lplGal011.hh

Go to the documentation of this file.
1 
9 #ifndef lplGal011_hh
10 #define lplGal011_hh
11 
12 #ifdef __GNUG__
13 #pragma interface
14 #endif
15 
16 #include "bem/element.hh"
17 
18 namespace bem {
19 
20  // ************************************************************* LplGal011 **
21 
28  template <class F>
29  class LplGal011 {
30  public:
42  void operator()(const Constant3d000<F>& elmX, const Constant3d000<F>& elmY,
43  const uint acry[], concepts::Real d, F* dlp) const;
44  void operator()(const Constant3d001<F>& elmX, const Constant3d001<F>& elmY,
45  const uint acry[], concepts::Real d, F* dlp) const;
46  void operator()(const Constant3d001<F>& elmX,
47  const concepts::Triangle3d& cellY,
48  const uint acry[], concepts::Real d, F* dlp) const;
49  void operator()(const concepts::Triangle3d& cellX,
50  const Constant3d001<F>& elmY,
51  const uint acry[], concepts::Real d, F* dlp) const;
52  };
53 
54 } // namespace bem
55 
56 #endif // lplGal011_hh
Constant triangular element.
Definition: element.hh:239
void operator()(const Constant3d000< F > &elmX, const Constant3d000< F > &elmY, const uint acry[], concepts::Real d, F *dlp) const
Application operator.
void operator()(const Constant3d001< F > &elmX, const concepts::Triangle3d &cellY, const uint acry[], concepts::Real d, F *dlp) const
Constant space element with a level dependent key.
Definition: element.hh:335
Used for the basic classes of the boundary element method.
Definition: bform.hh:13
A 3D cell: triangle.
Definition: cell2D.hh:719
void operator()(const concepts::Triangle3d &cellX, const Constant3d001< F > &elmY, const uint acry[], concepts::Real d, F *dlp) const
void operator()(const Constant3d001< F > &elmX, const Constant3d001< F > &elmY, const uint acry[], concepts::Real d, F *dlp) const
Evaluation of the Laplace double layer potential with constant test/trial functions.
Definition: lplGal011.hh:29
double Real
Type normally used for a floating point number.
Definition: typedefs.hh:36
Page URL: http://wiki.math.ethz.ch/bin/view/Concepts/WebHome
21 August 2020
© 2020 Eidgenössische Technische Hochschule Zürich