A function class to calculate element matrices for the Laplacian for matrix formulas. More...

#include <bf_laplace.hh>

Inheritance diagram for hp2D::LaplaceMatrix< F >:
concepts::BilinearForm< Real > hp2D::LaplaceBase< Real, Real > concepts::Cloneable concepts::OutputOperator hp2D::BilinearFormHelper_1_1< Real, Real >

Public Types

typedef concepts::ElementFormulaContainer< concepts::Mapping< F, 2u > > FrmE_Matrix
 
typedef concepts::Combtype< Real, Real >::type value_type
 

Public Member Functions

virtual LaplaceMatrix< F > * clone () const
 Virtual constructor. More...
 
virtual BilinearForm * clone () const=0
 Virtual constructor. More...
 
concepts::RCP< concepts::SharedJacobianAdj< 2 > > data () const
 Gets the pointer to the shared data. More...
 
void data (const concepts::RCP< concepts::SharedJacobianAdj< 2 > > d)
 Set the pointer to the shared data. More...
 
 LaplaceMatrix (const FrmE_Matrix frm=FrmE_Matrix(), bool all=false)
 Constructor. More...
 
virtual void operator() (const concepts::Element< Real > &elmX, const concepts::Element< Real > &elmY, concepts::ElementMatrix< F > &em) const
 
virtual void operator() (const Element< typename Realtype< Real >::type > &elmX, const Element< typename Realtype< Real >::type > &elmY, ElementMatrix< Real > &em) const=0
 Evaluates the bilinear form for all shape functions on elmX and elmY and stores the result in the matrix em. More...
 
virtual void operator() (const Element< typename Realtype< Real >::type > &elmX, const Element< typename Realtype< Real >::type > &elmY, ElementMatrix< Real > &em, const ElementPair< typename Realtype< Real >::type > &ep) const
 Evaluates the bilinear form for all shape functions on elmX and elmY and stores the result in the matrix em. More...
 
virtual ~LaplaceMatrix ()
 

Protected Member Functions

bool assemble_ (const Quad< Real > *elmX, const Quad< Real > *elmY, concepts::ElementMatrix< value_type > &em) const
 
void computeIntermediate_ (const BaseQuad< Real > &elm, const int i=-1, const int j=-1) const
 Compute the intermediate data for element matrix computation. More...
 
virtual std::ostream & info (std::ostream &os) const
 Returns information in an output stream. More...
 

Protected Attributes

bool all_
 Parameter for the sum factorisation. More...
 
concepts::ElementFormulaContainer< Real > frm_
 Element formula. More...
 
concepts::ElementFormulaContainer< concepts::Mapping< Real, 2 > > frmM_
 Matrix element formula. More...
 
concepts::Array< concepts::Mapping< Real, 2 > > intermediateMatrix_
 Intermediate matrix. More...
 
concepts::Array< Real > intermediateValue_
 Intermediate value. More...
 

Private Member Functions

void computeadjJ_adjJT_rank1_ (concepts::Array< concepts::Mapping< Real, 2 > > &intermediateMatrix, const int i, const int j) const
 Computes the either adj(J)*adj(J)^T or in the case of partial derivatives (i > NONE, j > NONE) the rank-1 product of j-th column of adj(J) with i-th row of adj(J)^T. More...
 
void computeJacobianMatrix_ (const BaseQuad< Real > &elm, concepts::Array< concepts::Mapping< Real, 2 > > &J, concepts::Array< Real > &detJ_inv) const
 Compute the Jacobian matrix and the inverse of its determinant on each quadrature point. More...
 

Private Attributes

concepts::RCP< concepts::SharedJacobianAdj< 2 > > sharedData_
 Shared data for vectorial bilinear forms. More...
 

Detailed Description

template<class F = Real>
class hp2D::LaplaceMatrix< F >

A function class to calculate element matrices for the Laplacian for matrix formulas.

Test:
test::TestMatrices2D
Author
Kersten Schmidt, 2003
Examples
hpFEM2d.cc.

Definition at line 128 of file bf_laplace.hh.

Member Typedef Documentation

◆ FrmE_Matrix

Definition at line 132 of file bf_laplace.hh.

◆ value_type

typedef concepts::Combtype<Real ,Real >::type hp2D::LaplaceBase< Real , Real >::value_type
inherited

Definition at line 64 of file bf_laplace.hh.

Constructor & Destructor Documentation

◆ LaplaceMatrix()

template<class F = Real>
hp2D::LaplaceMatrix< F >::LaplaceMatrix ( const FrmE_Matrix  frm = FrmE_Matrix(),
bool  all = false 
)

Constructor.

The formula frm is evaluated in each quadrature point.

◆ ~LaplaceMatrix()

template<class F = Real>
virtual hp2D::LaplaceMatrix< F >::~LaplaceMatrix ( )
virtual

Member Function Documentation

◆ assemble_()

bool hp2D::LaplaceBase< Real , Real >::assemble_ ( const Quad< Real > *  elmX,
const Quad< Real > *  elmY,
concepts::ElementMatrix< value_type > &  em 
) const
protectedinherited

◆ clone() [1/2]

template<class F = Real>
virtual LaplaceMatrix<F>* hp2D::LaplaceMatrix< F >::clone ( ) const
virtual

Virtual constructor.

Returns a pointer to a copy of itself. The caller is responsible to destroy this copy.

Implements concepts::Cloneable.

◆ clone() [2/2]

virtual BilinearForm* concepts::BilinearForm< Real , typename Realtype<Real >::type >::clone ( ) const
pure virtualinherited

Virtual constructor.

Returns a pointer to a copy of itself. The caller is responsible to destroy this copy.

◆ computeadjJ_adjJT_rank1_()

void hp2D::BilinearFormHelper_1_1< Real , Real >::computeadjJ_adjJT_rank1_ ( concepts::Array< concepts::Mapping< Real, 2 > > &  intermediateMatrix,
const int  i,
const int  j 
) const
privateinherited

Computes the either adj(J)*adj(J)^T or in the case of partial derivatives (i > NONE, j > NONE) the rank-1 product of j-th column of adj(J) with i-th row of adj(J)^T.

◆ computeIntermediate_()

void hp2D::BilinearFormHelper_1_1< Real , Real >::computeIntermediate_ ( const BaseQuad< Real > &  elm,
const int  i = -1,
const int  j = -1 
) const
protectedinherited

Compute the intermediate data for element matrix computation.

Parameters
iif i=0 or 1, then take only i-th column of Jacobian matrix (for test function)
jif j=0 or 1, then take only j-th column of Jacobian matrix (for trial function)

The Jacobian matrices have to been taken both full (i,j = -1) or both partial (i,j = 0 or 1).

Matrix formulas and complex valued scalar formulas are only implemented for full Jacobians.

◆ computeJacobianMatrix_()

void hp2D::BilinearFormHelper_1_1< Real , Real >::computeJacobianMatrix_ ( const BaseQuad< Real > &  elm,
concepts::Array< concepts::Mapping< Real, 2 > > &  J,
concepts::Array< Real > &  detJ_inv 
) const
privateinherited

Compute the Jacobian matrix and the inverse of its determinant on each quadrature point.

◆ data() [1/2]

Gets the pointer to the shared data.

◆ data() [2/2]

void hp2D::BilinearFormHelper_1_1< Real , Real >::data ( const concepts::RCP< concepts::SharedJacobianAdj< 2 > >  d)
inherited

Set the pointer to the shared data.

◆ info()

template<class F = Real>
virtual std::ostream& hp2D::LaplaceMatrix< F >::info ( std::ostream &  os) const
protectedvirtual

Returns information in an output stream.

Reimplemented from concepts::BilinearForm< Real >.

◆ operator()() [1/3]

template<class F = Real>
virtual void hp2D::LaplaceMatrix< F >::operator() ( const concepts::Element< Real > &  elmX,
const concepts::Element< Real > &  elmY,
concepts::ElementMatrix< F > &  em 
) const
virtual

◆ operator()() [2/3]

virtual void concepts::BilinearForm< Real , typename Realtype<Real >::type >::operator() ( const Element< G > &  elmX,
const Element< G > &  elmY,
ElementMatrix< F > &  em 
) const
pure virtualinherited

Evaluates the bilinear form for all shape functions on elmX and elmY and stores the result in the matrix em.

Postcondition
The returned matrix em has the correct size.
Parameters
elmXLeft element (test functions)
elmYRight element (trial functions)
emReturn element matrix

◆ operator()() [3/3]

virtual void concepts::BilinearForm< Real , typename Realtype<Real >::type >::operator() ( const Element< G > &  elmX,
const Element< G > &  elmY,
ElementMatrix< F > &  em,
const ElementPair< G > &  ep 
) const
inlinevirtualinherited

Evaluates the bilinear form for all shape functions on elmX and elmY and stores the result in the matrix em.

If this method is not reimplemented in a derived class, the default behaviour is to call the application operator without ep.

Postcondition
The returned matrix em has the correct size.
Parameters
elmXLeft element
elmYRight element
emReturn element matrix
epElement pair holding more information on the pair elmX and elmY

Definition at line 57 of file bilinearForm.hh.

Member Data Documentation

◆ all_

bool hp2D::LaplaceBase< Real , Real >::all_
protectedinherited

Parameter for the sum factorisation.

Definition at line 75 of file bf_laplace.hh.

◆ frm_

concepts::ElementFormulaContainer<Real > hp2D::BilinearFormHelper_1_1< Real , Real >::frm_
protectedinherited

Element formula.

Definition at line 193 of file bilinearFormHelper.hh.

◆ frmM_

concepts::ElementFormulaContainer<concepts::Mapping<Real ,2> > hp2D::BilinearFormHelper_1_1< Real , Real >::frmM_
protectedinherited

Matrix element formula.

Definition at line 195 of file bilinearFormHelper.hh.

◆ intermediateMatrix_

concepts::Array<concepts::Mapping<Real ,2> > hp2D::BilinearFormHelper_1_1< Real , Real >::intermediateMatrix_
mutableprotectedinherited

Intermediate matrix.

In case of a scalar formula:

\[\mbox{adj}(J) \mbox{adj}(J)^\top\]

In case of a matrix formula $M$:

\[\mbox{adj}(J) M \mbox{adj}(J)^\top\]

In case of partial Jacobian:

\[\mbox{adj}(J)_{\cdot,j} (\mbox{adj}(J)_{\cdot,i})^\top\]

Definition at line 191 of file bilinearFormHelper.hh.

◆ intermediateValue_

concepts::Array<Real > hp2D::BilinearFormHelper_1_1< Real , Real >::intermediateValue_
mutableprotectedinherited

Intermediate value.

In case of a scalar formula:

\[\frac{f(F_K(\xi))}{\det J}\]

In case of a matrix formula:

\[\frac{1}{\det J}\]

Definition at line 179 of file bilinearFormHelper.hh.

◆ sharedData_

concepts::RCP<concepts::SharedJacobianAdj<2> > hp2D::BilinearFormHelper_1_1< Real , Real >::sharedData_
privateinherited

Shared data for vectorial bilinear forms.

Definition at line 212 of file bilinearFormHelper.hh.


The documentation for this class was generated from the following file:
Page URL: http://wiki.math.ethz.ch/bin/view/Concepts/WebHome
21 August 2020
© 2020 Eidgenössische Technische Hochschule Zürich