I try to make sure that all my papers are available as pdf. Please tell me if you find that one of the links is broken.

 

Most of the publications are also on Google Scholar.

 

Preprints

 

 

Peer-reviewed

  1. J. Gamella, J. Peters, P. Buhlmann:
      The Causal Chambers: Real Physical Systems as a Testbed for AI Methodology,
      Nature Machine Intelligence (accepted), 2024+. arXiv
  2. N. Thams, R. Søndergaard, S. Weichwald, J. Peters:
      Identifying Causal Effects using Instrumental Time Series: Nuisance IV and Correcting for the Past,
      Journal of Machine Learning Research 25(302), 1--51, 2024. arXiv
  3. L. Kook, S. Saengkyongam, A. R. Lundborg, T. Hothorn, J. Peters:
      Model-based causal feature selection for general response types,
      Journal of the American Statistical Association (accepted), 2024. arXiv
  4. S. Saengkyongam, E. Rosenfeld, P. Ravikumar, N. Pfister, J. Peters:
      Identifying Representations for Intervention Extrapolation,
      International Conference on Learning Representations, 2024. arXiv
  5. S. Saengkyongam, N. Pfister, P. Klasnja, S. Murphy, J. Peters:
      Effect-Invariant Mechanisms for Policy Generalization,
      Journal of Machine Learning Research 25(34), 1--36, 2024. arXiv
  6. N. Thams, S. Saengkyongam, N. Pfister, J. Peters:
      Statistical Testing under Distributional Shifts,
      Journal of the Royal Statistical Society, Series B 85(3), 597--663, 2023. arXiv
  7. S. Saengkyongam, N. Thams, J. Peters, N. Pfister:
      Invariant Policy Learning: A Causal Perspective,
      IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 54(7), 2023. arXiv
  8. A. R. Lundborg, R. D. Shah, J. Peters:
      Conditional Independence Testing in Hilbert Spaces with Applications to Functional Data Analysis,
      Journal of the Royal Statistical Society, Series B 84(5), 1821--1850, 2022. arXiv
  9. M. Jakobsen, R. Shah, P. Bühlmann, J. Peters:
      Structure Learning for Directed Trees,
      Journal of Machine Learning Research 23(159), 1--97, 2022. arXiv
  10. N. Pfister*, J. Peters*:
      Identifiability of Sparse Causal Effects using Instrumental Variables,
      38th Conference on Uncertainty in Artificial Intelligence (UAI), PMLR 180:1613--1622, 2022. arXiv
  11. P. B. Mogensen, N. Thams, J. Peters:
      Invariant Ancestry Search,
      39th International Conference on Machine Learning (ICML), PMLR 162:15832--15857, 2022. arXiv
  12. S. Saengkyongam, L. Henckel, N. Pfister, J. Peters:
      Exploiting Independent Instruments: Identification and Distribution Generalization,
      39th International Conference on Machine Learning (ICML), PMLR 162:18935-18958, 2022. arXiv
  13. M. Jakobsen, J. Peters:
      Distributional Robustness of K-class Estimators and the PULSE,
      The Econometrics Journal 25(2), 404--432, 2022. arXiv
  14. R. Christiansen, M. Baumann, T. Kümmerle, M. Mahecha, J. Peters:
      Towards Causal Inference for Spatio-Temporal Data: Conflict and Forest Loss in Colombia,
      Journal of the American Statistical Association 117(538), 591--601, 2022. arXiv
  15. S. Weichwald, S. W. Mogensen, T. E. Lee, D. Baumann, O. Kroemer, I. Guyon, S. Trimpe, J. Peters, N. Pfister:
      Learning by Doing: Controlling a Dynamical System using Causality, Control, and Reinforcement Learning,
      Proceedings of the NeurIPS 2021 Competition and Demonstration Track, PMLR 176:246–258, 2022. arXiv
  16. R. Christiansen, N. Pfister, M. Jakobsen, N. Gnecco, J. Peters:
      A causal framework for distribution generalization,
      IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 44(10), 6614--6630, 2022. arXiv
  17. M. Migliavacca, T. Musavi, M. D. Mahecha, J. A. Nelson, J. Knauer, D. D. Baldocchi, O. Perez-Priego, R. Christiansen, J. Peters, K. Anderson, M. Bahn, T. A. Black, P. D. Blanken, D. Bonal, N. Buchmann, S. Caldararu, A. Carrara, N. Carvalhais, A. Cescatti, J. Chen, J. Cleverly, E. Cremonese, A. R. Desai, T. S. El-Madany, M. M. Farella, M. Fernández-Martínez, G. Filippa, M. Forkel, M. Galvagno, U. Gomarasca, C. M. Gough, M. Göckede, A. Ibrom, H. Ikawa, I. A. Janssens, M. Jung, J. Kattge, T. F. Keenan, A. Knohl, H. Kobayashi, G. Kraemer, B. E. Law, M. J. Liddell, X. Ma, I. Mammarella, D. Martini, C. Macfarlane, G. Matteucci, L. Montagnani, D. E. Pabon-Moreno, C. Panigada, D. Papale, E. Pendall, J. Penuelas, R. P. Phillips, P. B. Reich, M. Rossini, E. Rotenberg, R. L. Scott, C. Stahl, U. Weber, G. Wohlfahrt, S. Wolf, I. J. Wright, D. Yakir, S. Zaehle & M. Reichstein:
      The three major axes of terrestrial ecosystem function,
      Nature 598, 468--472, 2021. pdf
  18. N. Pfister, E. G. William, J. Peters, R. Aebersold, P. Buhlmann:
      Stabilizing Variable Selection and Regression,
      Annals of Applied Statistics 15(3), 1220--1246, 2021. arXiv
  19. M. Oberst, N. Thams, J. Peters, D. Sontag:
      Regularizing towards Causal Invariance: Linear Models with Proxies,
      38th International Conference on Machine Learning (ICML), 8260--8270, 2021. arXiv
  20. S. Bongers, P. Forre, J. Peters, J. M. Mooij:
      Foundations of Structural Causal Models with Cycles and Latent Variables,
      Annals of Statistics 49(5), 2885--2915, 2021. arXiv
  21. N. Gnecco, N. Meinshausen, J. Peters, S. Engelke:
      Causal discovery in heavy-tailed models,
      Annals of Statistics 49(3), 1755--1778, 2021 arXiv
  22. D. Rothenhaeusler, P. Bühlmann, N. Meinshausen, J. Peters:
      Anchor regression: heterogeneous data meets causality,
      Journal of Royal Statistical Society, Series B 83(2), 215--246, 2021. arXiv
  23. S. Weichwald, J. Peters:
      Causality in Cognitive Neuroscience: Concepts, Challenges, and Distributional Robustness,
      Journal of Cognitive Neuroscience 33(2), 226--247, 2021. arXiv
  24. M. D. Mahecha, F. Gans, G. Brandt, R. Christiansen, S. E. Cornell, N. Fomferra, G. Kraemer, J. Peters, P. Bodesheim, G. Camps-Valls, J. F. Donges, W. Dorigo, L. M. Estupinan-Suarez, V. H. Gutierrez-Velez, M. Gutwin, M. Jung, M. C. Londono, D. G. Miralles, P. Papastefanou, M. Reichstein:
      Earth system data cubes unravel global multivariate dynamics,
      Earth System Dynamics 11(1), 201--234, 2020. pdf,
  25. R. D. Shah, J. Peters:
      The Hardness of Conditional Independence Testing and the Generalised Covariance Measure,
      Annals of Statistics 48(3), 1514--1538, 2020. pdf, arXiv
  26. R. Christiansen, J. Peters:
      Switching Regression Models and Causal Inference in the Presence of Latent Variables,
      Journal of Machine Learning Research 21(41), 2020, pdf, arXiv
  27. N. Pfister, S. Bauer, J. Peters:
      Learning stable and predictive structures in kinetic systems,
      Proceedings of the National Academy of Sciences 116(51), 25405--25411, 2019, pdf, arXiv
  28. J. Runge, S. Bathiany, E. Bollt, G. Camps-Valls, D. Coumou, E. Deyle, C. Glymour, M. Kretschmer, M. Mahecha, J. Munoz-Mari, E. Van Nes, J. Peters, R. Quax, M. Reichstein, M. Scheffer, B. Schoelkopf, P. Spirtes, G. Sugihara, J. Sun, K. Zhang, J. Zscheischler:
      Inferring causation from time series in Earth system sciences,
      Nature Communications 10(2553), 2019. pdf,
  29. C. Heinze-Deml, J. Peters, N. Meinshausen:
      Invariant Causal Prediction for Nonlinear Models,
      Journal of Causal Inference 6(2), 2018. pdf, arXiv
  30. M. Rojas-Carulla, B. Schölkopf, R. Turner, J. Peters:
      Invariant Models for Causal Transfer Learning,
      Journal of Machine Learning Research 19(36):1-34, 2018. pdf
  31. N. Pfister, P. Bühlmann, J. Peters:
      Invariant Causal Prediction for Sequential Data,
      Journal of the American Statistical Association 114(527), 2018. pdf, arXiv
  32. N. Pfister, P. Bühlmann, B. Schölkopf, J. Peters:
      Kernel-based Tests for Joint Independence,
      Journal of Royal Statistical Society, Series B 80:5-31, 2017. arXiv, pdf
  33. N. Meinshausen, A. Hauser, J. Mooij, P. Versteeg, J. Peters, P. Bühlmann:
      Causal inference from gene perturbation experiments: methods, software and validation,
      Proceedings of the National Academy of Sciences 113(27):7361-7368, 2016. pdf, bibtex
  34. B. Schölkopf, D. Hogg, D. Wang, D. Foreman-Mackey, D. Janzing, C.-J. Simon-Gabriel, J. Peters:
      Modeling Confounding by Half-Sibling Regression,
      Proceedings of the National Academy of Sciences 113(27):7391-7398, 2016. pdf, bibtex
  35. J. Peters, P. Bühlmann, N. Meinshausen:
      Causal inference using invariant prediction: identification and confidence intervals, arXiv:1501.01332,
      Journal of the Royal Statistical Society, Series B (with discussion) 78(5):947-1012, 2016. pdf, bibtex
  36. S. Bauer, B. Schölkopf, J. Peters:
      The Arrow of Time in Multivariate Time Series, arXiv:1603.00784,
      33rd International Conference on Machine Learning (ICML 2016), 2043-2051, 2016. pdf, bibtex
  37. J. Mooij, J. Peters, D. Janzing, J. Zscheischler, B. Schölkopf:
      Distinguishing cause from effect using observational data: methods and benchmarks, arXiv:1412.3773,
      Journal of Machine Learning Research 17:1-102, 2016. pdf, bibtex
  38. S. Sippel, J. Zscheischler, M. Heimann, F. Otto, J. Peters, M. Mahecha:
      Quantifying changes in climate variability and extremes: pitfalls and their overcoming,
      Geophysical Research Letters 42:9990-9998, 2015. pdf, bibtex
  39. D. Rothenhäusler*, C. Heinze-Deml*, J. Peters, N. Meinshausen:
      backShift: Learning causal cyclic graphs from unknown shift interventions,
      Advances in Neural Information Processing Systems 28 (NIPS 2015), 1513-1521, 2015. pdf, bibtex
  40. B. Schölkopf, D. Hogg, D. Wang, D. Foreman-Mackey, D. Janzing, C-J. Simon-Gabriel, J. Peters:
      Removing systematic errors for exoplanet search via latent causes,
      32nd International Conference on Machine Learning (ICML 2015), 2218-2226, 2015. pdf, bibtex
  41. B. Schölkopf, K. Muandet, K. Fukumizu, S. Harmeling, J. Peters:
      Computing Functions of Random Variables via Reproducing Kernel Hilbert Space Representations,
      Statistics and Computing 25:755-766, 2015. pdf, bibtex
  42. J. Peters, P. Bühlmann:
      Structural Intervention Distance (SID) for Evaluating Causal Graphs,
      Neural Computation 27:771-799, 2015. journal version, arXiv, bibtex
  43. J. Peters:
      On the Intersection Property of Conditional Independence and its Application to Causal Discovery,
      Journal of Causal Inference 3:97-108, 2015. pdf, bibtex
  44. P. Bühlmann, J. Peters, J. Ernest:
      CAM: Causal Additive Models, high-dimensional Order Search and Penalized Regression,
      Annals of Statistics 42:2526-2556, 2014. pdf, bibtex
  45. J. Peters, J. Mooij, D. Janzing, B. Schölkopf:
      Causal Discovery with Continuous Additive Noise Models,
      Journal of Machine Learning Research 15:2009-2053, 2014. pdf, bibtex
  46. J. Peters, P. Bühlmann:
      Identifiability of Gaussian Structural Equation Models with Equal Error Variances,
      Biometrika 101(1):219-228, 2014. arXiv, bibtex
  47. J. Peters, D. Janzing, B. Schölkopf:
      Causal Inference on Time Series using Restricted Structural Equation Models,
      Advances in Neural Information Processing Systems 26 (NIPS 2013), 154-162, 2014. pdf, bibtex
  48. L. Bottou, J. Peters, J. Quiñonero-Candela, D. X. Charles, D. M. Chickering, E. Portugaly, D. Ray, P. Simard, E. Snelson:
      Counterfactual Reasoning and Learning Systems,
      Journal of Machine Learning Research 14:3207-3260, 2013. pdf, bibtex
  49. E. Sgouritsa, D. Janzing, J. Peters, B. Schölkopf:
      Identifying Finite Mixtures of Nonparametric Product Distributions and Causal Inference of Confounders,
      29th Conference on Uncertainty in Artificial Intelligence (UAI 2013), 556-565, 2013. arXiv, bibtex
  50. B. Schölkopf, D. Janzing, J. Peters, E.Sgouritsa, K.Zhang, J. M. Mooij:
      On causal and anticausal learning,
      29th International Conference on Machine Learning (ICML 2012), 1255-1262, 2012. pdf, bibtex
  51. J. Peters, J. M. Mooij, D. Janzing, B. Schölkopf:
      Identifiability of Causal Graphs using Functional Models,
      27th Conference on Uncertainty in Artificial Intelligence (UAI 2011), AUAI Press, USA, 589-598, 2011. arXiv, bibtex
  52. D. Janzing, E. Sgouritsa, O. Stegle, J. Peters, B. Schölkopf:
      Detecting low-complexity unobserved causes,
      27th Conference on Uncertainty in Artificial Intelligence (UAI 2011), AUAI Press, USA, 383-391, 2011. arXiv, bibtex
  53. K. Zhang, J. Peters, D. Janzing, B. Schölkopf:
      Kernel-based Conditional Independence Test and Application in Causal Discovery,
      27th Conference on Uncertainty in Artificial Intelligence (UAI 2011), AUAI Press, USA, 804-813. arXiv, bibtex
  54. J. Peters, D. Janzing, B. Schölkopf:
      Causal Inference on Discrete Data using IEEEAdditive Noise Models,
      IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 33:2436-2450, 2011. arXiv, bibtex
  55. J. Peters, D. Janzing, B. Schölkopf:
      Identifying Cause and Effect on Discrete Data using Additive Noise Models,
      13th International Conference on Artificial Intelligence and Statistics (AISTATS 2010), 597-604, 2010 (conference version of TPAMI 2011). pdf, bibtex
  56. D. Janzing, J. Peters, J. M. Mooij, B. Schölkopf:
      Identifying Confounders Using Additive Noise Models,
      25th Conference on Uncertainty in Artificial Intelligence (UAI 2009), AUAI Press, USA, 249-257, 2009. arXiv, bibtex
  57. J. M. Mooij, D. Janzing, J. Peters, B. Schölkopf:
      Regression by Dependence Minimization and its Application to Causal Inference in Additive Noise Models,
      26th International Conference on Machine Learning (ICML 2009), ACM Press, New York, NY, USA, 745-752, 2009. pdf, bibtex
  58. J. Peters, D. Janzing, A. Gretton, B. Schölkopf:
      Detecting the Direction of Causal Time Series,
      26th International Conference on Machine Learning (ICML 2009), ACM Press, New York, NY, USA, 801-808, 2009. pdf, bibtex
  59. P. Hoyer, D. Janzing, J. M. Mooij, J. Peters, B. Schölkopf:
      Nonlinear Causal Discovery with Additive Noise Models,
      Advances in Neural Information Processing Systems 21 (NIPS 2008), Curran, Red Hook, NY, USA, 689-696, 2009. pdf, bibtex
  60. J. Peters, D. Janzing, A. Gretton, B. Schölkopf:
      Kernel Methods for Detecting the Direction of Time Series,
      32nd Annual Conference of the German Classification Society (GfKl), Springer, Berlin, Germany, 57-66, 2008. pdf, bibtex
  61.  

     

     

    Book Chapters

  62. J. Peters, S. Bauer, N. Pfister:
      Causal models for dynamical systems,
      In: Probabilistic and Causal Inference: The Works of Judea Pearl, (Ed) R. Dechter and H. Geffner and J. Halpern, ACM, New York, 2022.  arXiv
  63. B. Schölkopf, D. Janzing, J. Peters, E. Sgouritsa, K. Zhang, J. Mooij:
      Semi-supervised learning in causal and anticausal settings,
      In: Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik, (Ed) B. Schölkopf, Z. Luo, and V. Vovk, Springer-Verlag, 129-141, 2013.  link

 

 

Theses