aglowav2 Namespace Reference

Used for the aglowav2 classes for the boundary element method. More...

Classes

class  AglowavBF00
 Bilinear form for the stiffness matrix compression with aglomerated wavelets. More...
 
class  C2W
 Transformation operator from the constant one scale space to the agglomerated wavelet space (without scaling). More...
 
class  Delta
 Abstract class for the truncation matrix used for wavelet compression. More...
 
class  Delta00
 Class for the truncation matrix used for wavelet compression. More...
 
class  DeltaFull
 Class for the truncation matrix used for wavelet compression. More...
 
class  F00
 Class for the far field matrix F. More...
 
class  Haar3d
 Abstract wavelet space. More...
 
class  Haar3d0
 Agglomerated wavelet space. More...
 
class  Haar3d000
 Space element for the agglomerated wavelets. More...
 
class  Haar3d0BFSScan
 Scanner of the Haar3d0 space ("breadth" first search (bfs)) (1. More...
 
class  Haar3d0DFSScan
 Scanner of the Haar3d0 space (depth first search (dfs)) (1. More...
 
class  Haar3dBFSScan
 Scanner of the Haar3d space ("breadth" first search (bfs)) (1. More...
 
class  Haar3dDFSScan
 Scanner of the Haar3d space (depth first search (dfs)) (1. More...
 
class  Haar3dXXX
 Abstract wavelet space element. More...
 
class  M000
 Local transformation matrix (square matrix, row wise) More...
 
class  Matrix
 Matrix class to convert an array to a matrix without copying. More...
 
class  Operator00
 Stiffness matrix compressed with the agglomerated wavelets. More...
 
class  W2C
 Transformation operator from the agglomerated wavelet space to the constant one scale space (without scaling). More...
 
class  WavIdentity
 Identity bilinear form for wavelets. More...
 
class  X00
 Class for the far field matrix X. More...
 
class  XY00
 Class for the far field matrices X and Y. More...
 
class  Y00
 Class for the far field matrix Y. More...
 

Detailed Description

Used for the aglowav2 classes for the boundary element method.

Author
Gregor Schmidlin, 2003
Page URL: http://wiki.math.ethz.ch/bin/view/Concepts/WebHome
21 August 2020
© 2020 Eidgenössische Technische Hochschule Zürich