_int_t nvars, ae_int_t k, ae_int_t restarts, ae_int_t *info, ae_matrix *c, ae_vector *xyc, ae_state *_state)
virtual ~mcpdstate()
double mlperrorsparsesubset(multilayerperceptron *network, sparsematrix *xy, ae_int_t setsize, ae_vector *subset, ae_int_t subsetsize, ae_state *_state)
void dsoptimalsplit2(const real_1d_array &a, const integer_1d_array &c, const ae_int_t n, ae_int_t &info, double &threshold, double &pal, double &pbl, double &par, double &pbr, double &cve)
ae_int_t mlpgetoutputscount(multilayerperceptron *network, ae_state *_state)
alglib_impl::mlpreport * c_ptr()
double mlpeavgce(const mlpensemble &ensemble, const real_2d_array &xy, const ae_int_t npoints)
void mlpeprocessi(mlpensemble *ensemble, ae_vector *x, ae_vector *y, ae_state *_state)
void mlpecreatec1(const ae_int_t nin, const ae_int_t nhid, const ae_int_t nout, const ae_int_t ensemblesize, mlpensemble &ensemble)
double mnlavgrelerror(const logitmodel &lm, const real_2d_array &xy, const ae_int_t ssize)
void _pexec_clusterizergetdistances(ae_matrix *xy, ae_int_t npoints, ae_int_t nfeatures, ae_int_t disttype, ae_matrix *d, ae_state *_state)
mcpdreport()
double mlperrorn(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t ssize)
void mlpsetalgobatch(mlptrainer *s, ae_state *_state)
double smp_mlpavgrelerror(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t npoints)
void mnlcopy(logitmodel *lm1, logitmodel *lm2, ae_state *_state)
void _smlpgrad_init(void *_p, ae_state *_state)
mlpreport()
void mnlprocess(const logitmodel &lm, const real_1d_array &x, real_1d_array &y)
void _mcpdreport_destroy(void *_p)
void mlpecreateb2(const ae_int_t nin, const ae_int_t nhid1, const ae_int_t nhid2, const ae_int_t nout, const double b, const double d, const ae_int_t ensemblesize, mlpensemble &ensemble)
void mcpdsetbc(const mcpdstate &s, const real_2d_array &bndl, const real_2d_array &bndu)
Definition: dataanalysis.h:688
double mlpavgrelerrorsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints)
void mlprandomize(const multilayerperceptron &network)
void mcpdaddbc(mcpdstate *s, ae_int_t i, ae_int_t j, double bndl, double bndu, ae_state *_state)
decisionforest & operator=(const decisionforest &rhs)
modelerrors()
void mlpcreatec2(const ae_int_t nin, const ae_int_t nhid1, const ae_int_t nhid2, const ae_int_t nout, multilayerperceptron &network)
double mlpgetweight(const multilayerperceptron &network, const ae_int_t k0, const ae_int_t i0, const ae_int_t k1, const ae_int_t i1)
void _mlptrainer_clear(void *_p)
ae_bool mlpissoftmax(multilayerperceptron *network, ae_state *_state)
void _pexec_mlpallerrorssparsesubset(multilayerperceptron *network, sparsematrix *xy, ae_int_t setsize, ae_vector *subset, ae_int_t subsetsize, modelerrors *rep, ae_state *_state)
void fisherlda(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nvars, const ae_int_t nclasses, ae_int_t &info, real_1d_array &w)
void mlpeprocessi(const mlpensemble &ensemble, const real_1d_array &x, real_1d_array &y)
double mnlrmserror(logitmodel *lm, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
double smp_mlpavgrelerrorsparse(const multilayerperceptron &network, const sparsematrix &xy, const ae_int_t npoints)
Definition: ap.h:1231
void mlphessiannbatch(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t ssize, double &e, real_1d_array &grad, real_2d_array &h)
Definition: dataanalysis.h:127
double _pexec_mlperror(multilayerperceptron *network, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
void smp_pcabuildbasis(const real_2d_array &x, const ae_int_t npoints, const ae_int_t nvars, ae_int_t &info, real_1d_array &s2, real_2d_array &v)
void mlpinitpreprocessor(const multilayerperceptron &network, const real_2d_array &xy, const ae_int_t ssize)
void mnlpack(ae_matrix *a, ae_int_t nvars, ae_int_t nclasses, logitmodel *lm, ae_state *_state)
Definition: dataanalysis.h:583
virtual ~clusterizerstate()
void lrunpack(linearmodel *lm, ae_vector *v, ae_int_t *nvars, ae_state *_state)
lrreport()
void mlpproperties(const multilayerperceptron &network, ae_int_t &nin, ae_int_t &nout, ae_int_t &wcount)
void mlpecreater1(ae_int_t nin, ae_int_t nhid, ae_int_t nout, double a, double b, ae_int_t ensemblesize, mlpensemble *ensemble, ae_state *_state)
void mlptraines(const multilayerperceptron &network, const real_2d_array &trnxy, const ae_int_t trnsize, const real_2d_array &valxy, const ae_int_t valsize, const double decay, const ae_int_t restarts, ae_int_t &info, mlpreport &rep)
void mnltrainh(ae_matrix *xy, ae_int_t npoints, ae_int_t nvars, ae_int_t nclasses, ae_int_t *info, logitmodel *lm, mnlreport *rep, ae_state *_state)
Definition: alglibinternal.h:158
ae_int_t mlpntotal(multilayerperceptron *network, ae_state *_state)
double mlpavgcesparse(multilayerperceptron *network, sparsematrix *xy, ae_int_t npoints, ae_state *_state)
void dfprocess(decisionforest *df, ae_vector *x, ae_vector *y, ae_state *_state)
Definition: dataanalysis.h:65
void mlpkfoldcv(mlptrainer *s, multilayerperceptron *network, ae_int_t nrestarts, ae_int_t foldscount, mlpreport *rep, ae_state *_state)
Definition: ap.h:1373
lrreport(const lrreport &rhs)
void mcpdaddtrack(mcpdstate *s, ae_matrix *xy, ae_int_t k, ae_state *_state)
void lrpack(ae_vector *v, ae_int_t nvars, linearmodel *lm, ae_state *_state)
void mlpcreate2(const ae_int_t nin, const ae_int_t nhid1, const ae_int_t nhid2, const ae_int_t nout, multilayerperceptron &network)
double _pexec_mlpavgerror(multilayerperceptron *network, ae_matrix *xy, ae_int_t npoints, ae_state *_state)
void mlpeprocess(const mlpensemble &ensemble, const real_1d_array &x, real_1d_array &y)
virtual ~modelerrors()
void kmeansupdatedistances(ae_matrix *xy, ae_int_t idx0, ae_int_t idx1, ae_int_t nvars, ae_matrix *ct, ae_int_t cidx0, ae_int_t cidx1, ae_vector *xyc, ae_vector *xydist2, ae_shared_pool *bufferpool, ae_state *_state)
void mlpeallerrorsx(mlpensemble *ensemble, ae_matrix *densexy, sparsematrix *sparsexy, ae_int_t datasetsize, ae_int_t datasettype, ae_vector *idx, ae_int_t subset0, ae_int_t subset1, ae_int_t subsettype, ae_shared_pool *buf, modelerrors *rep, ae_state *_state)
Definition: dataanalysis.h:73
void mlpgetinputscaling(const multilayerperceptron &network, const ae_int_t i, double &mean, double &sigma)
void _pexec_mlpgradbatchsparsesubset(multilayerperceptron *network, sparsematrix *xy, ae_int_t setsize, ae_vector *idx, ae_int_t subsetsize, double *e, ae_vector *grad, ae_state *_state)
virtual ~_mcpdstate_owner()
Definition: dataanalysis.h:1025
virtual ~linearmodel()
void mlpecreatec2(ae_int_t nin, ae_int_t nhid1, ae_int_t nhid2, ae_int_t nout, ae_int_t ensemblesize, mlpensemble *ensemble, ae_state *_state)
virtual ~dfreport()
Definition: dataanalysis.h:107
void _mnlreport_destroy(void *_p)
virtual ~ahcreport()
void mlptrainlbfgs(multilayerperceptron *network, ae_matrix *xy, ae_int_t npoints, double decay, ae_int_t restarts, double wstep, ae_int_t maxits, ae_int_t *info, mlpreport *rep, ae_state *_state)
void clusterizerrunkmeans(clusterizerstate *s, ae_int_t k, kmeansreport *rep, ae_state *_state)
alglib_impl::mnlreport * c_ptr()
void kmeansgenerate(const real_2d_array &xy, const ae_int_t npoints, const ae_int_t nvars, const ae_int_t k, const ae_int_t restarts, ae_int_t &info, real_2d_array &c, integer_1d_array &xyc)
alglib_impl::multilayerperceptron * c_ptr()
void _logitmcstate_destroy(void *_p)
Definition: dataanalysis.h:190
void _mcpdreport_init_copy(void *_dst, void *_src, ae_state *_state)
ae_int_t mlpgetweightscount(const multilayerperceptron &network)