inhomDirichletBCs.cc
Contents
@section intro Introduction In this tutorial the implementation of inhomogeneous Dirichlet boundary conditions using a Dirichlet lift ansatz is shown. The equation solved is the reaction-diffusion equation \f[ - \Delta u + u = f \f] in the unit square \f$ \Omega = (0,1)^2 \f$ with source term \f[ f(x,y) = -5\exp\left(-(x-1/2)^2-(y-1/2)^2\right) \f] and Dirichlet boundary conditions \f[ u = \begin{cases} \sin \pi x, &(x,y)\in\Gamma_{\rm inh}=\{(x,y)\in\partial\Omega\mid y=0\},\\ 0, &(x,y)\in\partial\Omega\setminus\Gamma_{\rm inh}. \end{cases} \f] A suitable Dirichlet lift is \f[ g = \sin \pi x \; \cos \frac{\pi}{2} y. \f] By setting \f$ u = \tilde{u} + g \f$ the reaction-diffusion equation simplifies to a problem in \f$ \tilde{u} \f$ \f[ - \Delta \tilde{u} + \tilde{u} = f + \Delta g - g, \qquad x\in\Omega, \f] with homogeneous Dirichlet boundary conditions \f[ \tilde{u} = 0, \qquad x\in\partial\Omega. \f] @section variation Variational Formulation Now we derive the corresponding variational formulation of the introduced problem: find \f$ \tilde{u}\in H^1_0(\Omega) \f$ such that \f[ \int_{\Omega}\nabla\tilde{u}\cdot\nabla v\;{\rm d}x + \int_{\Omega}\tilde{u}v\;{\rm d}x = \int_{\Omega}fv\;{\rm d}x -\int_{\Omega}\nabla g\cdot\nabla v\;{\rm d}x - \int_{\Omega}gv\;{\rm d}x \qquad\forall v\in H^1_0(\Omega). \f] @dontinclude inhomDirichletBCs.cc @section commented Commented Program First, system files @until iostream and concepts files @until toolbox are included. With the following using directive @until using we do not need to prepend <tt>concepts::</tt> to <tt>Real</tt> everytime. @subsection main Main Program The mesh is read from three files containing the coordinates, the elements and the boundary attributes of the mesh. @until endl <!--Please see the tutorial @ref mesh "Import 2D Mesh" for a concise explanation of how to write these import files and define the attributes for edges etc. --> In our example the edges are given the following attributes: 1 (bottom), 2 (right), 3 (top) and 4 (left). Now the mesh is plotted using a scaling factor of 100, a greyscale of 1.0 and one point per edge. @until drawMeshEPS The Dirichlet lift and its gradient are defined. @skip concepts @until DirichletLiftGrady The problem for \f$ \tilde{u} \f$ has homogeneous Dirichlet boundary conditions at all four edges. @skip concepts @until bc.add Using the mesh and the homogeneous Dirichlet boundary conditions, the space can be built. We refine the space two times and set the polynomial degree to three. Then the elements of the space are built and the space is plotted. @skip hp2D @until drawMeshEPS The right hand side is computed, containing the integrals of the source term, the Dirichlet lift and its gradient. @skip hp2D @until endl The system matrix is computed from the bilinear form \c hp2D::Laplace<Real> and the bilinear form \c hp2D::Identity<Real>. @skip hp2D @until endl We solve the equation using the conjugate gradient method with a tolerance of 1e-6 and a maximum number of iterations of 200. @skip concepts @until endl In order to add the Dirichlet lift to the solution of the homogeneous Dirichlet problem we transform the solution, that is given as a vector related to the basis functions of \c spc, into an element formula, that can be evaluated at each point in every cell. @skip concepts @until endl We plot the solution, the homogeneous Dirichlet solution and the Dirichlet lift using <tt>graphics::MatlabGraphics</tt>. To this end the shape functions are computed on equidistant points using the trapezoidal quadrature rule. @skip hp2D @until MatlabGraphics @until MatlabGraphics @until MatlabGraphics Finally, exceptions are caught and a sane return value is given back. @until } @until } @section results Results Output of the program: @code
Mesh: Import2dMesh(ncell = 1)
RHS Vector: Vector(121, [-7.813458e-01, -1.331759e-01, -1.446913e-04, -8.977796e-02, -1.975711e-02, -1.504745e-02, -1.103641e-04, -3.490666e-03, 4.167881e-05, -1.009906e+00, -1.735826e-01, 3.466376e-04, -1.628611e-01, 8.126026e-03, -2.796551e-02, 4.594644e-05, -1.436936e-03, 1.759809e-05, -8.586824e-01, -6.786590e-01, -1.598694e-01, 5.110721e-03, -1.388192e-01, -6.395889e-03, -1.248594e-01, -3.466673e-03, -2.580936e-02, 8.124231e-04, -1.244348e-03, 5.860425e-05, -8.122847e-02, -1.558898e-02, -1.461248e-02, 2.876690e-04, -3.028574e-03, 1.411786e-04, -7.813458e-01, -1.331759e-01, -1.446913e-04, -1.628611e-01, 8.126026e-03, -2.796551e-02, 4.594644e-05, 1.436936e-03, -1.759809e-05, -8.977796e-02, -1.975711e-02, -1.504745e-02, -1.103641e-04, 3.490666e-03, -4.167881e-05, -6.786590e-01, -8.122847e-02, -1.558898e-02, -1.248594e-01, -3.466673e-03, -1.461248e-02, 2.876690e-04, 3.028574e-03, -1.411786e-04, -1.388192e-01, -6.395889e-03, -2.580936e-02, 8.124231e-04, 1.244348e-03, -5.860425e-05, -4.822921e-01, -5.869802e-01, -9.922001e-02, 6.668103e-03, -9.533732e-02, 3.713134e-03, -1.236099e-01, -9.222017e-03, -2.002021e-02, 1.475922e-03, 8.660092e-04, -9.094635e-05, -6.180870e-02, -9.103448e-03, -1.221454e-02, 6.601945e-04, 2.115183e-03, -2.198685e-04, -6.016121e-02, -8.736539e-03, -8.218690e-03, 9.139240e-04, 8.895484e-04, -2.644021e-04, -7.032423e-02, -1.180407e-02, -1.147942e-02, 1.894019e-03, 3.595180e-04, -1.091848e-04, -4.822921e-01, -9.922001e-02, 6.668103e-03, -6.180870e-02, -9.103448e-03, -1.221454e-02, 6.601945e-04, -2.115183e-03, 2.198685e-04, -9.533732e-02, 3.713134e-03, -2.002021e-02, 1.475922e-03, -8.660092e-04, 9.094635e-05, -6.016121e-02, -8.736539e-03, -1.147942e-02, 1.894019e-03, -3.595180e-04, 1.091848e-04, -8.218690e-03, 9.139240e-04, -8.895484e-04, 2.644021e-04])
System Matrix: SparseMatrix(121x121, HashedSparseMatrix: 1521 (1.038863e+01%) entries bound.)
Solver: CG(solves SparseMatrix(121x121, HashedSparseMatrix: 1521 (1.038863e+01%) entries bound.), eps = 6.210533e-13, it = 37, relres = 0)
Solution: FrmE_Sum(ElementFormulaVector<1>(hp2D::Value<double>(), Vector(121, [-5.387654e-01, -3.006218e-01, 1.564124e-02, -1.425659e-01, -4.809499e-03, -1.088256e-01, 1.611971e-02, 8.625588e-03, -6.891406e-03, -7.373583e-01, -4.048944e-01, 1.925875e-02, -1.941122e-01, 2.767690e-03, -1.016416e-01, 3.259733e-03, -1.569518e-03, 2.857100e-04, -8.461932e-01, -6.183710e-01, -2.393483e-01, 9.380839e-03, -2.230022e-01, -2.981412e-03, -1.722831e-01, -6.882467e-03, -6.528885e-02, 2.490903e-03, -1.108972e-03, -1.050398e-05, -1.618117e-01, -6.560393e-03, -3.530271e-02, 1.727733e-03, -4.305751e-03, 3.179923e-04, -5.387655e-01, -3.006218e-01, 1.564124e-02, -1.941122e-01, 2.767687e-03, -1.016416e-01, 3.259733e-03, 1.569518e-03, -2.857100e-04, -1.425659e-01, -4.809502e-03, -1.088256e-01, 1.611971e-02, -8.625588e-03, 6.891407e-03, -6.183710e-01, -1.618117e-01, -6.560394e-03, -1.722831e-01, -6.882469e-03, -3.530271e-02, 1.727733e-03, 4.305752e-03, -3.179924e-04, -2.230022e-01, -2.981412e-03, -6.528885e-02, 2.490903e-03, 1.108972e-03, 1.050400e-05, -4.161721e-01, -5.639852e-01, -1.159405e-01, 2.828855e-03, -1.454700e-01, 1.444007e-03, -1.596678e-01, -4.353042e-03, -4.288914e-02, 1.375478e-03, 4.954845e-04, -1.172436e-04, -1.224176e-01, -1.613845e-03, -2.602445e-02, -1.262254e-04, 2.824662e-03, 6.029993e-05, -1.041387e-01, 1.097789e-03, -7.650684e-02, -1.372658e-02, -1.375732e-02, -7.269106e-03, -1.270253e-01, -1.308806e-03, -2.361722e-02, 2.517779e-03, -5.561139e-04, 1.292617e-04, -4.161721e-01, -1.159405e-01, 2.828853e-03, -1.224176e-01, -1.613847e-03, -2.602445e-02, -1.262255e-04, -2.824662e-03, -6.029997e-05, -1.454700e-01, 1.444005e-03, -4.288914e-02, 1.375478e-03, -4.954845e-04, 1.172437e-04, -1.041387e-01, 1.097788e-03, -2.361722e-02, 2.517779e-03, 5.561139e-04, -1.292618e-04, -7.650684e-02, -1.372658e-02, 1.375732e-02, 7.269106e-03])) + ParsedFormula<Real>((sin(pi*x)*cos(pi/2*y))))
Matlab plot of the solution:
@section complete Complete Source Code @author Dirk Klindworth, 2011