hexahedron.hh
const concepts::Karniadakis< 1, 1 > * shpfctDX() const
Returns the derivatives of the shape functions in x direction.
Definition: hexahedron.hh:74
concepts::MapReal3d jacobian(const Real x, const Real y, const Real z) const
Computes the Jacobian.
Definition: hexahedron.hh:107
Mapping< F, DimX, DimY > inverse() const
Returns the inverse of the matrix.
const concepts::Karniadakis< 1, 0 > * shpfctY() const
Returns the shape functions in y direction.
Definition: hexahedron.hh:65
std::unique_ptr< concepts::Karniadakis< 1, 0 > > shpfctX_
The shape functions.
Definition: hexahedron.hh:212
void setStrategy(const concepts::Hex3dSubdivision *strategy=0)
Sets the subdivision strategy of the underlying cell of this element.
Definition: hexahedron.hh:140
F determinant() const
Returns the determinant of the matrix (only valid for square matrices)
Integration point consisting of coordinates and intermediate data.
Definition: integral.hh:34
const concepts::Karniadakis< 1, 0 > * shpfctZ() const
Returns the shape functions in z direction.
Definition: hexahedron.hh:69
void edgeP(const uint i, const concepts::AdaptiveControlP< 1 > &p)
Set polynomial degree of edge i to p.
Definition: hexahedron.hh:164
ArrayHexaWeights(const Hexahedron &hex)
Constructor for a Hexahedron.
virtual ~Hexahedron()
const concepts::Hex3dSubdivision * getStrategy() const
Returns the subdivision strategy of the underlying cell of this element.
Definition: hexahedron.hh:148
virtual const concepts::Hexahedron & support() const
Definition: hexahedron.hh:50
const concepts::QuadratureRule1d * integrationX() const
Returns the integration rule in x direction.
Definition: hexahedron.hh:87
const concepts::Karniadakis< 1, 1 > * shpfctDZ() const
Returns the shape functions in z direction.
Definition: hexahedron.hh:82
intFormType
Integration form, which determines terms coming from integration over reference element.
Definition: integral.hh:29
std::unique_ptr< concepts::QuadratureRule1d > intZ_
Definition: hexahedron.hh:216
Real jacobianDeterminant(const Real x, const Real y, const Real z) const
Computes the determinant of the Jacobian.
Definition: hexahedron.hh:121
std::unique_ptr< concepts::Karniadakis< 1, 1 > > shpfctDY_
Definition: hexahedron.hh:214
virtual const concepts::ElementGraphics< Real > * graphics() const
void computeShapefunctions_(const concepts::QuadratureRule1d *intX, const concepts::QuadratureRule1d *intY, const concepts::QuadratureRule1d *intZ)
gets the shapefunctions, used in both constructors
virtual bool operator<(const Element< Real > &elm) const
Comparison operator for elements.
#define conceptsAssert(cond, exc)
Assert that a certain condition is fulfilled.
Definition: exceptions.hh:394
void recomputeShapefunctions(const uint nq[2])
static concepts::QuadRuleFactory & rule()
Access to the quadrature rule, which is valid for all elements of this type (hp3D::Hexaedron).
Definition: hexahedron.hh:193
const Hex3dSubdivision * getStrategy() const
Returns the subdivision strategy of this hexahedron.
Definition: cell3D.hh:486
void recomputeShapefunctions()
virtual const concepts::Hexahedron3d & cell() const
Definition: hexahedron.hh:56
Class to represent the quadrature weights on all quadrature points.
Definition: hexahedron.hh:238
const concepts::AdaptiveControlP< 1 > * edges_[12]
Polynomial degree of edges.
Definition: hexahedron.hh:219
void faceP(const uint i, const concepts::AdaptiveControlP< 2 > &p)
Set polynomial degree of face i to p.
Definition: hexahedron.hh:175
std::unique_ptr< concepts::Karniadakis< 1, 1 > > shpfctDZ_
Definition: hexahedron.hh:214
virtual std::ostream & info(std::ostream &os) const
const concepts::QuadratureRule1d * integrationY() const
Returns the integration rule in y direction.
Definition: hexahedron.hh:91
Hexahedron(concepts::Hexahedron3d &cell, const ushort *p, concepts::TColumn< Real > *T0, concepts::TColumn< Real > *T1)
Constructor.
concepts::MapReal3d hessian(const uint i, const Real x, const Real y, const Real z) const
Computes the Hessian.
Definition: hexahedron.hh:126
static std::unique_ptr< HexahedronGraphics > graphics_
Definition: hexahedron.hh:223
const concepts::Karniadakis< 1, 0 > * shpfctX() const
Returns the shape functions in x direction.
Definition: hexahedron.hh:61
const concepts::QuadratureRule1d * integrationZ() const
Returns the integration rule in z direction.
Definition: hexahedron.hh:95
virtual concepts::Real3d vertex(uint i) const
Returns the coordinates of the ith vertex of this element.
Definition: hexahedron.hh:53
std::unique_ptr< concepts::Karniadakis< 1, 1 > > shpfctDX_
The derivatives of the shape functions.
Definition: hexahedron.hh:214
const concepts::AdaptiveControlP< 2 > * faces_[6]
Polynomial degree of faces.
Definition: hexahedron.hh:221
concepts::Real3d chi(const Real x, const Real y, const Real z) const
Computes the element map.
Definition: hexahedron.hh:101
MapReal3d jacobian(const Real xi, const Real eta, const Real zeta) const
Computes the Jacobian for xi, eta, zeta .
MapReal3d hessian(const uint i, const Real xi, const Real eta, const Real zeta) const
const concepts::Karniadakis< 1, 1 > * shpfctDY() const
Returns the shape functions in y direction.
Definition: hexahedron.hh:78
virtual bool quadraturePoint(uint i, intPoint &p, intFormType form, bool localCoord) const
Delivers a quadrature point.
std::unique_ptr< concepts::Karniadakis< 1, 0 > > shpfctZ_
Definition: hexahedron.hh:212
const concepts::AdaptiveControlP< 1 > & edgeP(const uint i) const
Get polynomial degree of edge i.
Definition: hexahedron.hh:169
concepts::MapReal3d jacobianInverse(const Real x, const Real y, const Real z) const
Computes the inverse of the Jacobian.
Definition: hexahedron.hh:115
std::unique_ptr< concepts::Karniadakis< 1, 0 > > shpfctY_
Definition: hexahedron.hh:212
std::unique_ptr< concepts::QuadratureRule1d > intY_
Definition: hexahedron.hh:216
bool hasSameMatrix(const Hexahedron &elm) const
Returns true if element matrix is the same.
Interface for geometrical subdivision strategies for hexahedrons.
Definition: cell3D.hh:159
void setStrategy(const Hex3dSubdivision *strategy=0)
Sets the subdivision strategy of this hexahedron.
const concepts::AdaptiveControlP< 2 > & faceP(const uint i) const
Get polynomial degree of face i.
Definition: hexahedron.hh:180
std::unique_ptr< concepts::QuadratureRule1d > intX_
The integration rules.
Definition: hexahedron.hh:216
Part of the multidimensional expansion bases for the shape functions of Karniadakis and Sherwin.
Definition: karniadakis.hh:163