concepts::BiCGStabFabric< F, G > Class Template Referenceabstract

Fabric class for conjugate gradients: BiCGStab. More...

#include <bicgstabFabric.hh>

Inheritance diagram for concepts::BiCGStabFabric< F, G >:
concepts::PrecondSolverFabric< F, F > concepts::SolverFabric< F >

Public Member Functions

 BiCGStabFabric (Real maxeps=EPS, int maxit=0, bool relres=false, bool throwing=true)
 Constructor. More...
 
virtual Operator< F > * operator() ()
 Creates a linear solver from matrix. More...
 
virtual Operator< F > * operator() (Operator< F > &matrix)
 
virtual Operator< F > * operator() (Operator< F > &matrix, Operator< F > &precond)=0
 Creates a linear solver from matrix and precond. More...
 
virtual Operator< F > * operator() (Operator< F > &matrix, Operator< G > &precond)
 

Protected Member Functions

virtual std::ostream & info (std::ostream &os) const
 

Private Attributes

Real maxeps_
 Convergence criteria for the solver. More...
 
int maxit_
 Convergence criteria for the solver. More...
 
bool relres_
 Convergence criteria for the solver. More...
 
bool throwing_
 false: best solution is given, when non converging true: exception is thrown, when non converging More...
 

Detailed Description

template<typename F, typename G = F>
class concepts::BiCGStabFabric< F, G >

Fabric class for conjugate gradients: BiCGStab.

Author
Philipp Frauenfelder, 2002

Definition at line 27 of file bicgstabFabric.hh.

Constructor & Destructor Documentation

◆ BiCGStabFabric()

template<typename F , typename G = F>
concepts::BiCGStabFabric< F, G >::BiCGStabFabric ( Real  maxeps = EPS,
int  maxit = 0,
bool  relres = false,
bool  throwing = true 
)
inline

Constructor.

Parameters
maxepsMaximal residual
maxitMaximal number of iterations
relresRelative residual

Definition at line 35 of file bicgstabFabric.hh.

Member Function Documentation

◆ info()

template<typename F , typename G = F>
virtual std::ostream& concepts::BiCGStabFabric< F, G >::info ( std::ostream &  os) const
inlineprotectedvirtual

Definition at line 51 of file bicgstabFabric.hh.

◆ operator()() [1/4]

template<typename F , typename G = F>
virtual Operator<F>* concepts::BiCGStabFabric< F, G >::operator() ( )
inlinevirtual

Creates a linear solver from matrix.

The caller is responsible for the deletion of the delivered object.

Returns
Reference to the linear solver

Implements concepts::SolverFabric< F >.

Definition at line 39 of file bicgstabFabric.hh.

◆ operator()() [2/4]

template<typename F , typename G = F>
virtual Operator<F>* concepts::BiCGStabFabric< F, G >::operator() ( Operator< F > &  matrix)
inlinevirtual

Implements concepts::SolverFabric< F >.

Definition at line 42 of file bicgstabFabric.hh.

◆ operator()() [3/4]

virtual Operator<F>* concepts::PrecondSolverFabric< F, F >::operator() ( Operator< F > &  matrix,
Operator< F > &  precond 
)
pure virtualinherited

Creates a linear solver from matrix and precond.

The caller is responsible for the deletion of the delivered object.

Returns
Reference to the linear solver

◆ operator()() [4/4]

template<typename F , typename G = F>
virtual Operator<F>* concepts::BiCGStabFabric< F, G >::operator() ( Operator< F > &  matrix,
Operator< G > &  precond 
)
inlinevirtual

Definition at line 45 of file bicgstabFabric.hh.

Member Data Documentation

◆ maxeps_

template<typename F , typename G = F>
Real concepts::BiCGStabFabric< F, G >::maxeps_
private

Convergence criteria for the solver.

Definition at line 57 of file bicgstabFabric.hh.

◆ maxit_

template<typename F , typename G = F>
int concepts::BiCGStabFabric< F, G >::maxit_
private

Convergence criteria for the solver.

Definition at line 59 of file bicgstabFabric.hh.

◆ relres_

template<typename F , typename G = F>
bool concepts::BiCGStabFabric< F, G >::relres_
private

Convergence criteria for the solver.

Definition at line 61 of file bicgstabFabric.hh.

◆ throwing_

template<typename F , typename G = F>
bool concepts::BiCGStabFabric< F, G >::throwing_
private

false: best solution is given, when non converging true: exception is thrown, when non converging

Definition at line 65 of file bicgstabFabric.hh.


The documentation for this class was generated from the following file:
Page URL: http://wiki.math.ethz.ch/bin/view/Concepts/WebHome
21 August 2020
© 2020 Eidgenössische Technische Hochschule Zürich