Preprints
-
C. Lubich & J. Nick (2024).
Regularized dynamical parametric approximation of stiff evolution problems.
ETH Zürich, Seminar for Applied Mathematics, Research Reports. -
J. M. Melenk & J. Nick (2024).
Parsimonious convolution quadrature.
ETH Zürich, Seminar for Applied Mathematics, Research Reports. -
J. Nick, R. Hiptmair & H. Ammari (2024).
Wave scattering with time-periodic coefficients: Energy estimates and harmonic formulations.
ETH Zürich, Seminar for Applied Mathematics, Research Reports. -
M. Knöller & J. Nick (2024).
The temporal domain derivative in inverse acoustic obstacle scattering.
ETH Zürich, Seminar for Applied Mathematics, Research Reports. -
M. Feischl, C. Lasser, C. Lubich & J. Nick (2024).
Regularized dynamical parametric approximation.
ETH Zürich, Seminar for Applied Mathematics, Research Reports.
Publications
-
J. Nick, S. Burkhard & C. Lubich (2024).
Time-dependent electromagnetic scattering from dispersive materials.
IMA Journal of Numerical Analysis, (electronically published) . -
J. Nick (2024).
Numerical analysis for electromagnetic scattering with nonlinear boundary conditions.
Mathematics of Computation, 93, 1529-1568. -
J. Werner, C. Gerum, M. Reiber, J. Nick & O. Bringmann (2023).
Precise localization within the GI tract by combining classification of CNNs and time-series analysis of HMMs.
In Machine Learning in Medical Imaging (pp. 174-183). Cham: Springer Nature Switzerland. -
J. Schmidt, P. Hennig, J. Nick & F. Tronarp (2023).
The rank-reduced Kalman filter: Approximate dynamical-low-rank filtering in high dimensions.
Advances in Neural Information Processing Systems, 36, 61364-61376. -
J. Nick (2023).
Wave scattering from nontrivial boundary conditions.
Doctoral thesis, University of Tübingen. -
J. Nick, B. Kovács & C. Lubich (2022).
Time-dependent electromagnetic scattering from thin layers.
Numerische Mathematik, 150(4), 1123-1164. -
L. Banjai, C. Lubich & J. Nick (2022).
Time-dependent acoustic scattering from generalized impedance boundary conditions via boundary elements and convolution quadrature.
IMA Journal of Numerical Analysis, 42(1), 1-26. -
J. Nick, B. Kovács & C. Lubich (2021).
Correction to: Stable and convergent fully discrete interior-exterior coupling of Maxwell's equations.
Numerische Mathematik, 147(4), 997-1000.