IMProofBench: Benchmarking AI on Research-Level Mathematical Proof Generation, 36 pages. Joint with J. Schmitt, G. Bérczi, J. Dekoninck, J. Feusi, T. Gehrunger, R. Appenzeller, J. Bryan, N. Canova, T. de Wolff, F. Gaia, M. van Garrel, B. Hashemi, D. Holmes, A. Iribar Lopez, M. Jørgensen, S. Kelk, S. Kuhlmann, A. Kurpisz, C. Meroni, I. Metzler, M. Möller, S. Muñoz-Echániz, R. Nowak, G. Oberdieck, D. Platt, D. Possamaï, G. Ribeiro, R. Sánchez Galán, Z. Sun, J. Teichmann, R. P. Thomas, C. Vial.
Morphisms of generalized affine buildings, 41 pages. Joint with R. Appenzeller, X. Flamm. We define a notion of morphism between generalized affine buildings, generalizing existing definitions appearing in the literature.
As an application, we show relationships between different types of buildings via our notion of morphism and prove functoriality results for homogeneous buildings under base field extensions and group homomorphisms.
Upcoming & recent talks
October 2025: The Real Spectrum Compactification of Character Varieties and its relationship with other compactifications at the Séminaire de Groupes et Géométrie, Université de Genève.
February 2025: The Real Spectrum Compactification of Character Varieties and its relationship with other compactifications at the Geometry Seminar, MPI MIS Leipzig.
November 2024: The Real Spectrum Compactification of Character Varieties and its relationship with other compactifications at the Differential Geometry and Topology seminar, University of Cambridge.
November 2024: La compactification par le spectre réel de la variété de caractères et sa relation avec d'autres compactifications at the Séminaire de Théorie Spectrale et Géométrie, Institut Fourier, Grenoble.
June 2024: La compactification par le spectre réel de la variété de caractères et sa relation avec d'autres compactifications at the Séminaire de Géométrie et applications, Université de Strasbourg.
Master’s Thesis: The Rates of Growth in a Limit Group.pdf, under supervision of Professor Marc Burger. We prove, without using Rips machine, a theorem proved by Fujiwara and Sela on the well-order of the set of growth rates of hyperbolic groups.