Mapping< F, DimX, DimY > inverse() const
Returns the inverse of the matrix.
Handles graphics output (to a file) of a specific element.
Definition: element.hh:16
std::unique_ptr< hp2D::KarniadakisDeriv2 > shpfctX_t_
The tangential shape functions.
Definition: quad.hh:108
const Real sign() const
Returns sign of outer normal vector, e.g. left edge -1, right edge +1.
Definition: quad.hh:203
concepts::MapReal2d jacobianInverse(const Real t) const
Computes the inverse of the Jacobian.
Definition: quad.hh:248
const hp2D::KarniadakisDeriv2 * shpfctY_t() const
Definition: quad.hh:64
concepts::Real x_
Local coordinate on the element, perpendicular to edge, e.g.
Definition: quad.hh:284
const concepts::Karniadakis< 1, 1 > * shpfctDX_n() const
Definition: quad.hh:88
F determinant() const
Returns the determinant of the matrix (only valid for square matrices)
std::unique_ptr< concepts::Karniadakis< 1, 1 > > shpfctDX_n_
The derivatives of the normal shape functions.
Definition: quad.hh:112
concepts::MapReal2d jacobian(const Real t) const
Computes the Jacobian matrix of element transformation on the edge.
Definition: quad.hh:241
Real diffElement(const Real t) const
Computes the differential element for integration over [-1,1].
Definition: quad.hh:260
const concepts::Karniadakis< 1, 0 > * shpfctY_n() const
Definition: quad.hh:80
virtual std::ostream & info(std::ostream &os) const
#define conceptsAssert(cond, exc)
Assert that a certain condition is fulfilled.
Definition: exceptions.hh:394
std::unique_ptr< hp2D::KarniadakisDeriv2 > shpfctY_t_
Definition: quad.hh:108
const hp2D::KarniadakisDeriv2 * shpfctX_t() const
Definition: quad.hh:57
virtual const concepts::TMatrixBase< F > & T() const
T-Matrix of the appropiate Quad, not used.
Definition: quad.hh:268
A class for holding the shape functions of edge elements on quadrilaterials for a particular polynomi...
Definition: quad.hh:29
void computeShapefunctions_(const concepts::QuadratureRule2d *intRule)
gets the shapefunctions, used in both constructors
QuadEdgeFunctions(const ushort *p, const concepts::QuadratureRule2d *intRule)
Constructor.
concepts::Real2d localCoords(const Real t) const
coordinate of point on the edge inside reference element [0,1]^2
Definition: quad.hh:222
const concepts::Karniadakis< 1, 0 > * shpfctX_n() const
Definition: quad.hh:72
void recomputeShapefunctions()
Recompute shape functions, e.g.
const ushort direction() const
Returns direction of edge on reference quad [0,1]^2, 0 - x, 1 - y.
Definition: quad.hh:197
Real jacobianDeterminant(const Real t) const
Computes the determinant of the Jacobian.
Definition: quad.hh:254
QuadEdgeFunctions(const ushort p, const concepts::QuadratureRule2d *intRule)
Constructor.
Part of the multidimensional expansion bases for the shape functions of Karniadakis and Sherwin.
Definition: quad.hh:517
const concepts::Karniadakis< 1, 1 > * shpfctDY_n() const
Definition: quad.hh:95
virtual const concepts::ElementGraphics< F > * graphics() const
virtual ~Quad()
void recomputeShapefunctions(const uint nq[2])
std::unique_ptr< concepts::Karniadakis< 1, 0 > > shpfctX_n_
The normal shape functions.
Definition: quad.hh:110
A base of a 2D quad FEM element for different basis functions.
Definition: arrayElementFormula.hh:17
std::unique_ptr< concepts::Karniadakis< 1, 1 > > shpfctDY_n_
Definition: quad.hh:112
virtual ~Edge()
virtual std::ostream & info(std::ostream &os) const
std::unique_ptr< concepts::Karniadakis< 1, 0 > > shpfctY_n_
Definition: quad.hh:110
Quad(concepts::Quad2d &cell, ushort *p, concepts::TColumn< F > *T0, concepts::TColumn< F > *T1)
Constructor.
static std::unique_ptr< concepts::ElementGraphics< F > > graphics_
Appropiate element graphics object.
Definition: quad.hh:151
const concepts::QuadratureRule1d * integration() const
Returns the integration rule.
Definition: quad.hh:216
Part of the multidimensional expansion bases for the shape functions of Karniadakis and Sherwin.
Definition: karniadakis.hh:163