Given's Rotations. More...

#include <givensRotations.hh>

Inheritance diagram for sparseqr::GivensRotations< F >:
concepts::Operator< F >

Public Types

typedef Cmplxtype< F >::type c_type
 Real type of data type. More...
 
typedef Realtype< F >::type r_type
 Real type of data type. More...
 
typedef F type
 Type of data, e.g. matrix entries. More...
 

Public Member Functions

virtual const uint dimX () const
 Returns the size of the image space of the operator (number of rows of the corresponding matrix) More...
 
virtual const uint dimY () const
 Returns the size of the source space of the operator (number of columns of the corresponding matrix) More...
 
template<class G >
 GivensRotations (const concepts::Space< G > &space, const Qmatrix &q, bool transpose)
 
 GivensRotations (uint dim, const Qmatrix &q, bool transpose)
 
void multiply (const concepts::Matrix< F > &fact, concepts::Matrix< F > &dest) const
 Computes fact times Givens and writes the result to dest. More...
 
void multiplyFirst (const concepts::Matrix< F > &fact, concepts::Matrix< F > &dest) const
 Computes Givens times fact and writes the result to dest. More...
 
virtual void operator() ()
 Application operator without argument. More...
 
virtual void operator() (const concepts::Function< F > &fncY, concepts::Function< F > &fncX)
 
virtual void operator() (const Function< c_type > &fncY, Function< c_type > &fncX)
 Application operator for complex function fncY. More...
 
virtual void operator() (const Function< r_type > &fncY, Function< F > &fncX)
 Application operator for real function fncY. More...
 
virtual void show_messages ()
 

Protected Member Functions

virtual std::ostream & info (std::ostream &os) const
 

Protected Attributes

uint dimX_
 Dimension of image space and the source space. More...
 
uint dimY_
 

Private Attributes

const Qmatrixq_
 Given's rotations. More...
 
const bool transpose_
 

Detailed Description

template<typename F>
class sparseqr::GivensRotations< F >

Given's Rotations.

This operator applies a list of givens rotations to a vector.

Parameters
FNumber type of vectors (Real or Cmplx)
GNumber type of space (Real)
transposeApplies the permutation (false) or its transpose (ie. its inverse, true)
Author
Philipp Frauenfelder, 2002
Test:

test::DeepCompositionsTest

test::GolubExample

test::GolubExampleSum

test::MaxwellTransmissionEVP

Definition at line 32 of file givensRotations.hh.

Member Typedef Documentation

◆ c_type

template<class F >
typedef Cmplxtype<F>::type concepts::Operator< F >::c_type
inherited

Real type of data type.

Definition at line 49 of file compositions.hh.

◆ r_type

template<class F >
typedef Realtype<F>::type concepts::Operator< F >::r_type
inherited

Real type of data type.

Definition at line 47 of file compositions.hh.

◆ type

template<class F >
typedef F concepts::Operator< F >::type
inherited

Type of data, e.g. matrix entries.

Definition at line 45 of file compositions.hh.

Constructor & Destructor Documentation

◆ GivensRotations() [1/2]

template<typename F >
template<class G >
sparseqr::GivensRotations< F >::GivensRotations ( const concepts::Space< G > &  space,
const Qmatrix q,
bool  transpose 
)
inline

Definition at line 35 of file givensRotations.hh.

◆ GivensRotations() [2/2]

template<typename F >
sparseqr::GivensRotations< F >::GivensRotations ( uint  dim,
const Qmatrix q,
bool  transpose 
)
inline

Definition at line 39 of file givensRotations.hh.

Member Function Documentation

◆ dimX()

template<class F >
virtual const uint concepts::Operator< F >::dimX ( ) const
inlinevirtualinherited

Returns the size of the image space of the operator (number of rows of the corresponding matrix)

Definition at line 93 of file compositions.hh.

◆ dimY()

template<class F >
virtual const uint concepts::Operator< F >::dimY ( ) const
inlinevirtualinherited

Returns the size of the source space of the operator (number of columns of the corresponding matrix)

Definition at line 98 of file compositions.hh.

◆ info()

template<typename F >
std::ostream & sparseqr::GivensRotations< F >::info ( std::ostream &  os) const
protectedvirtual

Reimplemented from concepts::Operator< F >.

Definition at line 154 of file givensRotations.hh.

◆ multiply()

template<typename F >
void sparseqr::GivensRotations< F >::multiply ( const concepts::Matrix< F > &  fact,
concepts::Matrix< F > &  dest 
) const

Computes fact times Givens and writes the result to dest.

Precondition
fact == dest

Definition at line 98 of file givensRotations.hh.

◆ multiplyFirst()

template<typename F >
void sparseqr::GivensRotations< F >::multiplyFirst ( const concepts::Matrix< F > &  fact,
concepts::Matrix< F > &  dest 
) const

Computes Givens times fact and writes the result to dest.

Precondition
fact == dest

Definition at line 126 of file givensRotations.hh.

◆ operator()() [1/4]

template<class F >
virtual void concepts::Operator< F >::operator() ( )
virtualinherited

◆ operator()() [2/4]

template<typename F >
void sparseqr::GivensRotations< F >::operator() ( const concepts::Function< F > &  fncY,
concepts::Function< F > &  fncX 
)
virtual

Definition at line 62 of file givensRotations.hh.

◆ operator()() [3/4]

template<class F >
virtual void concepts::Operator< F >::operator() ( const Function< c_type > &  fncY,
Function< c_type > &  fncX 
)
virtualinherited

Application operator for complex function fncY.

Computes fncX = A(fncY) where A is this operator. fncX becomes complex.

In derived classes its enough to implement the operator() for complex Operator's. If a real counterpart is not implemented, the function fncY is splitted into real and imaginary part and the application operator for real functions is called for each. Then the result is combined.

If in a derived class the operator() for complex Operator's is not implemented, a exception is thrown from here.

Reimplemented in concepts::DiagonalSolver< F >, concepts::LiCo< F >, concepts::LiCoI< F >, concepts::Multiple< F >, concepts::VecOperator< F >, concepts::VecOperator< T >, concepts::VecOperator< F::d_type >, concepts::VecOperator< Cmplx >, and concepts::VecOperator< Real >.

◆ operator()() [4/4]

template<class F >
virtual void concepts::Operator< F >::operator() ( const Function< r_type > &  fncY,
Function< F > &  fncX 
)
virtualinherited

Application operator for real function fncY.

Computes fncX = A(fncY) where A is this operator.

fncX becomes the type of the operator, for real data it becomes real, for complex data it becomes complex.

In derived classes its enough to implement the operator() for real Operator's. If a complex counterpart is not implemented, the function fncY is transformed to a complex function and then the application operator for complex functions is called.

If in a derived class the operator() for real Operator's is not implemented, a exception is thrown from here.

Reimplemented in concepts::VecOperator< T >, concepts::VecOperator< Real >, concepts::LiCo< F >, concepts::LiCoI< F >, concepts::Multiple< F >, concepts::VecOperator< F >, concepts::VecOperator< F::d_type >, and concepts::VecOperator< Cmplx >.

◆ show_messages()

template<class F >
virtual void concepts::Operator< F >::show_messages ( )
inlinevirtualinherited

Reimplemented in concepts::Newton< F >, concepts::MumpsOverlap< F >, and concepts::Mumps< F >.

Definition at line 100 of file compositions.hh.

Member Data Documentation

◆ dimX_

template<class F >
uint concepts::Operator< F >::dimX_
protectedinherited

Dimension of image space and the source space.

Definition at line 104 of file compositions.hh.

◆ dimY_

template<class F >
uint concepts::Operator< F >::dimY_
protectedinherited

Definition at line 104 of file compositions.hh.

◆ q_

template<typename F >
const Qmatrix& sparseqr::GivensRotations< F >::q_
private

Given's rotations.

Definition at line 57 of file givensRotations.hh.

◆ transpose_

template<typename F >
const bool sparseqr::GivensRotations< F >::transpose_
private

Definition at line 58 of file givensRotations.hh.


The documentation for this class was generated from the following file:
Page URL: http://wiki.math.ethz.ch/bin/view/Concepts/WebHome
21 August 2020
© 2020 Eidgenössische Technische Hochschule Zürich