Class holding the quadrature rule and the cell of a 1D element. More...

#include <element.hh>

Inheritance diagram for hp1D::IntegrableElm:
concepts::IntegrationCell hp1D::BaseElement< Real > hp1D::BaseElement< F > hp2D::NTElement_BA< F > hp2D::NeumannTraceElement< F > hp1D::KarniadakisMixin< F > hp1D::LegendreMixin< F > hp1D::RysMixin< F >

Public Types

enum  intFormType { ZERO, ONE, TWO, THREE }
 Integration form, which determines terms coming from integration over reference element. More...
 

Public Member Functions

const concepts::Real3d chi (const Real x) const
 Computes the element map. More...
 
 IntegrableElm (const concepts::EdgeNd &cell)
 
const concepts::QuadratureRule1dintegration () const
 Returns the integration rule. More...
 
Real jacobianDeterminant (const Real x) const
 Computes the determinant of the Jacobian. More...
 
virtual bool quadraturePoint (uint i, intPoint &p, intFormType form=ZERO, bool localCoord=false) const
 Delivers a quadrature point. More...
 

Static Public Member Functions

static concepts::QuadRuleFactoryrule ()
 Access to the quadrature rule, which is valid for all elements of this type (hp1D::IntegrableElm). More...
 

Protected Attributes

const concepts::EdgeNdcell_
 The cell. More...
 
std::unique_ptr< concepts::QuadratureRule1dint_
 The integration rule. More...
 

Static Protected Attributes

static concepts::QuadRuleFactory rule_
 

Detailed Description

Class holding the quadrature rule and the cell of a 1D element.

Definition at line 34 of file element.hh.

Member Enumeration Documentation

◆ intFormType

Integration form, which determines terms coming from integration over reference element.

Enumerator
ZERO 
ONE 
TWO 
THREE 

Definition at line 29 of file integral.hh.

Constructor & Destructor Documentation

◆ IntegrableElm()

hp1D::IntegrableElm::IntegrableElm ( const concepts::EdgeNd cell)

Member Function Documentation

◆ chi()

const concepts::Real3d hp1D::IntegrableElm::chi ( const Real  x) const
inline

Computes the element map.

The reference element is [0,1].

Definition at line 40 of file element.hh.

◆ integration()

const concepts::QuadratureRule1d* hp1D::IntegrableElm::integration ( ) const
inline

Returns the integration rule.

Definition at line 51 of file element.hh.

◆ jacobianDeterminant()

Real hp1D::IntegrableElm::jacobianDeterminant ( const Real  x) const
inline

Computes the determinant of the Jacobian.

Definition at line 45 of file element.hh.

◆ quadraturePoint()

virtual bool hp1D::IntegrableElm::quadraturePoint ( uint  i,
intPoint p,
intFormType  form = ZERO,
bool  localCoord = false 
) const
virtual

Delivers a quadrature point.

Quadrature point consists of coordinates (for evaluation of formulas) and intermediate data, consisting of the weight and term coming from mapping.

Returns false, if the number of quadrature points is overstepped.

Parameters
inumber of quadrature point
intPointdata given back
formIntegration form
localCoordIf true, local coordinates are returned. Else physical coordinates.

Implements concepts::IntegrationCell.

◆ rule()

static concepts::QuadRuleFactory& hp1D::IntegrableElm::rule ( )
inlinestatic

Access to the quadrature rule, which is valid for all elements of this type (hp1D::IntegrableElm).

Change of the quadrature rule is put into practice for newly created elements and for already created elements by precomputing the integration points and shape functions on them.

Definition at line 62 of file element.hh.

Member Data Documentation

◆ cell_

const concepts::EdgeNd& hp1D::IntegrableElm::cell_
protected

The cell.

Definition at line 70 of file element.hh.

◆ int_

std::unique_ptr<concepts::QuadratureRule1d> hp1D::IntegrableElm::int_
protected

The integration rule.

Definition at line 72 of file element.hh.

◆ rule_

concepts::QuadRuleFactory hp1D::IntegrableElm::rule_
staticprotected

Definition at line 74 of file element.hh.


The documentation for this class was generated from the following file:
Page URL: http://wiki.math.ethz.ch/bin/view/Concepts/WebHome
21 August 2020
© 2020 Eidgenössische Technische Hochschule Zürich