lpl004.hh

Go to the documentation of this file.
1 
7 #ifndef lpl004_hh
8 #define lpl004_hh
9 
10 #ifdef __GNUG__
11 #pragma interface
12 #endif
13 
15 #include "bem/element.hh"
16 
17 namespace bem {
18 
19  // **************************************************************** Lpl004 **
20 
25  template <class F>
26  class Lpl004 {
27  public:
34  void operator()(const concepts::Real3d& x, const Constant3d000<F>& elm,
35  uint gauss, F* slp) const;
36  void operator()(const concepts::Real3d& x, const Constant3d001<F>& elm,
37  uint gauss, F* slp) const;
38  void operator()(const concepts::Real3d& x, const Constant3d002<F>& elm,
39  uint gauss, F* slp) const;
40  };
41 
42 } // namespace bem
43 
44 #endif // lpl001_hh
void operator()(const concepts::Real3d &x, const Constant3d001< F > &elm, uint gauss, F *slp) const
Constant triangular element.
Definition: element.hh:239
Constant space element with a level dependent key.
Definition: element.hh:335
Used for the basic classes of the boundary element method.
Definition: bform.hh:13
Constant triangular element with normed basis function.
Definition: element.hh:427
void operator()(const concepts::Real3d &x, const Constant3d000< F > &elm, uint gauss, F *slp) const
Application operator.
void operator()(const concepts::Real3d &x, const Constant3d002< F > &elm, uint gauss, F *slp) const
Evaluation of the Laplace single layer potential with constant trial functions for use in the interna...
Definition: lpl004.hh:26
Page URL: http://wiki.math.ethz.ch/bin/view/Concepts/WebHome
21 August 2020
© 2020 Eidgenössische Technische Hochschule Zürich