 
  
Bühlmann, P. and van de Geer,
S. (2011). 
    Statistics for High-Dimensional Data: Methods, Theory and
    Applications. Springer.  
   
   
    
Statistical
  Analysis for High-Dimensional Data. The Abel Symposium 2014. Edited
  by Frigessi, A., Bühlmann, P., Glad, I.K., Langaas, M., Richardson,
S. and Vannucci, M. (2016). Springer.
 
Handbook
    of Big Data. Edited by Bühlmann, P.,  Drineas, P., Kane, M. and
van der Laan, M. (2016). Chapman & Hall/CRC.
 
  
 Causal Chambers 
 
 
Gamella, J.L., Peters, J. and Bühlmann, P. (2025). Causal
 Chambers as a real-world physical testbed for AI methodology. Nature
 Machine Intelligence 7, 107-118. Download 
 Article in ETH News
 
  
  
 Preprints 
  Londschien, M., Burger, M., Rätsch, G. and Bühlmann, P. (2025). Domain generalization and adaptation in intensive care with anchor regression Preprint arXiv:2507.21783  
 Burger, M., Chopard, D., Londschien, M., Sergeev, F., Yèche,
  H., Kuznetsova, R., Faltys, M., Gerdes, E., Leshetkina, P., Bühlmann,
  P. and Rätsch, G. (2025). A foundation model for intensive care
  unlocking generalization across tasks and domains at scale. Preprint medRxiv:2025.07.25.25331635  
 Scheidegger, C., Londschien, M. and Bühlmann, P. (2025). A
  Residual prediction test for the well-specification of linear instrumental variable models. Preprint arXiv:2506.12771 
 Sola, M., Shen, X. and Bühlmann, P. (2025). Causality-inspired
  robustness for nonlinear models via representation learning. Preprint arXiv:2505.12868 
 Young, E.H. and Bühlmann, P. (2025). Clustered random forests
  with correlated data for optimal estimation and inference under potential
  covariate shift. Preprint arXiv:2503.12634 
 Scheidegger, C., Guo, Z. and Bühlmann, P. (2025). Inference for heterogeneous treatment effects with efficient instruments and machine learning. Preprint arXiv:2503.03530    
 Wang, Z., Hu, Y.,  Bühlmann, P. and Guo, Z. (2024). Causal
  invariance learning via efficient optimization of a nonconvex objective. Preprint arXiv:2412.11850   
 Londschien, M. and Bühlmann, P. (2024). Weak-instrument-robust subvector inference in instrumental variables regression: A subvector Lagrange multiplier test and properties of subvector Anderson-Rubin confidence sets. Preprint arXiv:2407.15256   
 Pfister, N. and Bühlmann, P. (2024). Extrapolation-aware nonparametric statistical inference. Preprint arXiv:2402.09758     
 Law, M., Bühlmann, P. and Ritov, Y. (2023). Distributional
  robustness and transfer learning through Empirical Bayes. Preprint arXiv:2312.08485          
 Gamella, J.L., Taeb, A., Heinze-Deml, C. and Bühlmann, P. (2022). Characterization and greedy learning of Gaussian structural causal models under unknown interventions. Preprint arXiv:2211.14897    
  Guo, Z., Zheng, M. and Bühlmann, P. (2022). Robustness against
 weak or invalid instruments: exploring nonlinear treatment models with
 machine learning. Preprint arXiv:2203.12808 
 
    2025 
 Ulmer, M., Scheidegger, C. and Bühlmann, P. (2025). Spectrally
 deconfounded Random Forests. To appear in the Journal of Computational and Graphical Statistics. Preprint arXiv:2502.03969    
 Wang, Z., Bühlmann, P. and Guo, Z (2023). Distributionally robust
  learning for muti-souce unsupervised domain adaptation. To appear in the
  Annals of Statistics. Preprint arXiv:2309.02211 Chosen as invited poster presentation at NeurIPS 2025.   
 Shen, X., Bühlmann, P. and Taeb, A. (2025). Causality-oriented
  robustness: exploiting general noise interventions in linear structural
  causal models. To appear in the Journal of the American Statistical
  Association. Early access. Preprint arXiv:2307.10299     
 Gu, Y., Fang, C., Bühlmann, P. and Fan, J. (2024).  Causality
  pursuit from heterogeneous environments via neural adversarial invariance
  learning. To appear in the Annals of Statistics. Preprint arXiv:2405.04715 
    Carl, D., Emmenegger, C., Bühlmann, P. and Guo, Z. (2025). TSCI:
  two stage curvature identification for causal inference with invalid
  instruments in R. Journal of Statistical Software 114, doi:
  10.18637/jss.v114.i07, 1-21. Download
  Schultheiss, C., Ulmer, M. and Bühlmann, P. (2025). Ancestor
 regression in structural vector autoregressive models. Journal of Causal
 Inference 13 (1) 20240011, 1-25. Download 
 Emmenegger, C., Spohn, M.-L., Elmer, T. and Bühlmann,
   P. (2025). Treatment effect estimation with observational network data
   using machine learning. Journal of Causal Inference 13 (1) 20230082,
  1-36. Download 
 Zellinger, M.J. and Bühlmann, P. (2025). Natural language-based
 synthetic data generation for cluster analysis. Journal of
 Classification, https://doi.org/10.1007/s00357-025-09501-w, 1-27. Download  
 Henzi, A., Shen, X., Law, M. and  Bühlmann, P. (2025). Invariant
  probabilistic prediction. Biometrika 112 (1), asae063
  https://doi.org/10.1093/biomet/asae063, 1-22. Download
 Plecko, D., Bennett, N., Ukor, I.-F., Rodemund, N., Serpa-Neto,
  A. and Bühlmann, P. (2025). A framework and analytical exploration
  for a data-driven update of the Sequential Organ Failure Assessment
  (SOFA) score in sepsis. Critical Care and Resuscitation 27 (1) 100105, 1-7. Download  
 Scheidegger, C., Guo, Z. and Bühlmann, P. (2025). Spectral
  deconfounding for high-dimensional sparse additive models. ACM/IMS
  Journal of Data Science 2 (1), 1-52. Download    
 Gamella, J.L., Peters, J. and Bühlmann, P. (2025). Causal
 Chambers as a real-world physical testbed for AI methodology. Nature
 Machine Intelligence 7, 107-118. Download 
  
 2024 
 Qian, L., Sun, R., Aebersold, R., Bühlmann, P., Sander,
  C. and Guo, T. (2024). AI-empowered perturbation proteomics for complex
  biological systems. Cell Genomics 4 (11) 100691, 1-16. Download
 Kovács, S., Li, H., Haubner, L., Munk, A. and Bühlmann,
  P. (2024). Optimistic search: Change point estimation for
  large-scale data via adaptive logarithmic queries. Journal of Machine
  Learning Research 25 (297):
  1-64. Download
 Taeb, A., Gamella, J.L., Heinze-Deml, C. and Bühlmann,
  P. (2024). Learning and scoring Gaussian latent variable causal models
  with unknown additive interventions. Journal of Machine Learning Research
  25 (293): 1-68. Download     
   Schultheiss, C., Bühlmann, P. and Yuan, M. (2024). Assessing the
  goodness of fit of linear regression via higher-order least
  squares. Journal of the American Statistical Association 119, 1019-1031. Download
 Schultheiss, C. and Bühlmann, P. (2024). Assessing the overall
  and partial causal well-specification of nonlinear additive noise
  models. Journal of Machine Learning Research 25, (159): 1-41. Download   
 Taeb, A., Bühlmann, P. and Chandrasekaran, V. (2024). Model
  selection over partially ordered sets. Proceedings of the National
  Academy of Sciences USA 121, No. 8, e314228121: 1-12. Download  
  
 2023 
  
 Näf, J., Emmenegger, C., Bühlmann, P. and Meinshausen,
  N. (2023). Confidence and uncertainty assessment for distributional
  Random Forests. Journal of Machine Learning Research 24, (366): 1-77. Download     
 Immer, A., Schultheiss, C., Vogt, J.E., Schölkopf, B.,
  Bühlmann, P. and Marx, A. (2023). On the identifiability and
    estimation of causal location-scale noise models. Proceedings of the
  40th International Conference on Machine Learning (ICML), PMLR
  202:14316-14332, 2023. Download   
 Schultheiss, C. and Bühlmann, P. (2023). Ancestor regression in linear structural equation models. Biometrika 110, 1117-1124. Download
 Emmenegger, C. and Bühlmann, P. (2023). Plug-in machine
  learning for partially linear mixed-effects models with repeated
    measurements. Scandinavian Journal of Statistics 50, 1553-1567. Download    
 Law, M. and Bühlmann, P. (2023). Discussion of “A Scale-Free
  Approach for False Discovery Rate Control in Generalized Linear Models
  (Dai, Lin, Xing and Liu)”. Journal of the American
  Statistical Association 118, 1578-1583. Download  
 Rothenhäusler, D. and Bühlmann, P. (2023). Distributionally
  robust and generalizable inference. Statistical
  Science, 38, No. 4, 527-542. Download
 Londschien, M., Bühlmann, P. and Kovács,
  S. (2023). Random Forests for change point detection. Journal of Machine
  Learning Research 24, (216): 1-45. Download  
 Moor, M., Bennett, N., Plecko, D., Horn, M., Rieck, B., Meinshausen,
  N., Bühlmann, P. and Borgwardt, K. (2023). Predicting sepsis using
  deep learning across international sites: a retrospective development and
  validation study. eClinicalMedicine 62, Article 103124, 1-13. Download   
 Bennett, N., Plecko, D., Ukor, I.-F., Meinshausen, N. and
  Bühlmann, P. (2023). ricu: R's interface to intensive care
    data. GigaScience 12, giad041, 1-8. Download       
 Schultheiss, C. and Bühlmann, P. (2023). On the pitfalls of
  Gaussian likelihood scoring for causal discovery. Journal of Causal
  Inference 11(1), jci-2022-0068, 1-11. Download
   Shah, R.D. and Bühlmann, P. (2023). Double-estimation-friendly
    inference for high-dimensional misspecified models. Statistical Science
    38, 68-91. Download  
 Kovács, S., Bühlmann, P., Li, H. and Munk, A. (2023). Seeded binary segmentation: a general methodology for fast and optimal change point detection. Biometrika 110, 249-256. Download
   Danielli, S.G., Porpiglia, E., De Micheli, A.J., Navarro, N.,
    Zellinger, M.J., Bechtold, I., Kisele, S., Volken, L., Ngo, Q.A.,
    Marques, J.G., Kasper, S., Bode, P.K., Henssen, A.G., Gürgen, D.,
    Delattre, O., Surdez, D., Roma, J., Bühlmann, P., Blau, H.M.,
    Wachtel, M. and Schäfer, B.W. (2023). Single-cell profiling of
    alveolar rhabdomyosarcoma reveals RAS pathway inhibitors as cell-fate
    hijackers with therapeutic relevance. Science Advances 9,
    eade9238, 1-20. Download
   Marmolejo-Ramos, F., Tejo, M., Brabec, M., Kuzilek, J., Joksimovic,
    S., Kovanovic, V., González, J., Kneib, T., Bühlmann, P., Kook,
    L., Briseño-Sánchez, G., Ospina,
    R. (2023). Distributional regression modeling via generalized additive
    models for location, scale, and shape: An overview through a dataset
    from learning analytics. WIREs Data Mining and Knowledge Discovery 13,
    e1479, 1-22. Download
    
     2022 
     Ćevid, D., Michel, L., Näf, J., Bühlmann,
  P. and Meinshausen, N. (2022). Distributional Random Forests:
  heterogeneity adjustment and multivariate distributional
  regression. Journal of Machine Learning Research 23, (333): 1-79. Download     
   Scheidegger, C., Hörrmann, J. and Bühlmann, P. (2022). The
  weighted generalised covariance measure. Journal of
    Machine Learning Research 23, (273): 1-68. Download   
   Guo, Z., Ćevid, D. and Bühlmann, P. (2022). Doubly
    Debiased Lasso: high-dimensional inference under hidden
    confounding. Annals of Statistics 50, 1320-1347. Download    
 Jakobsen, M.E., Shah, R.D., Bühlmann, P. and Peters,
  J. (2022). Structure learning for directed trees. Journal of Machine
  Learning Research 23, (159): 1-97. Download    
 Kook, L., Sick, B. and Bühlmann, P. (2022). Distributional anchor
  regression. Statistics and Computing 32: 39, 1-19. Download 
 Jablonski, K.P., Pirkl, M., Ćevid, D., Bühlmann, P. and
  Beerenwinkel, N. (2022). Identifying cancer pathway dysregulations using
  differential causal effects. Bioinformatics 38, 1550-1559. Download
 Williams, E.G., Pfister, N., Roy, S., Statzer, C., Ingels, J., Bohl,
    C.,  Hasan, M., Cuklina, J., Bühlmann, P.,  Zamboni, N., Lu, L.,
  Ewald, C.Y., Williams, R.W. and Aebersold, R. (2022). Multiomic profiling of the liver across diets and age in a diverse mouse population. Cell Systems 13,
    43-57. Download Preprint bioRxiv:2020.08.20.222968
   2021 
 Guo, Z., Renaux, C., Bühlmann, P. and Cai, T.T. (2021). Group
  inference in high dimensions with applications to hierarchical
  testing. Electronic Journal of Statistics 15, 6633-6676. Download 
 Emmenegger, C. and Bühlmann, P. (2021). Regularizing double
  machine learning in partially linear endogenous models. Electronic
  Journal of Statistics 15, 6461-6543. Download 
 Chen, Y. and Bühlmann, P. (2021). Domain adaptation under
  structural causal models. Journal of Machine Learning Research 22, (261):
  1-80. Download   
 Pfister, N., Williams, E.G., Peters, J., Aebersold, R. and Bühlmann,
  P. (2021). Stabilizing variable selection and regression. Annals of
  Applied Statistics 15, 1220-1246. Download    
 Londschien, M., Kovács, S. and Bühlmann, P. (2021). Change
  point detection for graphical models in presence of missing
  values. Journal of Computational and Graphical Statistics 30, 768-779. Download
   Bühlmann, P. (2021). One modern culture of statistics. Comments
  on Statistical Modeling: The Two Cultures (Breiman, 2001b). Observational
  Studies 7, 33-40. Download 
 Rothenhäusler, D., Meinshausen, N., Bühlmann, P. and Peters,
  J. (2021). Anchor regression: heterogeneous data meet
  causality. Journal of the Royal Statistical Society,
  Series B 83, 215-246. Download   
 Schultheiss, C., Renaux, C. and Bühlmann, P. (2021). Multicarving
  for high-dimensional post-selection inference. Electronic Journal of
  Statistics 15, 1695-1742. Download  
   2020 
 Bühlmann, P. and Ćevid, D. (2020). Deconfounding and
  causal regularization for stability and external validity. International
  Statistical Review 88, S114-S134. Download 
   Ćevid, D., Bühlmann, P. and Meinshausen,
  N. (2020). Spectral deconfounding via perturbed sparse linear
    models. Journal of Machine Learning Research 21, (232): 1-41. Download  
 Kovács, S., Li, H. and Bühlmann, P. (2020). Seeded
  intervals and noise level estimation in change point detection: A
  discussion of Fryzlewicz (2020). Journal of the Korean
  Statistical Society 49, 1081-1089. Download   
 Chen, Y., Taeb, A. and  Bühlmann, P. (2020). A look at robustness
  and stability of l1- versus l0-regularization: Discussion of
  papers by Bertsimas et al. and Hastie et al. Statistical Science 35,
  614-622. Download  
 Bühlmann, P. (2020). Toward causality and improving external
  validity. Proceedings of the National Academy of Sciences
  USA 117,
  25963-25965. Download 
 Janková, J., Shah, R.D., Bühlmann, P. and Samworth
  R.J. (2020). Goodness-of-fit testing in high-dimensional generalized
  linear models. Journal of the Royal Statistical Society, Series
  B 82, 773-795. Download
 Bühlmann, P. (2020). Rejoinder: Invariance, Causality and
  Robustness. Statistical Science 35, 434-436. Download   
 Bühlmann, P. (2020). Invariance, Causality and
  Robustness (with discussion). Statistical Science 35, 404-426. Download   
 Renaux, C., Buzdugan, L., Kalisch, M. and Bühlmann,
  P. (2020). Rejoinder on: Hierarchical inference for genome-wide
  association studies: a view on methodology with software. Computational
  Statistics 35, 59-67. Download  
 Renaux, C., Buzdugan, L., Kalisch, M. and Bühlmann,
  P. (2020). Hierarchical inference for genome-wide association studies: a
  view on methodology with software (with discussion). Computational
  Statistics 35, 1-40. Download 
  
 2019 
 Pfister, N., Weichwald, S., Bühlmann, P. and Schölkopf,
  B. (2019). Robustifying Independent Component Analysis by adjusting for
  group-wise stationary noise. Journal of Machine Learning Research 20,
  (147):1-50. Download 
 Bühlmann, P. (2019). Comments on: Data science, big data and
  statistics. TEST 28, 330-333. Download 
 Rothenhäusler, D., Bühlmann, P. and Meinshausen,
  N. (2019). Causal Dantzig: fast inference in linear structural equation
  models with hidden variables under additive interventions. Annals of
  Statistics 47, 1688-1722. Download
 Pfister, N., Bühlmann, P. and Peters, J. (2019). Invariant causal
  prediction for sequential data. Journal of the American
  Statistical Association 114, 1264-1276.Download
  
  
 2018 
 
 Rothenhäusler, D., Ernest, J. and Bühlmann,
  P. (2018). Causal inference in partially linear structural equation
  models. Annals of Statistics 46, 2904-2938. Download
 Bühlmann, P. and van de Geer, S. (2018). Statistics for big data:
  A perspective. Statistics & Probability Letters 136, 37-41. Download
 Hothorn, T., Möst, L. and Bühlmann, P. (2018). Most likely
  transformations. Scandinavian Journal of Statistics 45, 110-134. Download  
 Shah, R.D. and Bühlmann, P. (2018). Goodness of fit tests for
  high-dimensional linear models. Journal of the Royal Statistical Society,
  Series B 80, 113-135. Download  
 Pfister, N., Bühlmann, P., Schölkopf, B. and Peters,
  J. (2018). Kernel-based tests for joint independence. Journal of the
  Royal Statistical Society, Series B 80, 5-31. Download    
 2017 
 Nowzohour, C., Maathuis, M.H., Evans, R.J. and Bühlmann,
  P. (2017). Distributional equivalence and structure learning for bow-free
  acyclic path diagrams. Electronic Journal of Statistics 11, 5342-5374. Download
 Dezeure, R., Bühlmann, P. and Zhang,
  C.-H. (2017). High-dimensional simultaneous inference with the
  bootstrap (with discussion). TEST 26,
  685-719. Download  
 Dezeure, R., Bühlmann, P. and Zhang,
  C.-H. (2017). Rejoinder on: High-dimensional simultaneous inference with the
  bootstrap. TEST 26, 751-758. Download
 Bühlmann, P. (2017). High-dimensional statistics, with applications
to genome-wide association studies. EMS Surveys in Mathematical
  Sciences 4, 45-75. Preprint PDF     
 Li, S., Ernest, J. and Bühlmann, P. (2017). Nonparametric causal
  inference from observational time series through marginal
  integration. Econometrics and Statistics 2, 81-105. PDF 
 2016 
 Klasen, J.R., Barbez, E., Meier, L., Meinshausen, N., Bühlmann,
  P., Koornneef, M., Busch, W. and Schneeberger, K. (2016). A multi-marker
  association method for Genome-Wide Association studies without the need
  for population structure correction. Nature Communications 7, Article
  number 13299 (2016), doi:10.1038/ncomms13299. Download  
 Peters, J., Bühlmann, P. and Meinshausen, N. (2016). Causal
  inference using invariant prediction: identification and confidence
  intervals (with discussion). Journal of the Royal Statistical Society,
  Series B 78, 947-1012. PDF 
 Buzdugan, L., Kalisch, M., Navarro, A., Schunk, D., Fehr, E. and
  Bühlmann, P. (2016). Assessing statistical significance in
  multivariable genome wide association analysis. Bioinformatics 32,
  1990-2000. Download 
 Bühlmann, P. and Dezeure, R. (2016). Invited Discussion on
  "Regularized regression for categorical data (Tutz and
  Gertheiss)". Statistical Modelling: An International Journal 16, 205-211. PDF 
 Meinshausen, N., Hauser, A., Mooij, J.M., Peters, J., Versteeg, P. and
  Bühlmann, P. (2016). Methods for causal inference from gene
perturbation experiments and validation. Proceedings of
  the National Academy of Sciences USA 113,
  7361-7368. PDF. Supporting Information
 Mandozzi, J. and Bühlmann, P. (2016). A sequential rejection
  testing method for high-dimensional regression with correlated
  variables. International Journal of Biostatistics 12, 79-95. PDF
 Nowzohour, C. and Bühlmann, P. (2016). Score-based causal
  learning in additive noise models. Statistics 50, 471-485. PDF   
 Bühlmann, P. and Leonardi, F. (2016). Comments on: A random
  forest guided tour. (Discussion on a paper by G. Biau and
  E. Scornet). TEST 25, 239-246. PDF 
 Mandozzi, J. and Bühlmann, P. (2016). Hierarchical testing in the
  high-dimensional setting with correlated
  variables. Journal of the American Statistical Association 111,
  331-343. PDF. Supplement
Rothenhäusler, D., Meinshausen, N. and Bühlmann,
  P. (2016). Confidence intervals for maximin effects in inhomogeneous
  large-scale data. In Statistical
  Analysis for High-Dimensional Data. The Abel Symposium 2014 (eds. Frigessi, A., Bühlmann, P., Glad, I.K., Langaas, M., Richardson,
S. and Vannucci, M.), pp. 255-277. Springer. PDF 
 Bühlmann, P. and Meinshausen, N. (2016). Magging: maximin
  aggregation for inhomogeneous large-scale data. Proceedings of the IEEE
  104, 126-135. PDF
 Ruiz-Sola, M.A., Coman, D., Beck, G., Barjaa, M.V., Colinas-Martinez,
  M., Graf, A., Welsch, R., Rütimann, P., Bühlmann, P.,
  Bigler, L., Gruissem, W., Rodriguez-Concepcion, M. and Vranova,
  E. (2016). Arabidopsis geranylgeranyl diphosphate synthase 11 is a hub
  isozyme required for the production of most photosynthesis-related
  isoprenoids. New Phytologist 209, 252-264. 
 2015 
 Ernest, J. and Bühlmann, P. (2015). Marginal integration for
  nonparametric causal inference. Electronic Journal of 
  Statistics 9, 3155-3194. Download
 Dezeure, R., Bühlmann, P., Meier, L. and Meinshausen,
  N. (2015). High-dimensional inference: confidence intervals, p-values and
  R-software hdi. Statistical Science 30, 533-558. PDF 
Bühlmann, P. and van de Geer, S. (2015). High-dimensional inference
  in misspecified linear models. Electronic Journal of
  Statistics 9,
  1449-1473. Download 
 Meinshausen, N. and Bühlmann, P. (2015). Maximin effects in
  inhomogeneous large-scale data. Annals of Statistics 43, 1801-1830. PDF  
 Peters, J. and Bühlmann, P. (2015). Structural intervention
  distance (SID) for evaluating causal graphs. Neural Computation
  27,771-799. PDF 
 Hauser, A. and Bühlmann, P. (2015). Jointly interventional and
  observational data: estimation of interventional Markov equivalence
  classes of directed acyclic graphs. Journal of the Royal
  Statistical Society: Series B 77, 291-318. PDF 
 2014 
 Rämö, P., Drewek, A., Arrieumerlou, C.,
  Beerenwinkel, N., Ben-Tekaya, H., Cardel, B., Casanova, A.,
  Conde-Alvarez, R., Cossart, P., Csucs, G., Eicher, S.,  Emmenlauer, M.,
  Greber, U., Hardt, W.-D., Helenius, A., Kasper, C., Kaufmann, A.,
  Kreibich, S., Kühbacher, A., Kunszt, P., Low, S.H., Mercer, J.,
  Mudrak, S., Muntwiler, S., Pelkmans, L., Pizarro-Cerda, J., Podvinec, M.,
  Pujadas, E., Rinn, B., Rouilly, V., Schmich, F., Siebourg-Polster, J.,
  Snijder, B., Stebler, M., Studer, G., Szczurek, E., Truttmann, M., von
  Mering, C., Vonderheit, A., Yakimovich, A., Bühlmann, P. and Dehio,
  C. (2014). Simultaneous analysis of large-scale RNAi screens for pathogen
  entry. BMC Genomics 15:1162. Download 
 Bühlmann, P. (2014). Invited Discussion on "The Evolution of Boosting
  Algorithms" and "Extending Statistical Boosting" (A. Mayr, H. Binder,
  O. Gefeller and M. Schmid). Methods of Information in Medicine 53,
  436-437.PDF  
 Bühlmann, P., Peters, J. and Ernest, J. (2014). CAM: Causal
  Additive Models, high-dimensional order search and penalized
  regression. Annals of Statistics 42, 2526-2556. PDF 
 Loh, P. and Bühlmann, P. (2014). High-dimensional learning of
  linear causal networks via inverse covariance estimation. Journal of
  Machine Learning Research 15, 3065-3105. PDF
 Lin, S., Uhler, C., Sturmfels, B. and Bühlmann,
  P. (2014). Hypersurfaces and their singularities in partial correlation
  testing. Foundations of Computational Mathematics 14, 1079-1116. PDF
 Städler, N., Stekhoven, D.J. and Bühlmann,
  P. (2014). Pattern alternating maximization algorithm for missing data in
  large p, small n problems. Journal of Machine Learning Research 15, 1903-1928.PDF 
 van de Geer, S., Bühlmann, P., Ritov, Y. and Dezeure, R. (2014). On
  asymptotically optimal confidence regions and tests for high-dimensional
  models. Annals of Statistics 42, 1166-1202. PDF
 Bühlmann, P. and Mandozzi, J. (2014). High-dimensional variable
  screening and bias in subsequent inference, with an empirical
  comparison. Computational Statistics 29, 407-430.PDF 
 Bühlmann, P., Meier, L. and van de Geer, S. (2014). Invited Discussion on
  "A  significance test for the Lasso (R. Lockhart, J. Taylor,
  R. Tibshirani and R. Tibshirani)". Annals of
  Statistics 42, 469-477.PDF 
 Bühlmann, P. (2014). Invited Discussion of Big Bayes stories and
  BayesBag. Statistical Science 29, 91-94.PDF  
 Schelldorfer, J., Meier, L. and Bühlmann, P. (2014). GLMMLasso:
      An algorithm for high-dimensional generalized linear mixed models
      using L1-penalization. Journal of Computational and Graphical
      Statistics 23, 460-477.PDF
 Hauser, A. and Bühlmann, P. (2014). Two optimal strategies for
  active learning of causal models from interventional data. International
  Journal of Approximate Reasoning 55, 926-939. (This is a longer
  paper version of Hauser and Bühlmann (PGM 2012)).PDF 
 Peters, J. and Bühlmann, P. (2014). Identifiability of Gaussian
  structural equation models with equal error variances. Biometrika 101,
  219-228. PDF       
 Kalisch, M. and Bühlmann, P. (2014). Causal structure learning
  and inference: a selective review. Quality Technology & Quantitative
  Management 11, 3-21. Download 
 Gerster, S., Kwon, T., Ludwig, C., Matondo, M., Vogel, C.,
  Marcotte, E., Aebersold, R. and Bühlmann, P. (2014). Statistical
  approach to protein quantification. Molecular and Cellular
  Proteomics 13, 666-677. Download 
 Bühlmann, P., Kalisch,  M. and Meier, L. (2014). High-dimensional
  statistics with a view towards applications in biology. Annual Review of
  Statistics and its Applications 1, 255-278. Download   
 Hothorn, T., Kneib, T. and Bühlmann, P. (2014). Conditional
  transformation models. Journal of the Royal Statistical
  Society: Series B 76, 3-37. PDF 
 2013 
  
 Bühlmann, P., Rütimann, P. and Kalisch,
  M. (2013). Controlling false positive selections in high-dimensional
  regression and causal inference. Statistical Methods in
  Medical Research 22, 466-492. PDF 
 Bühlmann, P.,  Rütimann, P., van de Geer, S. and Zhang,
  C.-H. (2013). Correlated variables in regression: clustering and sparse
  estimation (with discussion). Journal of Statistical Planning and
  Inference 143, 1835-1871. PDF.  
Rejoinder  
 Bühlmann, P. (2013). Statistical significance in high-dimensional
  linear models. Bernoulli 19, 1212-1242. PDF   
 Bühlmann, P. (2013). Causal statistical inference in high
  dimensions. Mathematical Methods of Operations Research 77, 357-370.PDF  
 van de Geer, S. and Bühlmann, P. (2013). l0-penalized maximum
  likelihood for sparse directed acyclic graphs. Annals of
  Statistics 41, 536-567. PDF 
 Uhler, C., Raskutti, G., Bühlmann, P. and Yu, B. (2013). Geometry
  of faithfulness assumption in causal inference. Annals of
  Statistics 41, 436-463. PDF  
 Fellinghauer, B., Bühlmann, P., Ryffel, M., von Rhein, M.,
  Reinhardt, J.D. (2013). Stable graphical model estimation with Random
  Forests for discrete, continuous, and mixed
  variables. Computational Statistics & Data
  Analysis 64, 132-152. PDF       
 2012 
    
 Stekhoven, D.J., Moraes, I., Sveinbjörnsson, G., Hennig, L.,
  Maathuis, M.H. and Bühlmann, P. (2012). Causal stability
  ranking. Bioinformatics 28, 2819-2823. PDF. Supplementary Data
 Beleut, M., Zimmermann, P., Baudis, M., Bruni,  N., Bühlmann, P.,
  Laule, O., Luu, V.-D., Gruissem, W., Schraml,  P. and Moch,
  H. (2012). Integrative genome-wide expression profiling identifies three 
  distinct molecular subgroups of renal cell carcinoma with different patient
  outcome. BMC Cancer 12:310. Download  
 Baerenfaller, K., Massonnet, C., Walsh, S., Baginsky, S., Bühlmann,
  P., Hennig, L., Hirsch-Hoffmann, M., Howell, K., Kahlau, S.,
  Radziejwoski, A., Russenberger, D., Rutishauser, D., Small, I.,
  Stekhoven, D., Sulpice, R., Svozil, J., Wuyts, N., Stitt, M., Hilson, P.,
  Granier, C. and Gruissem, W. (2012). Systems-based analysis of
  Arabidopsis leaf growth reveals adaptation to water deficit. Molecular
  Systems Biology 8: 606. Download   
 Hauser, A. and Bühlmann, P. (2012). Two optimal strategies for
  active learning of causal models from interventions. Proc. of the 6th
  European Workshop on Probabilistic Graphical Models (PGM 2012),
  pp. 123-130, 2012. PDF
 Hauser, A. and Bühlmann, P. (2012). Characterization and greedy
  learning of interventional Markov equivalence classes of directed acyclic
  graphs. Journal of Machine Learning Research 13, 2409-2464. 
  PDF 
 Kalisch, M., Mächler, M., Colombo, D., Maathuis, M.H. and
  Bühlmann, P. (2012). Causal inference using graphical models with
  the R package pcalg. Journal of Statistical Software 47 (11), 1-26. PDF 
 Stekhoven, D.J. and Bühlmann, P. (2012). MissForest -
  nonparametric missing value imputation for mixed-type
  data. Bioinformatics 28, 112-118. PDF
 Städler, N. and Bühlmann, P. (2012). Missing values: sparse
  inverse covariance estimation and an extension to sparse 
  regression. Statistics and Computing 22, 219-235. PDF     
 2011 
 Meinshausen, N., Maathuis, M.H. and Bühlmann,
  P. (2011). Asymptotic optimality of the Westfall-Young permutation
  procedure for multiple testing under dependence. Annals of
  Statistics 39, 3369-3391.PDF      
 Bühlmann, P. and Cai, T. (2011). Introduction to the Lehmann
  special section. Annals of Statistics 39, 2243.
 Zhou, S., Rütimann, P., Xu, M. and Bühlmann,
  P. (2011). High-dimensional covariance estimation based on Gaussian
  graphical models. Journal of Machine Learning Research 12,
  2975-3026.Abstract
  and PDF 
 Bühlmann, P. (2011). Invited Discussion on "Adaptive confidence
  intervals for the test error in classification (E.B. Laber and
  S.A. Murphy)". Journal of the American Statistical Association 106,
  916-918. PDF 
 van de Geer, S., Bühlmann, P. and Zhou, S. (2011). The adaptive
  and the thresholded Lasso for potentially misspecified models (and a
  lower bound for the Lasso). Electronic Journal of Statistics 5,
  688-749. PDF      
 Schelldorfer, J., Bühlmann, P. and van de Geer,
  S. (2011). Estimation for high-dimensional linear mixed-effects models
  using L1-penalization. Scandinavian Journal of Statistics 38, 197-214. PDF   
 Bühlmann, P. (2011). Invited Discussion on "Regression shrinkage
  and selection via the Lasso: a retrospective (R. Tibshirani)". Journal of
  the Royal Statistical Society: Series B 73,
  277-279. PDF   
 Buller, F., Steiner, M., Frey, K., Mircsof, D., Scheuermann, J.,
  Kalisch, M., Bühlmann, P., Supuran, C.T., Neri, D. (2011). Selection
  of carbonic anhydrase IX inhibitors from one million DNA-encoded
  compounds. ACS Chemical Biology 6, 336-344. 
 2010 
 
 Bühlmann, P. (2010). Remembrance of Leo Breiman. Annals of
  Applied Statistics 4, 1638-1641. PDF  
 Hothorn, T.,  Bühlmann, P., Kneib, T., Schmid M. and Hofner,
  B. (2010). Model-based boosting 2.0. Journal of Machine Learning Research
  11, 2109-2113. PDF   
 Meinshausen, N. and Bühlmann, P. (2010). Stability
  selection (with discussion). Journal of the Royal Statistical Society:
  Series B 72, 417-473. PDF  
 Städler, N., Bühlmann, P. and van de Geer,
  S. (2010). l1-penalization for mixture regression models (with
  discussion). TEST 19, 209-285. PDF. 
Rejoinder 
 Gerster, S., Qeli, E., Ahrens, C.H. and Bühlmann,
  P. (2010). Protein and gene model inference based on
  statistical modeling in k-partite graphs. Proceedings of the National
  Academy of Sciences USA 107, 12101-12106. PDF. 
Supporting Information
 Maathuis, M.H., Colombo, D., Kalisch, M. and Bühlmann,
  P. (2010). Predicting causal effects in large-scale systems from
  observational data. Nature Methods 7,
  247-248. PDF. Supplementary
  Material.   
(See also the editorial
  "Cause and effect" in the same issue: Nature Methods 7,
  243. PDF)
 Bühlmann, P., Kalisch, M. and Maathuis, M.H. (2010). Variable
  selection in high-dimensional linear models: partially faithful
  distributions and the PC-simple algorithm. Biometrika 97,
  261-278. PDF   
 Dahinden, C., Kalisch, M. and Bühlmann, P. (2010). Decomposition
  and model selection for large contingency tables. Biometrical Journal 52,
  233-252. PDF   
 Bühlmann, P. and Hothorn, T. (2010). Twin Boosting: improved feature
  selection and prediction. Statistics and Computing 20, 119-138. PDF  
 Kalisch, M., Fellinghauer, B.A.G., Grill, E., Maathuis, M.H.,
  Mansmann, U., Bühlmann, P. and Stucki, G. (2010). Understanding
  human functioning using graphical models. BMC Medical Research
  Methodology 10:14,
  1-10. Download
  paper.    
 Dahinden, C., Ingold, B., Wild, P., Boysen, G., Luu, V.-D., Montani,
  M., Kristiansen, G., Sulser, T., Bühlmann, P., Moch, H., Schraml,
  P. (2010). Mining tissue microarray data to uncover combinations of
  biomarker expression patterns that improve intermediate staging and
  grading of clear cell renal cell cancer. Clinical Cancer Research 16,
  88-98. 
 
Bühlmann, P. and Yu, B. (2010). Boosting. Wiley
Interdisciplinary Reviews: Computational Statistics 2, 69-74. PDF 
 All publications 
 Peer reviewed articles 
- 
Bühlmann, P. (1994). Blockwise bootstrapped empirical processes for
stationary sequences. Annals of Statistics 22, 995-1012. 
- 
Bühlmann, P. (1995). The blockwise bootstrap for general empirical
processes of stationary sequences. Stochastic Processes and their
Applications 58, 247-265. 
- 
Bühlmann, P. and Künsch, H.R. (1995). The blockwise bootstrap for general
parameters of a stationary time series. Scandinavian Journal of Statistics
22, 35-54.  
- 
Bühlmann, P. (1995). Moving-average representation for
autoregressive approximations. Stochastic Processes and
their Applications 60, 331-342.
- 
Bühlmann, P. (1996). Locally adaptive lag-window spectral
estimation. Journal Time Series Analysis 17, 247-270.
- 
Bickel, P.J. and Bühlmann, P. (1996). What is a linear process? Proceedings
National Academy of Sciencies USA 93, 12128-12131.
-      
Bühlmann, P. (1997). Sieve Bootstrap for Time Series. Bernoulli 3, 123-148.
- 
Bickel, P.J. and Bühlmann, P. (1997). Closure of linear
processes. Journal of Theoretical Probability 10, 445-479.
-  
Bühlmann, P. (1998). Extreme events from return-volume process: a
discretization approach for complexity reduction. Applied
Financial Economics 8, 267-278.
-  
Bühlmann, P. (1998). Sieve bootstrap for smoothing in nonstationary time
series. Annals of Statistics 26, 48-83.
- 
Bühlmann, P. (1999). Efficient and adaptive post-model-selection
estimators. Journal of Statistical Planning and Inference 79, 1-9.
-  
Bühlmann, P. (1999). Dynamic adaptive partitioning for nonlinear time 
series. Biometrika 86, 555-571. Extended version (compressed postscript). 
-  
Bühlmann, P. and Bühlmann, H. (1999). Selection of credibility regression 
models. ASTIN Bulletin (Journal of the International Actuarial
Association) 29, 245-270.
-  
Bühlmann, P. and Künsch, H.R. (1999). Invited Comment on "Prediction of Spatial
Cumulative Distribution Functions Using Subsampling (Lahiri, Kaiser,
Cressie and Hsu)". Journal of the American Statistical Association 94,
97-99.  
-  
Bühlmann, P. and Künsch, H.R. (1999). Block length selection in the
bootstrap for time series. Computational Statistics & Data Analysis 31,
295-310.     
- 
Bühlmann, P. and Wyner, A.J. (1999). Variable length Markov chains. Annals
of Statistics 27, 480-513.
 
-  
Bickel, P.J. and Bühlmann, P. (1999). A new Mixing Notion and
  Functional Central Limit Theorems for a Sieve Bootstrap in Time
  Series. Bernoulli 5, 413-446.
-  
Bühlmann, P. (2000). Von Daten zu stochastischen Modellen (in
German). Elemente der Mathematik 55, 1-18. Compressed postscript. 
- 
Bühlmann, P. (2000). Model selection for variable length Markov chains and 
tuning the context algorithm. Annals of the Institute of
Statistical Mathematics 52, 287-315. Compressed postscript. 
-  
Bühlmann, P. and Yu, B. (2000). Invited Discussion on "Additive logistic
regression: a statistical view of boosting (Friedman, Hastie and
Tibshirani)". Annals of Statistics 28, 377-386. Compressed postscript. For original paper (Annals of Statistics 28, 337-407) click here. 
- 
Audrino, F. and Bühlmann, P. (2001). Tree-structured generalized
       autoregressive conditional heteroscedastic models. Journal of the
       Royal Statistical Society: Series B 63, 727-744.
       Compressed postscript.    
- 
Bühlmann, P. (2002). Sieve bootstrap with variable length Markov chains for
stationary categorical time series (with discussion). Journal
of the American Statistical Association 97, 443-456.
       Compressed postscript. 
-  
Bühlmann, P. (2002). Rejoinder of "Sieve bootstrap with variable length
Markov chains for stationary categorical time series". Journal of the
American Statistical Association 97, 466-471.  
- 
Bühlmann, P. (2002). Bootstraps for time series. Statistical
       Science 17, 52-72.
       Compressed postscript.  
- 
Ango Nze, P., Bühlmann, P. and Doukhan, P. (2002). Weak dependence beyond
       mixing and asymptotics for nonparametric regression. Annals of
       Statistics 30, 397-430.   
       Compressed postscript.   
- 
Bühlmann, P. and Yu, B. (2002). Analyzing bagging. Annals of Statistics 30,
       927-961.
       Compressed postscript.
- 
Bühlmann, P. and McNeil, A.J. (2002). An algorithm for nonparametric GARCH
modelling. Computational Statistics & Data Analysis 40, 665-683. 
Compressed postscript.  
-  
Dettling, M. and Bühlmann, P. (2002). Supervised clustering of
       genes.Genome
    Biology 3(12): research0069.1-0069.15. Software.     
-  
Audrino, F. and Bühlmann, P. (2003). Volatility estimation with functional
       gradient descent for very high-dimensional financial time
       series. Journal of Computational Finance Vol. 6, No. 3, 65-89.   
PDF 
-  
Dettling, M. and Bühlmann, P. (2003). Boosting for tumor
  classification with gene expression data. Bioinformatics 19, No. 9,
  1061-1069.  
Compressed postscript.
  
PDF. Software.
-  
Bühlmann, P. and Yu, B. (2003). Boosting with the L2 loss: regression
       and classification. Journal of the American Statistical
       Association  98, 324-339.   
PDF
- 
Audrino, F. and Bühlmann, P. (2004). Synchronizing multivariate financial
       time series. The Journal of Risk 6 (2), 81-106. 
PDF
-  
Bühlmann, P. and Yu, B. (2004). Invited Discussion on three papers on
boosting by Jiang, Lugosi and Vayatis, and Zhang. Annals of Statistics 32,
96-101.   
PDF
-  
Mächler, M. and Bühlmann, P. (2004). Variable length Markov chains:
  methodology, computing and software. Journal of
  Computational and Graphical Statistics 13, 435-455. Click here.
-  
Dettling, M. and Bühlmann, P. (2004). Finding predictive gene groups
from microarray data. Journal of Multivariate Analysis 90, 106-131. Compressed
       postscript.  
PDF
- 
Dettling, M. and Bühlmann, P. (2004). Volatility and risk estimation with
linear and nonlinear methods based on high frequency data. Applied
Financial Economics 14, 717-729. PDF.
-  Teuffel, O., Dettling, M., Cario, G., Stanulla, M., Schrappe, M., Bühlmann,
P., Niggli, F. and Schäfer, B. (2004). Gene expression profiles and risk
stratification in childhood acute lymphoblastic leukemia. Haematologica 89,
801-808.     
-  Wachtel, M., Dettling, M., Koscielniak, E., Stegmaier, S., Treuner,
J., Simon-Klingenstein, K., Bühlmann, P., Niggli, F. and Schäfer,B. (2004).
Gene expression signatures identify rhabdomyosarcoma subtypes and detect a
novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Research
64, 5539-5545.   
-  
Wille, A., Zimmermann, P., Vranova, E., Fürholz, A., Laule, O., Bleuler,
  S., Hennig, L., Prelic, A., von Rohr, P., Thiele, L., Zitzler, E.,
  Gruissem, W. and Bühlmann, P. (2004). Sparse graphical Gaussian modeling
  of the isoprenoid gene network in Arabidopsis thaliana.Genome Biology
  5(11) R92, 1-13. 
-  
Meinshausen, N. and Bühlmann, P. (2005). Lower bounds for the number of
false null hypotheses for multiple testing of associations under general
dependence structures. Biometrika 92, 893-907. 
PDF
-  
Wille, A. and Bühlmann, P. (2006). Low-order conditional independence
  graphs for inferring genetic networks. Statistical
  Applications in Genetics and Molecular Biology 5 (1) Art1, 1-32.Download paper.
-  Prelic, A., Bleuler, S., Zimmermann, P., Wille, A., Bühlmann, P.,
  Gruissem, W., Hennig, L., Thiele, L. and Zitzler, E. (2006). A systematic
  comparison and evaluation of biclustering methods for gene expression
  data. Bioinformatics 22, 1122-1129.  Download paper. 
  BicAT: A Biclustering Analysis Toolbox.
- 
Bühlmann, P. (2006). Boosting for high-dimensional linear models. Annals of
Statistics 34, 559-583.   
PDF
-  
Lutz, R.W. and Bühlmann, P. (2006). Boosting for high-multivariate
  responses in high-dimensional linear regression. Statistica Sinica 16,
  471-494. 
PDF
-  
Lutz, R.W. and Bühlmann, P. (2006). Conjugate direction boosting. Journal
of Computational and Graphical Statistics 15, 287-311. 
PDF
-  Bühlmann, P. and Yu, B. (2006). Sparse Boosting. Journal of Machine
Learning Research 7, 1001-1024. 
PDF  
-  
Hothorn, T., Bühlmann, P., Dudoit, S., Molinaro, A. and van der Laan,
  M. (2006). Survival ensembles. Biostatistics 7, 355-373.Download paper.
-  
Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and
variable selection with the Lasso. Annals of Statistics 34, 1436-1462.  
PDF. According to Essential Science Indicators, this has been selected
as New Hot Paper. 
-  Hothorn, T. and Bühlmann, P. (2006). Model-based boosting in high
  dimensions. Bioinformatics 22, 2828-2829. PDF   
-  Goeman, J.J. and Bühlmann, P. (2007). Analyzing gene expression data
in terms of gene sets: methodological issues. Bioinformatics 23, 980-987. PDF  
-  Kalisch, M. and Bühlmann, P. (2007). Estimating high-dimensional
  directed acyclic graphs with the PC-algorithm. Journal of Machine
  Learning Research 8, 613-636.
  PDF
-  Elsener, A., Samson, C.C.M., Brändle, M.P., Bühlmann, P. and Lüthi,
H.P. (2007). Statistical analysis of quantum chemical data using
generalized XML/CML archives for the derivation of molecular design
rules. Chimia 61, 165-168. PDF    
-  Wille, A., Gruissem, W., Bühlmann, P. and Hennig, L. (2007). EVE
(External Variance Estimation) increases statistical power for detecting 
  differentially expressed genes. The Plant Journal 52, 561-569.PDF    
-  Bühlmann, P. (2007). Bootstrap schemes for time series (in
Russian). Quantile 3, 37-56.PDF
-  Meier, L. and Bühlmann, P. (2007). Smoothing L1-penalized estimators
for high-dimensional time-course data. Electronic Journal of
  Statistics 1, 597-615. 
  PDF
-  Bühlmann, P. and Hothorn, T. (2007). Boosting algorithms:
  regularization, prediction and model fitting (with
  discussion). Statistical Science
  22, 477-505. (The paper includes supporting software). PDF  
-  Bühlmann, P. and Hothorn, T. (2007). Rejoinder of "Boosting algorithms:
  regularization, prediction and model
  fitting". Statistical Science
  22, 516-522. PDF  
-  Dahinden, C., Parmigiani, G., Emerick, M.C. and Bühlmann,
  P. (2007). Penalized likelihood for sparse contingency tables with an
  application to full-length cDNA libraries. BMC Bioinformatics 2007,
  8:476, 1-11.  
-  Meier, L., van de Geer, S. and Bühlmann, P. (2008). The Group Lasso
  for logistic regression. Journal of the Royal Statistical Society: Series
  B, 70, 53-71. 
  PDF
-  Schöner, D., Kalisch, M., Leisner, C., Meier, L., Sohrmann, M., Faty,
  M., Barral, Y., Peter, M., Gruissem, W. and Bühlmann,
  P. (2008). Annotating novel genes by integrating synthetic lethals and 
genomic information. BMC Systems Biology 2008,
2:3, 1-14. 
-  Bühlmann, P. and Yu, B. (2008). Invited Discussion on "Evidence
contrary to the statistical view of boosting (D. Mease and A. Wyner)".  
 Journal of Machine Learning Research 9,
  187-194. Download paper with discussion.     
-  
Lutz, R.W., Kalisch, M. and Bühlmann, P. (2008). Robustified
L2 boosting. Computational Statistics & Data Analysis 52, 3331-3341.   
PDF
-  
Meinshausen, N. and Bühlmann, P. (2008). Invited Discussion on "Treelets -
  An adaptive multi-scale basis for sparse unordered data (A.B. Lee,
  B. Nadler and L. Wasserman)". Annals of Applied
  Statistics 2, 478-481. PDF  
-  Bühlmann, P. and Meier, L. (2008). Invited Discussion on "One-step
sparse estimates in nonconcave penalized likelihood models (H. Zou and
R. Li)". Annals of Statistics 36,
  1534-1541. PDF  
-  Lange, V., Malmström, J. A., Didion, J., King, N. L., Johansson,
  B. P., Schäfer, J., Rameseder, J., Wong, C.-H., Deutsch, E. W., Brusniak,
  M.-Y., Bühlmann, P., Björck, L., Domon, B. and Aebersold,
  R. (2008). Targeted quantitative analysis of Streptococcus pyogenes
  virulence factors by multiple reaction monitoring. Molecular
  & Cellular Proteomics 7, 1489-1500. 
  
  Download paper.       
-  
Bühlmann, P. (2008). Invited Discussion on "Sure Independence Screening
(J. Fan and J. Lv)". Journal of the Royal Statistical Society: Series B
70, 884-887. 
PDF
-  Kalisch, M. and Bühlmann, P. (2008). Robustification of the
  PC-algorithm for directed acyclic graphs. Journal of Computational and
  Graphical Statistics 17, 773-789.  
  PDF  
-  Audrino, F. and Bühlmann, P. (2009). Splines for financial
  volatility. Journal of the Royal Statistical Society: Series B 71,
  655-670. 
  PDF
-  Maathuis, M.H., Kalisch, M. and Bühlmann, P. (2009). Estimating
  high-dimensional intervention effects from observational data. Annals of
  Statistics 37, 3133-3164.PDF
-  Meier, L., van de Geer, S. and Bühlmann, P. (2009). High-dimensional
  additive modeling. Annals of Statistics 37,
  3779-3821. PDF
-  Buller, F., Zhang, Y., Scheuermann, J., Schäfer, J., Bühlmann, P. and
  Neri, D. (2009). Discovery of TNF inhibitors from a DNA-encoded chemical
  library based on Diels-Alder cycloaddition. Chemistry & Biology 16,
  1075-1086. 
-  Rütimann, P. and Bühlmann, P. (2009). High dimensional sparse covariance
estimation via directed acyclic graphs. Electronic Journal of Statistics 3,
  1133-1160. PDF
-  van de Geer, S. and Bühlmann, P. (2009). On the conditions used to
  prove oracle results for the Lasso. Electronic Journal
  of Statistics 3,
  1360-1392. PDF
-  Meinshausen, N., Meier, L. and Bühlmann, P. (2009). p-values for
  high-dimensional regression. Journal of the American
  Statistical Association 104, 1671-1681. PDF
-  
Bühlmann, P. and Yu, B. (2010). Boosting. Wiley
Interdisciplinary Reviews: Computational Statistics 2, 69-74. PDF 
-  Dahinden, C., Ingold, B., Wild, P., Boysen, G., Luu, V.-D., Montani,
  M., Kristiansen, G., Sulser, T., Bühlmann, P., Moch, H., Schraml,
  P. (2010). Mining tissue microarray data to uncover combinations of
  biomarker expression patterns that improve intermediate staging and
  grading of clear cell renal cell cancer. Clinical Cancer Research 16,
  88-98. 
-  Kalisch, M., Fellinghauer, B.A.G., Grill, E., Maathuis, M.H.,
  Mansmann, U., Bühlmann, P. and Stucki, G. (2010). Understanding
  human functioning using graphical models. BMC Medical Research
  Methodology 10:14,
  1-10. Download
  paper.   
-  Bühlmann, P. and Hothorn, T. (2010). Twin Boosting: improved feature
  selection and prediction. Statistics and Computing 20, 119-138. PDF 
-  Maathuis, M.H., Colombo, D., Kalisch, M. and Bühlmann,
  P. (2010). Predicting causal effects in large-scale systems from
  observational data. Nature Methods 7,
  247-248. PDF. Supplementary
  Material.   
(See also the editorial
  "Cause and effect" in the same issue: Nature Methods 7,
  243. PDF)
-  Bühlmann, P., Kalisch, M. and Maathuis, M.H. (2010). Variable
  selection in high-dimensional linear models: partially faithful
  distributions and the PC-simple algorithm. Biometrika 97,
  261-278. PDF   
-  Dahinden, C., Kalisch, M. and Bühlmann, P. (2010). Decomposition
  and model selection for large contingency tables. Biometrical Journal 52,
  233-252. PDF 
-  Gerster, S., Qeli, E., Ahrens, C.H. and Bühlmann,
  P. (2010). Protein and gene model inference based on
  statistical modeling in k-partite graphs. Proceedings of the National
  Academy of Sciences USA 107, 12101-12106. PDF. 
Supporting
  Information
-  Städler, N., Bühlmann, P. and van de Geer,
  S. (2010). l1-penalization for mixture regression models (with
  discussion). TEST 19, 209-285. PDF. 
Rejoinder 
-  Meinshausen, N. and Bühlmann, P. (2010). Stability
  selection (with discussion). Journal of the Royal Statistical Society:
  Series B 72, 417-473. PDF 
-  Hothorn, T.,  Bühlmann, P., Kneib, T., Schmid M. and Hofner,
  B. (2010). Model-based boosting 2.0. Journal of Machine Learning Research
  11, 2109-2113. PDF  
-  Bühlmann, P. (2010). Remembrance of Leo Breiman. Annals of
  Applied Statistics 4,
  1638-1641. PDF  
-  Buller, F., Steiner, M., Frey, K., Mircsof, D., Scheuermann, J.,
  Kalisch, M., Bühlmann, P., Supuran, C.T., Neri, D. (2011). Selection
  of carbonic anhydrase IX inhibitors from one million DNA-encoded
  compounds. ACS Chemical Biology 6, 336-344.  
-  Bühlmann, P. (2011). Invited Discussion on "Regression shrinkage
  and selection via the Lasso: a retrospective (R. Tibshirani)". Journal of
  the Royal Statistical Society: Series B 73,
  277-279. PDF 
-  Schelldorfer, J., Bühlmann, P. and van de Geer,
  S. (2011). Estimation for high-dimensional linear mixed-effects models
  using L1-penalization. Scandinavian Journal of Statistics 38, 197-214. PDF 
-  van de Geer, S., Bühlmann, P. and Zhou, S. (2011). The adaptive
  and the thresholded Lasso for potentially misspecified models (and a
  lower bound for the Lasso). Electronic Journal of Statistics 5,
  688-749. PDF    
-  Bühlmann, P. (2011). Invited Discussion on "Adaptive confidence
  intervals for the test error in classification (E.B. Laber and
  S.A. Murphy)". Journal of the American Statistical Association 106,
  916-918. PDF 
-  Zhou, S., Rütimann, P., Xu, M. and Bühlmann,
  P. (2011). High-dimensional covariance estimation based on Gaussian
  graphical models. Journal of Machine Learning Research 12,
  2975-3026.Abstract
  and PDF 
-  Bühlmann, P. and Cai, T. (2011). Introduction to the Lehmann
  special section. Annals of Statistics 39, 2243.
-  Meinshausen, N., Maathuis, M.H. and Bühlmann,
  P. (2011). Asymptotic optimality of the Westfall-Young permutation
  procedure for multiple testing under dependence. Annals of
  Statistics 39,
  3369-3391.PDF 
-  Städler, N. and Bühlmann, P. (2012). Missing values: sparse
  inverse covariance estimation and an extension to sparse 
  regression. Statistics and Computing 22,
  219-235. PDF
-  Stekhoven, D.J. and Bühlmann, P. (2012). MissForest -
  nonparametric missing value imputation for mixed-type
  data. Bioinformatics 28,
  112-118. PDF
-  Kalisch, M., Mächler, M., Colombo, D., Maathuis, M.H. and
  Bühlmann, P. (2012). Causal inference using graphical models with
  the R package pcalg. Journal of Statistical Software 47 (11),
  1-26. PDF 
-  Hauser, A. and Bühlmann, P. (2012). Characterization and greedy
  learning of interventional Markov equivalence classes of directed acyclic
  graphs. Journal of Machine Learning Research 13, 2409-2464. 
  PDF 
-  Hauser, A. and Bühlmann, P. (2012). Two optimal strategies for
  active learning of causal models from interventions. Proc. of the 6th
  European Workshop on Probabilistic Graphical Models (PGM 2012),
  pp. 123-130, 2012. PDF
-  Baerenfaller, K., Massonnet, C., Walsh, S., Baginsky, S., Bühlmann,
  P., Hennig, L., Hirsch-Hoffmann, M., Howell, K., Kahlau, S.,
  Radziejwoski, A., Russenberger, D., Rutishauser, D., Small, I.,
  Stekhoven, D., Sulpice, R., Svozil, J., Wuyts, N., Stitt, M., Hilson, P.,
  Granier, C. and Gruissem, W. (2012). Systems-based analysis of
  Arabidopsis leaf growth reveals adaptation to water deficit. Molecular
  Systems Biology 8: 606. Download  
-  Beleut, M., Zimmermann, P., Baudis, M., Bruni,  N., Bühlmann, P.,
  Laule, O., Luu, V.-D., Gruissem, W., Schraml,  P. and Moch,
  H. (2012). Integrative genome-wide expression profiling identifies three 
  distinct molecular subgroups of renal cell carcinoma with different patient
  outcome. BMC Cancer 12:310. Download 
-  Stekhoven, D.J., Moraes, I., Sveinbjörnsson, G., Hennig, L.,
  Maathuis, M.H. and Bühlmann, P. (2012). Causal stability
  ranking. Bioinformatics 28,
  2819-2823. PDF. Supplementary
  Data
-  Fellinghauer, B., Bühlmann, P., Ryffel, M., von Rhein, M.,
  Reinhardt, J.D. (2013). Stable graphical model estimation with Random
  Forests for discrete, continuous, and mixed
  variables. Computational Statistics & Data
  Analysis 64,
  132-152. PDF  
-  Uhler, C., Raskutti, G., Bühlmann, P. and Yu, B. (2013). Geometry
  of faithfulness assumption in causal inference. Annals of
  Statistics 41, 436-463. PDF  
-  van de Geer, S. and Bühlmann, P. (2013). l0-penalized maximum
  likelihood for sparse directed acyclic graphs. Annals of
  Statistics 41,
  536-567. PDF 
-  Bühlmann, P. (2013). Causal statistical inference in high
  dimensions. Mathematical Methods of Operations Research 77,
  357-370.PDF  
-  Bühlmann, P. (2013). Statistical significance in high-dimensional
  linear models. Bernoulli 19, 1212-1242. PDF  
-  Bühlmann, P.,  Rütimann, P., van de Geer, S. and Zhang,
  C.-H. (2013). Correlated variables in regression: clustering and sparse
  estimation (with discussion). Journal of Statistical Planning and
  Inference 143, 1835-1871. PDF.  
Rejoinder 
-  Bühlmann, P., Rütimann, P. and Kalisch,
  M. (2013). Controlling false positive selections in high-dimensional
  regression and causal inference. Statistical Methods in
  Medical Research 22, 466-492. PDF 
-  Hothorn, T., Kneib, T. and Bühlmann, P. (2014). Conditional
  transformation models. Journal of the Royal Statistical
  Society: Series B 76, 3-37. PDF 
-  Bühlmann, P., Kalisch,  M. and Meier, L. (2014). High-dimensional
  statistics with a view towards applications in biology. Annual Review of
  Statistics and its Applications 1, 255-278. Download   
-  Gerster, S., Kwon, T., Ludwig, C., Matondo, M., Vogel, C.,
  Marcotte, E., Aebersold, R. and Bühlmann, P. (2014). Statistical
  approach to protein quantification. Molecular and Cellular
  Proteomics 13, 666-677. Download
-  Kalisch, M. and Bühlmann, P. (2014). Causal structure learning
  and inference: a selective review. Quality Technology & Quantitative
  Management 11, 3-21. Download 
-  Peters, J. and Bühlmann, P. (2014). Identifiability of Gaussian
  structural equation models with equal error variances. Biometrika 101,
  219-228. PDF 
-  Hauser, A. and Bühlmann, P. (2014). Two optimal strategies for
  active learning of causal models from interventional data. International
  Journal of Approximate Reasoning 55, 926-939. (This is a longer
  paper version of Hauser and Bühlmann (PGM 2012)).PDF 
-  Schelldorfer, J., Meier, L. and Bühlmann, P. (2014). GLMMLasso:
      An algorithm for high-dimensional generalized linear mixed models
      using L1-penalization. Journal of Computational and Graphical
      Statistics 23, 460-477.PDF
-  Bühlmann, P. (2014). Invited Discussion of Big Bayes stories and
  BayesBag. Statistical Science 29, 91-94.PDF 
-  Bühlmann, P., Meier, L. and van de Geer, S. (2014). Invited Discussion on
  "A  significance test for the Lasso (R. Lockhart, J. Taylor,
  R. Tibshirani and R. Tibshirani)". Annals of
  Statistics 42, 469-477.PDF 
-  Bühlmann, P. and Mandozzi, J. (2014). High-dimensional variable
  screening and bias in subsequent inference, with an empirical
  comparison. Computational Statistics 29, 407-430.PDF 
-  van de Geer, S., Bühlmann, P., Ritov, Y. and Dezeure, R. (2014). On
  asymptotically optimal confidence regions and tests for high-dimensional
  models. Annals of Statistics 42, 1166-1202. PDF
-  Städler, N., Stekhoven, D.J. and Bühlmann,
  P. (2014). Pattern alternating maximization algorithm for missing data in
  large p, small n problems. Journal of Machine Learning Research 15, 1903-1928.PDF 
-  Lin, S., Uhler, C., Sturmfels, B. and Bühlmann,
  P. (2014). Hypersurfaces and their singularities in partial correlation
  testing. Foundations of Computational Mathematics 14, 1079-1116. PDF
-  Loh, P. and Bühlmann, P. (2014). High-dimensional learning of
  linear causal networks via inverse covariance estimation. Journal of
  Machine Learning Research 15, 3065-3105. PDF
-  Bühlmann, P., Peters, J. and Ernest, J. (2014). CAM: Causal
  Additive Models, high-dimensional order search and penalized
  regression. Annals of Statistics 42, 2526-2556. PDF 
-  Bühlmann, P. (2014). Invited Discussion on "The Evolution of Boosting
  Algorithms" and "Extending Statistical Boosting" (A. Mayr, H. Binder,
  O. Gefeller and M. Schmid). Methods of Information in Medicine 53,
  436-437.PDF  
-  Rämö, P., Drewek, A., Arrieumerlou, C.,
  Beerenwinkel, N., Ben-Tekaya, H., Cardel, B., Casanova, A.,
  Conde-Alvarez, R., Cossart, P., Csucs, G., Eicher, S.,  Emmenlauer, M.,
  Greber, U., Hardt, W.-D., Helenius, A., Kasper, C., Kaufmann, A.,
  Kreibich, S., Kühbacher, A., Kunszt, P., Low, S.H., Mercer, J.,
  Mudrak, S., Muntwiler, S., Pelkmans, L., Pizarro-Cerda, J., Podvinec, M.,
  Pujadas, E., Rinn, B., Rouilly, V., Schmich, F., Siebourg-Polster, J.,
  Snijder, B., Stebler, M., Studer, G., Szczurek, E., Truttmann, M., von
  Mering, C., Vonderheit, A., Yakimovich, A., Bühlmann, P. and Dehio,
  C. (2014). Simultaneous analysis of large-scale RNAi screens for pathogen
  entry. BMC Genomics
  15:1162. Download 
-  Hauser, A. and Bühlmann, P. (2015). Jointly interventional and
  observational data: estimation of interventional Markov equivalence
  classes of directed acyclic graphs. Journal of the Royal
  Statistical Society: Series B 77, 291-318. PDF 
-  Peters, J. and Bühlmann, P. (2015). Structural intervention
  distance (SID) for evaluating causal graphs. Neural Computation
  27,771-799. PDF
-  Meinshausen, N. and Bühlmann, P. (2015). Maximin effects in
  inhomogeneous large-scale data. Annals of Statistics 43, 1801-1830. PDF 
- Bühlmann, P. and van de Geer, S. (2015). High-dimensional inference
  in misspecified linear models. Electronic Journal of
  Statistics 9,
  1449-1473. Download 
-  Dezeure, R., Bühlmann, P., Meier, L. and Meinshausen,
  N. (2015). High-dimensional inference: confidence intervals, p-values and
  R-software hdi. Statistical Science 30, 533-558. PDF 
-  Ernest, J. and Bühlmann, P. (2015). Marginal integration for
  nonparametric causal inference. Electronic Journal of 
  Statistics 9, 3155-3194. Download
-  Ruiz-Sola, M.A., Coman, D., Beck, G., Barjaa, M.V., Colinas-Martinez,
  M., Graf, A., Welsch, R., Rütimann, P., Bühlmann, P.,
  Bigler, L., Gruissem, W., Rodriguez-Concepcion, M. and Vranova,
  E. (2016). Arabidopsis geranylgeranyl diphosphate synthase 11 is a hub
  isozyme required for the production of most photosynthesis-related
  isoprenoids. New Phytologist 209, 252-264. 
-  Bühlmann, P. and Meinshausen, N. (2016). Magging: maximin
  aggregation for inhomogeneous large-scale data. Proceedings of the IEEE
  104, 126-135. PDF
-  Mandozzi, J. and Bühlmann, P. (2016). Hierarchical testing in the
  high-dimensional setting with correlated
  variables. Journal of the American Statistical Association 111,
  331-343. PDF. Supplement
-  Bühlmann, P. and Leonardi, F. (2016). Comments on: A random
  forest guided tour. (Discussion on a paper by G. Biau and
  E. Scornet). TEST 25, 239-246. PDF 
-  Nowzohour, C. and Bühlmann, P. (2016). Score-based causal
  learning in additive noise models. Statistics 50, 471-485. PDF
-  Mandozzi, J. and Bühlmann, P. (2016). A sequential rejection
  testing method for high-dimensional regression with correlated
  variables. International Journal of Biostatistics 12, 79-95. PDF
-  Meinshausen, N., Hauser, A., Mooij, J.M., Peters, J., Versteeg, P. and
  Bühlmann, P. (2016). Methods for causal inference from gene
perturbation experiments and validation. Proceedings of
  the National Academy of Sciences USA 113,
  7361-7368. PDF. Supporting Information
-  Bühlmann, P. and Dezeure, R. (2016). Invited Discussion on
  "Regularized regression for categorical data (Tutz and
  Gertheiss)". Statistical Modelling: An International Journal 16, 205-211. PDF 
-  Buzdugan, L., Kalisch, M., Navarro, A., Schunk, D., Fehr, E. and
  Bühlmann, P. (2016). Assessing statistical significance in
  multivariable genome wide association analysis. Bioinformatics 32,
  1990-2000. Download
-  Peters, J., Bühlmann, P. and Meinshausen, N. (2016). Causal
  inference using invariant prediction: identification and confidence
  intervals (with discussion). Journal of the Royal Statistical Society,
  Series B 78, 947-1012. PDF 
-  Klasen, J.R., Barbez, E., Meier, L., Meinshausen, N., Bühlmann,
  P., Koornneef, M., Busch, W. and Schneeberger, K. (2016). A multi-marker
  association method for Genome-Wide Association studies without the need
  for population structure correction. Nature Communications 7, Article
  number 13299 (2016), doi:10.1038/ncomms13299. Download 
-  Li, S., Ernest, J. and Bühlmann, P. (2017). Nonparametric causal
  inference from observational time series through marginal
  integration. Econometrics and Statistics 2,
  81-105. PDF
-  Bühlmann, P. (2017). High-dimensional statistics, with applications
to genome-wide association studies. EMS Surveys in Mathematical
  Sciences 4, 45-75. Preprint PDF       
-  Dezeure, R., Bühlmann, P. and Zhang,
  C.-H. (2017). High-dimensional simultaneous inference with the
  bootstrap (with discussion). TEST 26,
  685-719. Download  
-  Dezeure, R., Bühlmann, P. and Zhang,
  C.-H. (2017). Rejoinder on: High-dimensional simultaneous inference with the
  bootstrap. TEST 26,
  751-758. Download
-  Nowzohour, C., Maathuis, M.H., Evans, R.J. and Bühlmann,
  P. (2017). Distributional equivalence and structure learning for bow-free
  acyclic path diagrams. Electronic Journal of Statistics 11, 5342-5374. Download
-  Pfister, N., Bühlmann, P., Schölkopf, B. and Peters,
  J. (2018). Kernel-based tests for joint independence. Journal of the
  Royal Statistical Society, Series B 80,
  5-31. Download
-  Shah, R.D. and Bühlmann, P. (2018). Goodness of fit tests for
  high-dimensional linear models. Journal of the Royal Statistical Society,
  Series B 80, 113-135. Download 
-  Hothorn, T., Möst, L. and Bühlmann, P. (2018). Most likely
  transformations. Scandinavian Journal of Statistics 45, 110-134. Download  
-  Bühlmann, P. and van de Geer, S. (2018). Statistics for big data:
  A perspective. Statistics & Probability Letters 136, 37-41. Download
-  Rothenhäusler, D., Ernest, J. and Bühlmann,
  P. (2018). Causal inference in partially linear structural equation
  models. Annals of Statistics 46, 2904-2938. Download
-  Pfister, N., Bühlmann, P. and Peters, J. (2019). Invariant causal
  prediction for sequential data. Journal of the American
  Statistical Association 114, 1264-1276.Download
-  Rothenhäusler, D., Bühlmann, P. and Meinshausen,
  N. (2019). Causal Dantzig: fast inference in linear structural equation
  models with hidden variables under additive interventions. Annals of
  Statistics 47, 1688-1722. Download 
-  Bühlmann, P. (2019). Comments on: Data science, big data and
  statistics. TEST 28, 330-333. Download 
-  Pfister, N., Weichwald, S., Bühlmann, P. and Schölkopf,
  B. (2019). Robustifying Independent Component Analysis by adjusting for
  group-wise stationary noise. Journal of Machine Learning Research 20,
  (147):1-50. Download 
-  Renaux, C., Buzdugan, L., Kalisch, M. and Bühlmann,
  P. (2020). Hierarchical inference for genome-wide association studies: a
  view on methodology with software (with discussion). Computational
  Statistics 35, 1-40. Download 
-  Renaux, C., Buzdugan, L., Kalisch, M. and Bühlmann,
  P. (2020). Rejoinder on: Hierarchical inference for genome-wide
  association studies: a view on methodology with software. Computational
  Statistics 35, 59-67. Download  
-  Bühlmann, P. (2020). Invariance, Causality and
  Robustness (with discussion). Statistical Science 35, 404-426. Download  
-  Bühlmann, P. (2020). Rejoinder: Invariance, Causality and
  Robustness. Statistical Science 35,
  434-436. Download
-  Janková, J., Shah, R.D., Bühlmann, P. and Samworth
  R.J. (2020). Goodness-of-fit testing in high-dimensional generalized
  linear models. Journal of the Royal Statistical Society, Series
  B 82, 773-795. Download
-  Bühlmann, P. (2020). Toward causality and improving external
  validity. Proceedings of the National Academy of Sciences
  USA 117,
  25963-25965. Download 
-  Chen, Y., Taeb, A. and  Bühlmann, P. (2020). A look at robustness
  and stability of l1- versus l0-regularization: Discussion of
  papers by Bertsimas et al. and Hastie et al. Statistical Science 35,
  614-622. Download 
-  Kovács, S., Li, H. and Bühlmann, P. (2020). Seeded
  intervals and noise level estimation in change point detection: A
  discussion of Fryzlewicz (2020). Journal of the Korean
  Statistical Society 49, 1081-1089. Download  
  
-  Ćevid, D., Bühlmann, P. and Meinshausen,
  N. (2020). Spectral deconfounding via perturbed sparse linear
    models. Journal of Machine Learning Research 21, (232): 1-41. Download  
-  Bühlmann, P. and Ćevid, D. (2020). Deconfounding and
  causal regularization for stability and external validity. International
  Statistical Review 88, S114-S134. Download 
-  Schultheiss, C., Renaux, C. and Bühlmann, P. (2021). Multicarving
  for high-dimensional post-selection inference. Electronic Journal of
  Statistics 15, 1695-1742. Download  
-  Rothenhäusler, D., Meinshausen, N., Bühlmann, P. and Peters,
  J. (2021). Anchor regression: heterogeneous data meet
  causality. Journal of the Royal Statistical Society,
  Series B 83, 215-246. Download 
-  Bühlmann, P. (2021). One modern culture of statistics. Comments
  on Statistical Modeling: The Two Cultures (Breiman, 2001b). Observational
  Studies 7, 33-40. Download 
-  Londschien, M., Kovács, S. and Bühlmann, P. (2021). Change
  point detection for graphical models in presence of missing
  values. Journal of Computational and Graphical Statistics 30, 768-779. Download
-  Pfister, N., Williams, E.G., Peters, J., Aebersold, R. and Bühlmann,
  P. (2021). Stabilizing variable selection and regression. Annals of
  Applied Statistics 15,
  1220-1246. Download
-  Chen, Y. and Bühlmann, P. (2021). Domain adaptation under
  structural causal models. Journal of Machine Learning Research 22, (261):
  1-80. Download    
-  Emmenegger, C. and Bühlmann, P. (2021). Regularizing double
  machine learning in partially linear endogenous models. Electronic
  Journal of Statistics 15, 6461-6543. Download
-  Guo, Z., Renaux, C., Bühlmann, P. and Cai, T.T. (2021). Group
  inference in high dimensions with applications to hierarchical
  testing. Electronic Journal of Statistics 15, 6633-6676. Download  
-  Williams, E.G., Pfister, N., Roy, S., Statzer, C., Ingels, J., Bohl,
    C.,  Hasan, M., Cuklina, J., Bühlmann, P.,  Zamboni, N., Lu, L.,
  Ewald, C.Y., Williams, R.W. and Aebersold, R. (2022). Multiomic profiling of the liver across diets and age in a diverse mouse population. Cell Systems 13,
    43-57. Download Preprint bioRxiv:2020.08.20.222968
-  Jablonski, K.P., Pirkl, M., Ćevid, D., Bühlmann, P. and
  Beerenwinkel, N. (2022). Identifying cancer pathway dysregulations using
  differential causal effects. Bioinformatics 38,
  1550-1559. Download
-  Kook, L., Sick, B. and Bühlmann, P. (2022). Distributional anchor
  regression. Statistics and Computing 32: 39,
  1-19. Download
-  Jakobsen, M.E., Shah, R.D., Bühlmann, P. and Peters,
  J. (2022). Structure learning for directed trees. Journal of Machine
  Learning Research 23, (159): 1-97.Download    
-  Guo, Z., Ćevid, D. and Bühlmann, P. (2022). Doubly
    Debiased Lasso: high-dimensional inference under hidden
    confounding. Annals of Statistics 50, 1320-1347. Download    
-  Scheidegger, C., Hörrmann, J. and Bühlmann, P. (2022). The
  weighted generalised covariance measure. Journal of
    Machine Learning Research 23, (273): 1-68. Download  
-  Ćevid, D., Michel, L., Näf, J., Bühlmann,
  P. and Meinshausen, N. (2022). Distributional Random Forests:
  heterogeneity adjustment and multivariate distributional
  regression. Journal of Machine Learning Research 23, (333): 1-79. Download   
-  Marmolejo-Ramos, F., Tejo, M., Brabec, M., Kuzilek, J., Joksimovic,
    S., Kovanovic, V., González, J., Kneib, T., Bühlmann, P., Kook,
    L., Briseño-Sánchez, G., Ospina,
    R. (2023). Distributional regression modeling via generalized additive
    models for location, scale, and shape: An overview through a dataset
    from learning analytics. WIREs Data Mining and Knowledge Discovery 13,
    e1479, 1-22. Download
-  Danielli, S.G., Porpiglia, E., De Micheli, A.J., Navarro, N.,
    Zellinger, M.J., Bechtold, I., Kisele, S., Volken, L., Ngo, Q.A.,
    Marques, J.G., Kasper, S., Bode, P.K., Henssen, A.G., Gürgen, D.,
    Delattre, O., Surdez, D., Roma, J., Bühlmann, P., Blau, H.M.,
    Wachtel, M. and Schäfer, B.W. (2023). Single-cell profiling of
    alveolar rhabdomyosarcoma reveals RAS pathway inhibitors as cell-fate
    hijackers with therapeutic relevance. Science Advances 9,
    eade9238, 1-20. Download 
-  Kovács, S., Bühlmann, P., Li, H. and Munk,
  A. (2023). Seeded binary segmentation: a general methodology for fast and
  optimal change point detection. Biometrika 110,
  249-256. Download
-  Shah, R.D. and Bühlmann, P. (2023). Double-estimation-friendly
    inference for high-dimensional misspecified models. Statistical Science
    38,
  68-91. Download
 
-  Schultheiss, C. and Bühlmann, P. (2023). On the pitfalls of
  Gaussian likelihood scoring for causal discovery. Journal of Causal
  Inference 11(1), jci-2022-0068, 1-11. Download 
-  Bennett, N., Plecko, D., Ukor, I.-F., Meinshausen, N. and
  Bühlmann, P. (2023). ricu: R's interface to intensive care
    data. GigaScience 12, giad041,
  1-8. Download
-  Moor, M., Bennett, N., Plecko, D., Horn, M., Rieck, B., Meinshausen,
  N., Bühlmann, P. and Borgwardt, K. (2023). Predicting sepsis using
  deep learning across international sites: a retrospective development and
  validation study. eClinicalMedicine 62, Article 103124, 1-13. Download 
-  Londschien, M., Bühlmann, P. and Kovács,
  S. (2023). Random Forests for change point detection. Journal of Machine
  Learning Research 24, (216):
  1-45. Download
-  Rothenhäusler, D. and Bühlmann, P. (2023). Distributionally
  robust and generalizable inference. Statistical
  Science, 38, No. 4, 527-542. Download
-  Law, M. and Bühlmann, P. (2023). Discussion of “A Scale-Free
  Approach for False Discovery Rate Control in Generalized Linear Models
  (Dai, Lin, Xing and Liu)”. Journal of the American
  Statistical Association 118, 1578-1583. Download 
-  Emmenegger, C. and Bühlmann, P. (2023). Plug-in machine
  learning for partially linear mixed-effects models with repeated
    measurements. Scandinavian Journal of Statistics 50, 1553-1567. Download   
-  Schultheiss, C. and Bühlmann, P. (2023). Ancestor regression in linear structural equation models. Biometrika 110, 1117-1124. Download
-  Immer, A., Schultheiss, C., Vogt, J.E., Schölkopf, B.,
  Bühlmann, P. and Marx, A. (2023). On the identifiability and
    estimation of causal location-scale noise models. Proceedings of the
  40th International Conference on Machine Learning  (ICML), PMLR
  202:14316-14332,
  2023. Download
-  Näf, J., Emmenegger, C., Bühlmann, P. and Meinshausen,
  N. (2023). Confidence and uncertainty assessment for distributional
  Random Forests. Journal of Machine Learning Research 24, (366): 1-77. Download     
-  Taeb, A., Bühlmann, P. and Chandrasekaran, V. (2024). Model
  selection over partially ordered sets. Proceedings of the National
  Academy of Sciences USA 121, No. 8, e314228121:
  1-12. Download
-  Schultheiss, C. and Bühlmann, P. (2024). Assessing the overall
  and partial causal well-specification of nonlinear additive noise
  models. Journal of Machine Learning Research 25, (159): 1-41. Download   
-  Schultheiss, C., Bühlmann, P. and Yuan, M. (2024). Assessing the
  goodness of fit of linear regression via higher-order least
  squares. Journal of the American Statistical Association 119, 1019-1031. Download
-  Taeb, A., Gamella, J.L., Heinze-Deml, C. and Bühlmann,
  P. (2024). Learning and scoring Gaussian latent variable causal models
  with unknown additive interventions. Journal of Machine Learning Research
  25 (293): 1-68. Download   
-  Kovács, S., Li, H., Haubner, L., Munk, A. and Bühlmann,
  P. (2024). Optimistic search: Change point estimation for
  large-scale data via adaptive logarithmic queries. Journal of Machine
  Learning Research 25 (297):
  1-64. Download
-  Qian, L., Sun, R., Aebersold, R., Bühlmann, P., Sander,
  C. and Guo, T. (2024). AI-empowered perturbation proteomics for complex
  biological systems. Cell Genomics 4 (11) 100691, 1-16. Download
-  Gamella, J.L., Peters, J. and Bühlmann, P. (2025). Causal
 Chambers as a real-world physical testbed for AI methodology. Nature
 Machine Intelligence 7, 107-118. Download 
-  Scheidegger, C., Guo, Z. and Bühlmann, P. (2025). Spectral
  deconfounding for high-dimensional sparse additive models. ACM/IMS
  Journal of Data Science 2 (1),
  1-52. Download
-  Plecko, D., Bennett, N., Ukor, I.-F., Rodemund, N., Serpa-Neto,
  A. and Bühlmann, P. (2025). A framework and analytical exploration
  for a data-driven update of the Sequential Organ Failure Assessment
  (SOFA) score in sepsis. Critical Care and Resuscitation 27 (1) 100105, 1-7. Download  
-  Henzi, A., Shen, X., Law, M. and  Bühlmann, P. (2025). Invariant
  probabilistic prediction. Biometrika 112 (1), asae063
  https://doi.org/10.1093/biomet/asae063, 1-22. Download   
-  Zellinger, M.J. and Bühlmann, P. (2025). Natural language-based
 synthetic data generation for cluster analysis. Journal of
 Classification, https://doi.org/10.1007/s00357-025-09501-w, 1-27. Download  
-  Emmenegger, C., Spohn, M.-L., Elmer, T. and Bühlmann,
   P. (2025). Treatment effect estimation with observational network data
   using machine learning. Journal of Causal Inference 13 (1) 20230082,
  1-36. Download 
-  Schultheiss, C., Ulmer, M. and Bühlmann, P. (2025). Ancestor
 regression in structural vector autoregressive models. Journal of Causal
 Inference 13 (1) 20240011, 1-25. Download 
-  Carl, D., Emmenegger, C., Bühlmann, P. and Guo, Z. (2025). TSCI:
  two stage curvature identification for causal inference with invalid
  instruments in R. Journal of Statistical Software 114, doi:
  10.18637/jss.v114.i07, 1-21. Download
-  Gu, Y., Fang, C., Bühlmann, P. and Fan, J. (2024).  Causality
  pursuit from heterogeneous environments via neural adversarial invariance
  learning. To appear in the Annals of
  Statistics. Preprint arXiv:2405.04715
-  Shen, X., Bühlmann, P. and Taeb, A. (2025). Causality-oriented
  robustness: exploiting general noise interventions in linear structural
  causal models. To appear in the Journal of the American Statistical
  Association. Early access. Preprint arXiv:2307.10299
-  Wang, Z., Bühlmann, P. and Guo, Z (2023). Distributionally robust
  learning for muti-souce unsupervised domain adaptation. To appear in the
  Annals of Statistics. Preprint arXiv:2309.02211 Chosen as invited poster presentation at NeurIPS 2025. 
-  Ulmer, M., Scheidegger, C. and Bühlmann, P. (2025). Spectrally
 deconfounded Random Forests. To appear in the Journal of Computational and Graphical Statistics. Preprint arXiv:2502.03969   
   
  Book 
- Bühlmann, P. and van de Geer,
S. (2011). 
    Statistics for High-Dimensional Data: Methods, Theory and
    Applications. Springer.  
    Edited Books 
- Statistical
  Analysis for High-Dimensional Data. The Abel Symposium 2014. Edited
  by Frigessi, A., Bühlmann, P., Glad, I.K., Langaas, M., Richardson,
  S. and Vannucci, M. (2016). Springer.
  
- Handbook
    of Big Data. Edited by Bühlmann, P.,  Drineas, P., Kane, M. and
    van der Laan, M. (2016). Chapman & Hall/CRC. 
  
  Book chapters 
- 
Bühlmann, P. (2001). Time series. Encyclopedia of Environmetrics
(eds. El-Shaarawi, A.H. and Piegorsch, W.W.) , Vol. 4, pp. 2187-2202. 
    
-  
Bühlmann, P. (2003). Bagging, subagging and bragging for improving some
  prediction algorithms. In Recent Advances and Trends in
  Nonparametric Statistics (eds. Akritas, M.G. and Politis, D.N.),
  pp. 19-34. Elsevier. PDF 
- 
Bühlmann, P. (2004). Bagging, boosting and ensemble methods. In Handbook of
Computational Statistics: Concepts and Methods (eds. Gentle, J., Härdle,
W. and Mori, Y.), pp.  877-907. Springer.    
- 
Hothorn, T., Dettling, M. and Bühlmann, P. (2005). Computational
inference. In Bioinformatics and Computational Biology Solutions using R and
Bioconductor (eds. Gentleman, R., Carey, V., Huber, W., Irizarry, R. and
Dudoit, S.), pp. 293-312. Springer. PDF. See also 
here. 
-  
Bühlmann, P. (2006). Boosting and l^1-penalty methods for
high-dimensional data with some applications in genomics. In From Data and
Information Analysis to Knowledge Engineering (eds. Spiliopoulou, M.,
Kruse, R., Borgelt, C., Nürnberger, A. and Gaul, W.), pp. 1-12. Studies in
Classification, Data Analysis, and Knowledge Organization, Springer. 
-  
Bühlmann, P. and Lutz, R.W. (2006). Boosting algorithms: with an
  application to bootstrapping multivariate time series. In Frontiers in
  Statistics (eds. Fan, J. and Koul, H.), pp. 209-230. Imperial College Press.   
PDF
-  
Schöner D., Barkow S., Bleuler S., Wille A., Zimmermmann P., Bühlmann P.,
Gruissem W. and Zitzler, E. (2007). Network Analysis of Systems
Elements. In Plant Systems Biology, Series: Experientia Supplementum
(eds. Baginsky, S. and Fernie A), pp. 331-351. Birkhäuser.   
-  
Audrino, F. and Bühlmann, P. (2007). Synchronizing multivariate financial
time series. In The Value-at-Risk Reference (ed. Danielsson,
J.), pp. 261-291. Riskbooks.
- 
Bühlmann, P. (2012). Bagging, boosting and ensemble methods. In
Handbook of Computational Statistics: Concepts and 
Methods, 2nd edition (eds. Gentle, J., Härdle, 
W. and Mori, Y.), pp. 985-1022. Springer. PDF 
-  
Bühlmann, P. (2013). Comments on Robust Statistics. In Selected Works
of Peter J. Bickel (eds. Fan, J., Ritov, Y. and Wu, C.F.J.),
pp. 51-55. Springer. 
-  
Bühlmann, P. (2015). Confidence intervals and tests for
high-dimensional models: a compact review. In Modeling and Stochastic
Learning for Forecasting in High Dimensions (eds. Antoniadis, A., Poggi,
J.-M. and Brossat, X.), pp. 21-34. Lecture Notes in Statistics -
Proceedings. Springer. PDF    
- Rothenhäusler, D., Meinshausen, N. and Bühlmann,
  P. (2016). Confidence intervals for maximin effects in inhomogeneous
  large-scale data. In Statistical
  Analysis for High-Dimensional Data. The Abel Symposium 2014 (eds. Frigessi, A., Bühlmann, P., Glad, I.K., Langaas, M., Richardson,
S. and Vannucci, M.), pp. 255-277. Springer. PDF 
-  Bühlmann, P. (2016). Partial least squares for heterogeneous
  data. In The Multiple Facets of Partial Least Squares and Related
  Methods. PLS, Paris, France, 2014 (eds. Abdi, H., Esposito, V.,
  Russolillo, G., Saporta, G. and Trinchera, L.), pp. 3-15. Springer.
- 
 Bühlmann, P. (2019). Invariance in heterogeneous, large-scale and
 high-dimensional data.  Proceedings of the International Congress of
 Mathematicians (ICM 2018) (eds. Sirakov, B., Ney de Souza, P. and Viana, M.),
 pp. 2785-2800. World Scientific. Abstract
  
 
  Other publication venues
- 
Bühlmann, P. and Stuart, A.M. (2016). Mathematics, Statistics and Data
Science. EMS Newsletter, No. 100, June 2016, pages
28-30.PDF 
 
  Conference proceedings (not reviewed)
- 
Bühlmann, P. (1999). Bootstrapping time series. Bulletin
of the International Statistical Institute, 52nd session. Proceedings, Tome
LVIII, Book1, 201-204.
- 
Bühlmann, P. (2003). Boosting methods: why they can be useful for
high-dimensional data. Proceedings of the 3rd International Workshop on
Distributed Computing (DSC 2003). 
PDF
- 
Bühlmann, P. (2007). Variable selection for high-dimensional data: with
applications in molecular biology. Bulletin
of the International Statistical Institute, 56nd session. PDF 
- 
Schäfer, J. and Bühlmann, P. (2007). Modeling inhomogeneous
high-dimensional data-sets: with applications in learning large-scale gene
correlations. S.Co. 2007. PDF
 Unpublished Papers 
- 
Bühlmann, P. (1996). Confidence regions for trends in time series:
  a Simultaneous Approach with a Sieve Bootstrap. Tech. Rep. 447. UC
  Berkeley. Superseded by Bühlmann (1998): Sieve bootstrap for smoothing in
  nonstationary time series (see above No. 10).    
-  
Bühlmann, P. (2002). Consistency for L2Boosting and matching pursuit with
  trees and tree-type basis functions. Superseded by Bühlmann (2006):
  Boosting for high-dimensional linear models (see above No. 43). 
-  
Bühlmann, P. and Ferrari, F. (2003). Dynamic combination of models for
  nonlinear time series.
PDF
-  
Meinshausen, N. and Bühlmann, P. (2003). Discoveries at risk.Compressed
       postscript.  
PDF
-  
Wille, A. and Bühlmann, P. (2004). Tri-Graph: a novel graphical model with
  application to genetic regulatory networks. Superseded by Wille and
  Bühlmann (2006): Low-order conditional independence
  graphs for inferring genetic networks (see above No. 41). 
-  
Bühlmann, P. and Yu, B. (2005). Boosting, model selection, lasso and
  nonnegative garrote. Superseded by Bühlmann and Yu (2006): Sparse Boosting
  (see above No. 46).  
-  
Wille, A., Bleuler, S. and Bühlmann, P. (2005). Integrating gene expression
  data into flux balance analysis. 
-  Schöner, D., Dahinden, C., Gruissem, W. and Bühlmann,
  P. (2009). Robust prediction of hubs in the yeast synthetic lethal
  network.
-  Leonardi, F. and Bühlmann, P. (2016). Computationally efficient change point detection for high-dimensional regression. Preprint arXiv:1601.03704  
-  Li, S. and Bühlmann, P. (2018). Estimating heterogeneous
  treatment effects in nonstationary time series with state-space models. Preprint arXiv:1812.04063 
-  Kovács, S., Ruckstuhl, T., Obrist, H. and Bühlmann,
  P. (2021). Graphical Elastic Net and target matrices: Fast algorithms and software for sparse precision matrix estimation. Preprint arXiv:2101.02148  
-  Azadkia, M., Taeb, A. and Bühlmann, P. (2021). A fast
    non-parametric approach for local causal structure learning. Preprint arXiv:2111.14969