MUMPS : MUltifrontal Massively Parallel sparse direct Solver. More...

#include <mumps.hh>

Inheritance diagram for concepts::Mumps< F >:
concepts::VecOperator< F > concepts::Operator< F >

Public Types

typedef Cmplxtype< F >::type c_type
 Real type of data type. More...
 
typedef Realtype< F >::type r_type
 Real type of data type. More...
 
typedef F type
 Type of data, e.g. matrix entries. More...
 

Public Member Functions

virtual void apply_ ()
 Intrinsic application method without argument. More...
 
virtual void apply_ (const Vector< F > &fncY, Vector< F > &fncX)
 Intrinsic application method, i.e. More...
 
virtual const uint dimX () const
 Returns the size of the image space of the operator (number of rows of the corresponding matrix) More...
 
virtual const uint dimY () const
 Returns the size of the source space of the operator (number of columns of the corresponding matrix) More...
 
virtual void hide_messages ()
 
 Mumps (const int rank, const int comm=-987654)
 Empty constructor for the parallel version. More...
 
 Mumps (const Operator< F > &A, const bool symmetric, const int rank=-1, const int comm=-987654)
 Constructor. More...
 
 Mumps (const Operator< F > &A, const int rank=-1, const int comm=-987654)
 Constructor. More...
 
void operator() ()
 Application method without second argument. Used for parallel solvers. More...
 
virtual void operator() (const Function< c_type > &fncY, Function< c_type > &fncX)
 Application operator for complex function fncY. More...
 
virtual void operator() (const Function< r_type > &fncY, Function< F > &fncX)
 Application operator for real function fncY. More...
 
void operator() (const Matrix< c_type > &mX, Matrix< c_type > &mY)
 Application method to complex matrices. Calls apply_() More...
 
void operator() (const Matrix< r_type > &mX, Matrix< F > &mY)
 Application method to real matrices. Calls function apply() More...
 
virtual void operator() (const Vector< c_type > &fncY, Vector< c_type > &fncX)
 Application operator for complex function fncY. More...
 
virtual void operator() (const Vector< r_type > &fncY, Vector< F > &fncX)
 Application operator for real vector fncY. More...
 
virtual void show_messages ()
 
virtual ~Mumps ()
 Destructor. More...
 

Protected Member Functions

virtual std::ostream & info (std::ostream &) const
 

Protected Attributes

uint dimX_
 Dimension of image space and the source space. More...
 
uint dimY_
 

Private Attributes

void * A_
 The matrix of the operator in a special sparse notation. More...
 
bool analysis_
 Determine if we did the analysis and factorisation. More...
 
int comm_
 Get solver communicator. More...
 
void * id_mumps_
 Mumps internal state (used for the solver) More...
 
int * irn_
 Array of row indexes in a special sparse notation. More...
 
int * jcn_
 Array of column indexes in a special sparse notation. More...
 
uint n_
 Dimension of the matrix. More...
 
uint nz_
 Number of non-zero elements. More...
 
int rank_
 Get processor rank. More...
 
bool trivial_matrix_
 Determine if the matrix is a trivial (i.e. 1x1) matrix. More...
 

Detailed Description

template<class F>
class concepts::Mumps< F >

MUMPS : MUltifrontal Massively Parallel sparse direct Solver.

MUMPS is a general purpose library for the direct solution of large, sparse, nonsymmetric systems of linear equations on high perormances machines, for both real and complex matrices. The library routines will perform an partial factorization and Schur complement matrix (centralized or 2D block-cyclic).

MUMPS offers different ordering options for a column permutation $ P_c $.

MUMPS has also parallel implementation.

Warning
If MUMPS was compiled with MPI, then Concepts should be compiled with MPI as well (even if using one single node during the execution). As well, the C++ main function code should start with
MPI::Init(argc, argv);
and end with
MPI::Finalize();
return 0;
and the python code should start with
from mpi4py import MPI
Author
Patrick Amestoy
Alfredo Buttari
Abdou Guermouche
Jean-Yves L'Excellent
Bora Ucar
See also
homepage of MUMPS
P.R. Amestoy, I.S. Duff and J.-Y. L'Excellent, Multifrontal parallel distributed symmetric and unsymmetric solvers.Revised version appeared in Comput. Methods in Appl. Mech. Eng., 184, 501-520 (2000).
Examples
BGT_0.cc, elasticity2D_tutorial.cc, exactDtN.cc, and inhomDirichletBCsLagrange.cc.

Definition at line 72 of file mumps.hh.

Member Typedef Documentation

◆ c_type

template<class F >
typedef Cmplxtype<F>::type concepts::VecOperator< F >::c_type
inherited

Real type of data type.

Definition at line 120 of file compositions.hh.

◆ r_type

template<class F >
typedef Realtype<F>::type concepts::VecOperator< F >::r_type
inherited

Real type of data type.

Definition at line 118 of file compositions.hh.

◆ type

template<class F >
typedef F concepts::Operator< F >::type
inherited

Type of data, e.g. matrix entries.

Definition at line 45 of file compositions.hh.

Constructor & Destructor Documentation

◆ Mumps() [1/3]

template<class F >
concepts::Mumps< F >::Mumps ( const Operator< F > &  A,
const int  rank = -1,
const int  comm = -987654 
)

Constructor.

Parameters
AOperator which should be inverted. Everything which is needed from A is copied in the constructor.
rankCurrent processor rank. This parameter can be avoided when using sequential version of MUMPS. if rank is equal to -1 or if rank is not provided, we assume that MUMPS is called as in sequential (only the current processor is involved)

◆ Mumps() [2/3]

template<class F >
concepts::Mumps< F >::Mumps ( const Operator< F > &  A,
const bool  symmetric,
const int  rank = -1,
const int  comm = -987654 
)

Constructor.

Parameters
AOperator which should be inverted. Everything which is needed from A is copied in the constructor.
symmetricis a flag indicating if the operator A is symmetric
rankCurrent processor rank. This parameter can be avoided when using sequential version of MUMPS. if rank is equal to -1 or if rank is not provided, we assume that MUMPS is called as in sequential (only the current processor is involved)

◆ Mumps() [3/3]

template<class F >
concepts::Mumps< F >::Mumps ( const int  rank,
const int  comm = -987654 
)

Empty constructor for the parallel version.

Parameters
rankCurrent processor rank.

◆ ~Mumps()

template<class F >
virtual concepts::Mumps< F >::~Mumps ( )
virtual

Destructor.

Member Function Documentation

◆ apply_() [1/2]

template<class F >
virtual void concepts::Mumps< F >::apply_ ( )
virtual

Intrinsic application method without argument.

Implements concepts::VecOperator< F >.

◆ apply_() [2/2]

template<class F >
virtual void concepts::Mumps< F >::apply_ ( const Vector< F > &  fncY,
Vector< F > &  fncX 
)
virtual

Intrinsic application method, i.e.

real Operator and real Vector or complex Operator and real Vector.

Implements concepts::VecOperator< F >.

◆ dimX()

template<class F >
virtual const uint concepts::Operator< F >::dimX ( ) const
inlinevirtualinherited

Returns the size of the image space of the operator (number of rows of the corresponding matrix)

Definition at line 93 of file compositions.hh.

◆ dimY()

template<class F >
virtual const uint concepts::Operator< F >::dimY ( ) const
inlinevirtualinherited

Returns the size of the source space of the operator (number of columns of the corresponding matrix)

Definition at line 98 of file compositions.hh.

◆ hide_messages()

template<class F >
virtual void concepts::Mumps< F >::hide_messages ( )
virtual

◆ info()

template<class F >
virtual std::ostream& concepts::Mumps< F >::info ( std::ostream &  ) const
protectedvirtual

Reimplemented from concepts::VecOperator< F >.

◆ operator()() [1/7]

template<class F >
void concepts::VecOperator< F >::operator() ( )
virtualinherited

Application method without second argument. Used for parallel solvers.

Reimplemented from concepts::Operator< F >.

◆ operator()() [2/7]

template<class F >
virtual void concepts::VecOperator< F >::operator() ( const Function< c_type > &  fncY,
Function< c_type > &  fncX 
)
virtualinherited

Application operator for complex function fncY.

Computes fncX = A(fncY) where A is this operator. fncX becomes complex.

In derived classes its enough to implement the operator() for complex Operator's. If a real counterpart is not implemented, the function fncY is splitted into real and imaginary part and the application operator for real functions is called for each. Then the result is combined.

If in a derived class the operator() for complex Operator's is not implemented, a exception is thrown from here.

Reimplemented from concepts::Operator< F >.

◆ operator()() [3/7]

template<class F >
virtual void concepts::VecOperator< F >::operator() ( const Function< r_type > &  fncY,
Function< F > &  fncX 
)
virtualinherited

Application operator for real function fncY.

Computes fncX = A(fncY) where A is this operator.

fncX becomes the type of the operator, for real data it becomes real, for complex data it becomes complex.

In derived classes its enough to implement the operator() for real Operator's. If a complex counterpart is not implemented, the function fncY is transformed to a complex function and then the application operator for complex functions is called.

If in a derived class the operator() for real Operator's is not implemented, a exception is thrown from here.

Reimplemented from concepts::Operator< F >.

◆ operator()() [4/7]

template<class F >
void concepts::VecOperator< F >::operator() ( const Matrix< c_type > &  mX,
Matrix< c_type > &  mY 
)
inherited

Application method to complex matrices. Calls apply_()

◆ operator()() [5/7]

template<class F >
void concepts::VecOperator< F >::operator() ( const Matrix< r_type > &  mX,
Matrix< F > &  mY 
)
inherited

Application method to real matrices. Calls function apply()

◆ operator()() [6/7]

template<class F >
virtual void concepts::VecOperator< F >::operator() ( const Vector< c_type > &  fncY,
Vector< c_type > &  fncX 
)
virtualinherited

Application operator for complex function fncY.

Computes fncX = A(fncY) where A is this operator. fncX becomes complex.

In derived classes its enough to implement the operator() for complex Operator's. If a real counterpart is not implemented, the vector fncY is splitted into real and imaginary part and the application operator for real vectors is called for each. Then the result is combined

If in a derived class the operator() for complex Operator's i not implemented, a exception is thrown from here.

◆ operator()() [7/7]

template<class F >
virtual void concepts::VecOperator< F >::operator() ( const Vector< r_type > &  fncY,
Vector< F > &  fncX 
)
virtualinherited

Application operator for real vector fncY.

Computes fncX = A(fncY) where A is this operator.

Type of fncX becomes that of the operator, for real data it becomes real, for complex data it becomes complex.

In derived classes its enough to implement the operator() for real Operator's. If a complex counterpart is not implemented, the vector fncY is transformed to a complex vector and then the application for complex vectors is called.

If in a derived class the operator() for real Operator's is not implemented, a exception is thrown from here.

◆ show_messages()

template<class F >
virtual void concepts::Mumps< F >::show_messages ( )
virtual

Reimplemented from concepts::Operator< F >.

Member Data Documentation

◆ A_

template<class F >
void* concepts::Mumps< F >::A_
private

The matrix of the operator in a special sparse notation.

Definition at line 132 of file mumps.hh.

◆ analysis_

template<class F >
bool concepts::Mumps< F >::analysis_
private

Determine if we did the analysis and factorisation.

Definition at line 150 of file mumps.hh.

◆ comm_

template<class F >
int concepts::Mumps< F >::comm_
private

Get solver communicator.

Definition at line 144 of file mumps.hh.

◆ dimX_

template<class F >
uint concepts::Operator< F >::dimX_
protectedinherited

Dimension of image space and the source space.

Definition at line 104 of file compositions.hh.

◆ dimY_

template<class F >
uint concepts::Operator< F >::dimY_
protectedinherited

Definition at line 104 of file compositions.hh.

◆ id_mumps_

template<class F >
void* concepts::Mumps< F >::id_mumps_
private

Mumps internal state (used for the solver)

Definition at line 146 of file mumps.hh.

◆ irn_

template<class F >
int* concepts::Mumps< F >::irn_
private

Array of row indexes in a special sparse notation.

Definition at line 134 of file mumps.hh.

◆ jcn_

template<class F >
int* concepts::Mumps< F >::jcn_
private

Array of column indexes in a special sparse notation.

Definition at line 136 of file mumps.hh.

◆ n_

template<class F >
uint concepts::Mumps< F >::n_
private

Dimension of the matrix.

Definition at line 138 of file mumps.hh.

◆ nz_

template<class F >
uint concepts::Mumps< F >::nz_
private

Number of non-zero elements.

Definition at line 140 of file mumps.hh.

◆ rank_

template<class F >
int concepts::Mumps< F >::rank_
private

Get processor rank.

Definition at line 142 of file mumps.hh.

◆ trivial_matrix_

template<class F >
bool concepts::Mumps< F >::trivial_matrix_
private

Determine if the matrix is a trivial (i.e. 1x1) matrix.

Definition at line 148 of file mumps.hh.


The documentation for this class was generated from the following file:
Page URL: http://wiki.math.ethz.ch/bin/view/Concepts/WebHome
21 August 2020
© 2020 Eidgenössische Technische Hochschule Zürich