Part of the multidimensional expansion bases for the shape functions of Karniadakis and Sherwin. More...

#include <quad.hh>

Inheritance diagram for hp2D::KarniadakisDeriv2:
concepts::ShapeFunction1D< Real > concepts::OutputOperator

Public Member Functions

 KarniadakisDeriv2 (const int P, const Real *xP, const int NxP, const bool cache=true)
 Constructor. More...
 
uint n () const
 Returns the number of shape functions. More...
 
uint nP () const
 Returns the number of abscissas (in which the shape functions are evaluated) More...
 
const Real * values () const
 Returns the values of the shape functions. More...
 
 ~KarniadakisDeriv2 ()
 Copy constructor. More...
 

Protected Member Functions

virtual std::ostream & info (std::ostream &os) const
 Returns information in an output stream. More...
 

Protected Attributes

Real * values_
 Values of the shape functions. More...
 

Private Attributes

uint n_
 Number of shape functions. More...
 
uint nP_
 Number of points in which the shape functions are evaluated. More...
 
concepts::Karniadakis< 1, 1 > * tmp_
 temporal storage of all derivates of $\psi^a_i(x)$ More...
 

Detailed Description

Part of the multidimensional expansion bases for the shape functions of Karniadakis and Sherwin.

Computes the derivate of $\psi^a_i(x)$. In difference to Karniadakis<1,1> the first function is left out, so that the shape functions are linearly independent.

The first functions are: $\psi_0 = \frac{1}{2}$, $\psi_1 = -x\frac{1}{2}$, $\psi_1 = (-3x^2+1)\frac{1}{2}$, $\psi_2 = \frac{3}{4}x(5x^2-3)$/

Definition at line 517 of file quad.hh.

Constructor & Destructor Documentation

◆ KarniadakisDeriv2()

hp2D::KarniadakisDeriv2::KarniadakisDeriv2 ( const int  P,
const Real *  xP,
const int  NxP,
const bool  cache = true 
)

Constructor.

Computes the values of the shape functions of the given order and in the given points.

Parameters
POrder of the principal function
xPPoints
NxPNumber of points

◆ ~KarniadakisDeriv2()

hp2D::KarniadakisDeriv2::~KarniadakisDeriv2 ( )

Copy constructor.

Member Function Documentation

◆ info()

virtual std::ostream& hp2D::KarniadakisDeriv2::info ( std::ostream &  os) const
protectedvirtual

Returns information in an output stream.

Implements concepts::ShapeFunction1D< Real >.

◆ n()

uint concepts::ShapeFunction1D< Real >::n ( ) const
inlineinherited

Returns the number of shape functions.

Definition at line 35 of file shapefunction.hh.

◆ nP()

uint concepts::ShapeFunction1D< Real >::nP ( ) const
inlineinherited

Returns the number of abscissas (in which the shape functions are evaluated)

Definition at line 38 of file shapefunction.hh.

◆ values()

const Real * concepts::ShapeFunction1D< Real >::values ( ) const
inlineinherited

Returns the values of the shape functions.

Definition at line 40 of file shapefunction.hh.

Member Data Documentation

◆ n_

uint concepts::ShapeFunction1D< Real >::n_
privateinherited

Number of shape functions.

Definition at line 48 of file shapefunction.hh.

◆ nP_

uint concepts::ShapeFunction1D< Real >::nP_
privateinherited

Number of points in which the shape functions are evaluated.

Definition at line 51 of file shapefunction.hh.

◆ tmp_

concepts::Karniadakis<1,1>* hp2D::KarniadakisDeriv2::tmp_
private

temporal storage of all derivates of $\psi^a_i(x)$

Definition at line 538 of file quad.hh.

◆ values_

Real * concepts::ShapeFunction1D< Real >::values_
protectedinherited

Values of the shape functions.

Definition at line 45 of file shapefunction.hh.


The documentation for this class was generated from the following file:
Page URL: http://wiki.math.ethz.ch/bin/view/Concepts/WebHome
21 August 2020
© 2020 Eidgenössische Technische Hochschule Zürich