Linear form on edges in nD. More...

#include <linearForm.hh>

Inheritance diagram for hp1D::Riesz< F >:
concepts::LinearForm< Real > hp1D::LinearFormHelper< 0, Real > concepts::LinearFormChoice

Public Member Functions

void operator() (const concepts::Element< Real > &elm, concepts::ElementMatrix< F > &em) const
 Computes the element load vector. More...
 
virtual void operator() (const Element< typename Realtype< Real >::type > &elm, ElementMatrix< Real > &em) const=0
 Computes the element contribution to the function. More...
 
 Riesz (const concepts::ElementFormulaContainer< F > frm, const concepts::BoundaryConditions *bc=0)
 Constructor. More...
 
virtual void setBasis (Basis basis)
 
virtual ~Riesz ()
 

Public Attributes

Basis basis_
 

Protected Member Functions

virtual std::ostream & info (std::ostream &os) const
 

Private Attributes

Neumann neumann_
 Reference to the linear form of the Neumann condition. More...
 

Detailed Description

template<class F = Real>
class hp1D::Riesz< F >

Linear form on edges in nD.

This linear form computes

\[ \int_K f v \, dx . + \mbox{Neumann term possibly} \]

Author
Kersten Schmidt, 2010
Examples
BGT_0.cc, elasticity2D_tutorial.cc, exactDtN.cc, inhomDirichletBCsLagrange.cc, inhomNeumannBCs.cc, and RobinBCs.cc.

Definition at line 67 of file linearForm.hh.

Constructor & Destructor Documentation

◆ Riesz()

template<class F = Real>
hp1D::Riesz< F >::Riesz ( const concepts::ElementFormulaContainer< F >  frm,
const concepts::BoundaryConditions bc = 0 
)

Constructor.

Parses the formula.

Parameters
frmThe formula

◆ ~Riesz()

template<class F = Real>
virtual hp1D::Riesz< F >::~Riesz ( )
virtual

Member Function Documentation

◆ info()

template<class F = Real>
virtual std::ostream& hp1D::Riesz< F >::info ( std::ostream &  os) const
protectedvirtual

Reimplemented from concepts::LinearForm< Real >.

◆ operator()() [1/2]

template<class F = Real>
void hp1D::Riesz< F >::operator() ( const concepts::Element< Real > &  elm,
concepts::ElementMatrix< F > &  em 
) const

Computes the element load vector.

As for the computation of an element stiffness matrix, there are the loops over all quadrature points and the loops over all shape functions.

Parameters
elmThe element for which the load vector should be computed.
emThe load vector

◆ operator()() [2/2]

virtual void concepts::LinearForm< Real , typename Realtype<Real >::type >::operator() ( const Element< G > &  elm,
ElementMatrix< F > &  em 
) const
pure virtualinherited

Computes the element contribution to the function.

Parameters
elmElement on which the computations should be performed
emThe local matrix

◆ setBasis()

virtual void concepts::LinearFormChoice::setBasis ( Basis  basis)
inlinevirtualinherited

Definition at line 68 of file linearForm.hh.

Member Data Documentation

◆ basis_

Basis concepts::LinearFormChoice::basis_
mutableinherited

Definition at line 71 of file linearForm.hh.

◆ neumann_

template<class F = Real>
Neumann hp1D::Riesz< F >::neumann_
private

Reference to the linear form of the Neumann condition.

Definition at line 88 of file linearForm.hh.


The documentation for this class was generated from the following file:
Page URL: http://wiki.math.ethz.ch/bin/view/Concepts/WebHome
21 August 2020
© 2020 Eidgenössische Technische Hochschule Zürich