TF15: Exponential- und Logarithmusfunktionen


Eine Funktion f mit der Gleichung f(x)= ab
x (b>0) heisst Exponentialfunktion. Ihr Graf verläuft für beliebige positive Werte von b immer durch den Punkt P(0/a). Die x-Achse ist Asymptote. Falls a=1 und b>1 ist, entsteht durch Spiegelung an der Winkelhalbierenden y=x der Graf der Umkehrfunktion von y=bx , welche Logarithmusfunktion zur Basis b heisst. Man schreibt y=blog x. Falls b=2.718.. = e ist, wird die spezielle Bezeichnung y = ln x benutzt. Alle Logarithmusfunktionen haben die y-Achse als Asymptote.