A class for holding the shape functions of edge elements on quadrilaterials for a particular polynomials degree (ie. More...

#include <quad.hh>

Public Member Functions

const ushort * p () const
 Returns the polynomial degree. More...
 
 QuadEdgeFunctions (const ushort *p, const concepts::QuadratureRule2d *intRule)
 Constructor. More...
 
 QuadEdgeFunctions (const ushort p, const concepts::QuadratureRule2d *intRule)
 Constructor. More...
 
const concepts::Karniadakis< 1, 1 > * shpfctDX_n () const
 
const concepts::Karniadakis< 1, 1 > * shpfctDY_n () const
 
const concepts::Karniadakis< 1, 0 > * shpfctX_n () const
 
const hp2D::KarniadakisDeriv2shpfctX_t () const
 
const concepts::Karniadakis< 1, 0 > * shpfctY_n () const
 
const hp2D::KarniadakisDeriv2shpfctY_t () const
 
virtual ~QuadEdgeFunctions ()
 Destructor. More...
 

Protected Member Functions

void computeShapefunctions_ (const concepts::QuadratureRule2d *intRule)
 gets the shapefunctions, used in both constructors More...
 

Private Attributes

ushort p_ [2]
 Polynomial degree. More...
 
std::unique_ptr< concepts::Karniadakis< 1, 1 > > shpfctDX_n_
 The derivatives of the normal shape functions. More...
 
std::unique_ptr< concepts::Karniadakis< 1, 1 > > shpfctDY_n_
 
std::unique_ptr< concepts::Karniadakis< 1, 0 > > shpfctX_n_
 The normal shape functions. More...
 
std::unique_ptr< hp2D::KarniadakisDeriv2shpfctX_t_
 The tangential shape functions. More...
 
std::unique_ptr< concepts::Karniadakis< 1, 0 > > shpfctY_n_
 
std::unique_ptr< hp2D::KarniadakisDeriv2shpfctY_t_
 

Detailed Description

A class for holding the shape functions of edge elements on quadrilaterials for a particular polynomials degree (ie.

hp).

Author
Kersten Schmidt, 2004

Definition at line 28 of file quad.hh.

Constructor & Destructor Documentation

◆ QuadEdgeFunctions() [1/2]

hp2Dedge::QuadEdgeFunctions::QuadEdgeFunctions ( const ushort  p,
const concepts::QuadratureRule2d intRule 
)

Constructor.

Parameters
pPolynomial degree of this element
intRuleIntegration rule

◆ QuadEdgeFunctions() [2/2]

hp2Dedge::QuadEdgeFunctions::QuadEdgeFunctions ( const ushort *  p,
const concepts::QuadratureRule2d intRule 
)

Constructor.

This constructor can initialize an anisotropic polynomial degree.

Parameters
pPolynomial degree in the two spatial directions
intRuleIntegration rule

◆ ~QuadEdgeFunctions()

virtual hp2Dedge::QuadEdgeFunctions::~QuadEdgeFunctions ( )
virtual

Destructor.

Member Function Documentation

◆ computeShapefunctions_()

void hp2Dedge::QuadEdgeFunctions::computeShapefunctions_ ( const concepts::QuadratureRule2d intRule)
protected

gets the shapefunctions, used in both constructors

◆ p()

const ushort* hp2Dedge::QuadEdgeFunctions::p ( ) const
inline

Returns the polynomial degree.

The returned array has 2 elements.

Definition at line 49 of file quad.hh.

◆ shpfctDX_n()

const concepts::Karniadakis<1, 1>* hp2Dedge::QuadEdgeFunctions::shpfctDX_n ( ) const
inline

Definition at line 88 of file quad.hh.

◆ shpfctDY_n()

const concepts::Karniadakis<1, 1>* hp2Dedge::QuadEdgeFunctions::shpfctDY_n ( ) const
inline

Definition at line 95 of file quad.hh.

◆ shpfctX_n()

const concepts::Karniadakis<1, 0>* hp2Dedge::QuadEdgeFunctions::shpfctX_n ( ) const
inline

Definition at line 72 of file quad.hh.

◆ shpfctX_t()

const hp2D::KarniadakisDeriv2* hp2Dedge::QuadEdgeFunctions::shpfctX_t ( ) const
inline

Definition at line 57 of file quad.hh.

◆ shpfctY_n()

const concepts::Karniadakis<1, 0>* hp2Dedge::QuadEdgeFunctions::shpfctY_n ( ) const
inline

Definition at line 80 of file quad.hh.

◆ shpfctY_t()

const hp2D::KarniadakisDeriv2* hp2Dedge::QuadEdgeFunctions::shpfctY_t ( ) const
inline

Definition at line 64 of file quad.hh.

Member Data Documentation

◆ p_

ushort hp2Dedge::QuadEdgeFunctions::p_[2]
private

Polynomial degree.

Definition at line 106 of file quad.hh.

◆ shpfctDX_n_

std::unique_ptr<concepts::Karniadakis<1, 1> > hp2Dedge::QuadEdgeFunctions::shpfctDX_n_
private

The derivatives of the normal shape functions.

Definition at line 112 of file quad.hh.

◆ shpfctDY_n_

std::unique_ptr<concepts::Karniadakis<1, 1> > hp2Dedge::QuadEdgeFunctions::shpfctDY_n_
private

Definition at line 112 of file quad.hh.

◆ shpfctX_n_

std::unique_ptr<concepts::Karniadakis<1, 0> > hp2Dedge::QuadEdgeFunctions::shpfctX_n_
private

The normal shape functions.

Definition at line 110 of file quad.hh.

◆ shpfctX_t_

std::unique_ptr<hp2D::KarniadakisDeriv2> hp2Dedge::QuadEdgeFunctions::shpfctX_t_
private

The tangential shape functions.

Definition at line 108 of file quad.hh.

◆ shpfctY_n_

std::unique_ptr<concepts::Karniadakis<1, 0> > hp2Dedge::QuadEdgeFunctions::shpfctY_n_
private

Definition at line 110 of file quad.hh.

◆ shpfctY_t_

std::unique_ptr<hp2D::KarniadakisDeriv2> hp2Dedge::QuadEdgeFunctions::shpfctY_t_
private

Definition at line 108 of file quad.hh.


The documentation for this class was generated from the following file:
Page URL: http://wiki.math.ethz.ch/bin/view/Concepts/WebHome
21 August 2020
© 2020 Eidgenössische Technische Hochschule Zürich