element.hh
LegendreMixin(const concepts::EdgeNd &cell, ushort p)
Definition: element.hh:198
Class representing Legendre polynomials evaluated on quadrature points.
Definition: legendre.hh:24
Integration point consisting of coordinates and intermediate data.
Definition: integral.hh:34
virtual const concepts::EdgeNd & cell() const
Returns the cell on which the element is built.
Definition: element.hh:99
const concepts::Legendre * shpfct() const override
Returns the shape functions.
Definition: element.hh:208
const concepts::TMatrix< typename BaseT::FieldT > & T() const override
Definition: element.hh:248
virtual std::ostream & info(std::ostream &os) const
const concepts::Karniadakis< 1, 2 > * shpfctDD() const
Returns the second derivatives of the shape functions.
Definition: element.hh:160
KarniadakisMixin(const concepts::EdgeNd &cell, ushort p)
Definition: element.hh:139
virtual void recomputeShapefunctions()=0
Recompute shape functions, e.g.
intFormType
Integration form, which determines terms coming from integration over reference element.
Definition: integral.hh:29
static concepts::QuadRuleFactory & rule()
Access to the quadrature rule, which is valid for all elements of this type (hp1D::IntegrableElm).
Definition: element.hh:62
virtual Real3d vertex(const uint i) const
Returns the coordinates of the ith vertex.
hp1D::BaseElement< F > & operator++(int)=0
Returns the next element in the scanned set.
IntegrableElm(const concepts::EdgeNd &cell)
#define DEBUGL(doit, msg)
const concepts::QuadratureRule1d * integration() const
Returns the integration rule.
Definition: element.hh:51
virtual bool quadraturePoint(uint i, intPoint &p, intFormType form=ZERO, bool localCoord=false) const
Delivers a quadrature point.
Real jacobianDeterminant(const Real x) const
Computes the determinant of the Jacobian.
Definition: element.hh:45
std::unique_ptr< concepts::Karniadakis< 1, 1 > > shpfctD_
The derivatives of the shape functions.
Definition: element.hh:180
std::unique_ptr< concepts::Karniadakis< 1, 0 > > shpfct_
The shape functions.
Definition: element.hh:178
void recomputeShapefunctions() override
Recompute shape functions, e.g.
virtual Real jacobianDeterminant(const Real x) const =0
Returns the determinant of the Jacobian.
const concepts::Karniadakis< 1, 1 > * shpfctD() const
Returns the derivatives of the shape functions.
Definition: element.hh:155
virtual const concepts::ElementGraphics< Real > * graphics() const
Returns element graphics class.
An abstract class for scanning a mesh (a set of cells) or a space (a set of elements).
Definition: scannerConnectors.hh:29
virtual const concepts::ShapeFunction1D< Real > * shpfct() const =0
Returns the shape functions.
void recomputeShapefunctions() override
Recompute shape functions, e.g.
void recomputeSecondDerivativeOfShapefunctions_()
Recompute second derivative of the shape functions, e.g.
virtual Real3d elemMap(const Real coord_local) const
Element map from point local coordinates in 1D.
static std::unique_ptr< LineGraphics > graphics_
Definition: element.hh:126
BaseElement(const concepts::EdgeNd &cell, ushort p)
Definition: element.hh:84
std::unique_ptr< concepts::Karniadakis< 1, 2 > > shpfctDD_
The second derivatives of the shape functions.
Definition: element.hh:183
Class holding the quadrature rule and the cell of a 1D element.
Definition: element.hh:34
GenericElement(const concepts::EdgeNd &cell, uint p, concepts::TColumn< typename BaseT::FieldT > *T0, concepts::TColumn< typename BaseT::FieldT > *T1)
Constructor.
Definition: element.hh:233
virtual std::ostream & info(std::ostream &os) const override
Definition: element.hh:258
const concepts::Karniadakis< 1, 0 > * shpfct() const override
Returns the shape functions.
Definition: element.hh:151
Definition: element.hh:80
virtual ~BaseElement()
void appendT(concepts::TColumn< typename BaseT::FieldT > *T)
Appends the T columns to the T matrix.
Definition: element.hh:253
Part of the multidimensional expansion bases for the shape functions of Karniadakis and Sherwin.
Definition: karniadakis.hh:163