lpl001.hh

Go to the documentation of this file.
1 
7 #ifndef lpl001_hh
8 #define lpl001_hh
9 
10 #ifdef __GNUG__
11 #pragma interface
12 #endif
13 
15 #include "bem/element.hh"
16 
17 namespace bem {
18 
19  // **************************************************************** Lpl001 **
20 
25  template <class F>
26  class Lpl001 {
27 
28  public:
35  void operator()(const concepts::Real3d& x, const Constant3d000<F>& elm,
36  uint gauss, F* dlp) const;
37  void operator()(const concepts::Real3d& x, const Constant3d001<F>& elm,
38  uint gauss, F* dlp) const;
39  void operator()(const concepts::Real3d& x, const Constant3d002<F>& elm,
40  uint gauss, F* dlp) const;
41  };
42 
43 } // namespace bem
44 
45 #endif // lpl001_hh
Constant triangular element.
Definition: element.hh:239
void operator()(const concepts::Real3d &x, const Constant3d002< F > &elm, uint gauss, F *dlp) const
Constant space element with a level dependent key.
Definition: element.hh:335
void operator()(const concepts::Real3d &x, const Constant3d001< F > &elm, uint gauss, F *dlp) const
Evaluation of the Laplace double layer potential with constant trial functions for use in the interna...
Definition: lpl001.hh:26
Used for the basic classes of the boundary element method.
Definition: bform.hh:13
Constant triangular element with normed basis function.
Definition: element.hh:427
void operator()(const concepts::Real3d &x, const Constant3d000< F > &elm, uint gauss, F *dlp) const
Application operator.
Page URL: http://wiki.math.ethz.ch/bin/view/Concepts/WebHome
21 August 2020
© 2020 Eidgenössische Technische Hochschule Zürich